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Abstract

A short review of the mathematical foundation of physical systems theory
is given. It is a rigorous theory, the systems having abstract signal spaces
and a general government. The contributions of Romanian mathematicians,
particularly of the author, to the development of this theory are pointed out.
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1 Introduction

We expose here a theory that represents the mathematical basis of the theory of
physical systems, both nonlinear and linear, time-varying and time-invariant, discrete-
variable and continuous-variable, unbounded and continuous. Several properties of
the systems as: linearity, continuity, time-invariance, causality, passivity and others,
are studied with the help of the admittance (impulse-response) function associated to
the physical system. In the present theory, this is an operator-valued function, the
operator generated by such a function being named Carleman operator (see [3] and
[7] for the linear case).

The theory was extended to more general signals and used to the study of the
system properties by R. Cristescu [13], D. Wexler (see [19]), I. Cioranescu [13], M.
Sabac [24], N. Racoveanu [23], D. Stanomir [26] and the author [2]-[10], the last papers
being the support of the present survey. Results in the some direction were obtained
by V. Dolezal [15]-[17], J. Sanborn [18], B. Pondelicek [22] and R. Meidan [21].

Notations. We denote by Φ(E,G) the set of all applications between two given
sets E and G. If these sets are vector spaces over a field K, then L(E, G) denotes
the vector space of all linear operators from E to G and E = La(E,K) is the linear
dual of E. If E and G are topological vector spaces, then L(E, G) denotes the vector
space of all linear continuous operators from E to G and E′ = L(E,K) is the linear
topological dual of E.
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2 Time-varying nonlinear physical systems

2.1. The nonlinear systems have as mathematical models the applications U :
E −→ E, where E is the set of all inputs, while F is a set that contains all the
outputs of the system U . The element Ue ∈ F is named the output of the system U
for the input, e ∈ E.

2.2. The dual (adjoint or transpose) system is the linear application UT

between the vector spaces Φ(F,G) and Φ(E, G), where G is a vector space, defined
by the relation:

(UT f)(e) = f(Ue), ∀e ∈ E, ∀f ∈ Φ(F, G). (1)

2.3. Admittance (weight or impulse-response) functions of the systems
2.3.1. The outputs. The outputs are considered to be functions, namely F ⊆

Φ(S,G), where S is a set. In this case, the outputs can be measured.
2.3.2. The Dirac application. The Dirac application δ ∈ Φ(F, G), concentrated

at the element s ∈ S (model for an impulse at s), is defined by the relation:

δs(f) = f(s), ∀f ∈ F. (2)

2.3.3. The (unique) admittance function associated to the system U and its dual
UT is the function ϕ : S −→ Φ(E,G) given by the formula

ϕ(s) = δs ◦ U = UT (δs), ∀s ∈ S (3)

(response at the impulses δs by the dual system UT ).
2.4. The representations of a nonlinear system U : E −→ F and its linear dual

UT : Φ(F, G) −→ Φ(E, G), are

(Ue)(s) = δs(Ue) = (UT δs)(e) = ϕ(s)(e) = ϕ(s)⊗ e, ∀s ∈ S, ∀s ∈ S, ∀e ∈ E, (4)

(UT f)(e) = f((Ue)(s)) = f(ϕ(s)(e)) = f(ϕ(s)⊗ e) = (ϕ(s)⊗ f)(e), (5)

hence
UT (f) = ϕ(s)⊗ f, ∀f ∈ Φ(F,G). (6)

So the systems U and UT are governed by the admittance function (5).
The composition products that appear in the formulae (4) and (5) are defined

just by these formulae. For this reason, the admittance functions ϕ(s) are also
named (E, F )-composition functions, the vector space of these functions being de-
noted ΦC(E, F ). Hence ϕ(s) ∈ ΦC(E, F ) if ϕ(s)(e) ∈ F, ∀e ∈ E.

2.5. The connections of the time-varying nonlinear systems
2.5.1. In series. The system U2 ◦ U1 obtained by series connection ([6]) of the

systems U1 : E −→ F1 ⊆ Φ(S, G), U2 : F2 −→ F1 ⊆ Φ(T, G), where T is an set,
with the admittance functions ϕ1 : S −→ Φ(E, G), ϕ2 : T −→ Φ(F1, G) has the
admittance function ψ : T −→ Φ(E, G), given by the formula:

ψ(t) = ϕ1(s)⊗ ϕ2(t), ∀t ∈ T. (7)

2.5.2. In parallel. The system U1 + U2 obtained by parallel conection ([6]) of
the systems U1, U2 : E −→ F , with admittance functions ϕ1, ϕ2 : S −→ Φ(E, G) has
the admittance function ϕ1 + ϕ2.
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3 Time invariant nonlinear physical systems

3.1. Sets of functions invariant to the translations. Let S be a commutative
group with the unity s0 ∈ S. The sets of functions E ⊆ Φ(S,G) will be supposed
to be translation invariant, namely e ∈ E and f ∈ F implies τse(t) = e(ts) ∈ E,
respectively τsf ∈ F , for any s ∈ S.

3.2. The translation of the application u ∈ Φ(E,G) with the element s ∈ S is
given by the relation:

(τsu)(e(t)) = u(τs−1e(t)) = u(e(ts−1)), ∀t ∈ S, ∀e ∈ E. (8)

3.3. The convolution product between an application u ∈ Φ(E, G) named
(E, F )− convolutor that satisfies the condition ϕ(s) = τsu ∈ ΦC(E, F ) and a function
and a function e ∈ E, is the function u∗e = τsu⊗e ∈ F , hence is given by the relation:

(u ∗ e(t))(s) = τsu⊗ e(t) = (τsu)(e(t)) = u(e(ts−1)). (9)

The convolution product between the applications u and f ∈ Φ(F, G) is the appli-
cation u ∗ f = τsu⊗ f ∈ Φ(E, G), given by the relation:

(u ∗ f)(e) = (τsu⊗ f)(e) = f((τsu)(e)) = f(u ∗ e), ∀e ∈ E. (10)

3.4. The nonlinear operator The nonlinear operator U : E −→ F is permutable
with the translation if satisfies the condition:

U(τse) = τsU(e), ∀s ∈ S, ∀e ∈ E. (11)

(the system does not change its behavior in time). In this case, its linear dual UT :
Φ(F, G) −→ Φ(E, G) is also permutable with the translations, hence it satisfies the
condition:

UT (τsf) = τsU
T (f), ∀s ∈ S, ∀f ∈ Φ(F, G). (12)

3.5. The admittance application of U : E −→ F is defined by

u = UT (δs0) ∈ Φ(E, G). (13)

If U is permutable with the translations, then u is an (E,F )− convolutor.
3.6. The representations of a time-invariant nonlinear system and its time-

invariant linear dual are

Ue = ϕ(s)⊗ f = (τsu)⊗ f = u ∗ e, ∀e ∈ E, (14)

UT f = ϕ(s)⊗ f = (τsu)⊗ f = u ∗ f, ∀f ∈ Φ(F, G). (15)

3.7. The connection of the time-invariant nonlinear systems
3.7.1. In series. The time-invariant system U2◦U1 obtained by series connection

of the time-invariant systems U1 : E −→ F1, U2 : F1 −→ F2 has the admittance
u1 ∗ u2 ∈ Φ(E,G).

3.7.2. In parallel. The time-invariant system U1 + U2 obtained parallel connec-
tion of the time-invariant systems U1, U2 : E −→ F with the admittance u1, u2 ∈
Φ(E,G), has the admittance u1 + u2 ∈ Φ(E, G).
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4 Time-varying linear continuous systems

4.1. Time-varying linear systems E, F, G are vector space on K and U : E −→
F, UT : La(F, G) −→ La(E, G) are linear operators. In case that F ⊆ Φ(S, G), where
S is a set, then δs ∈ La(F, G) and ϕ(s) = UT (δs) ∈ La(E, G), ∀s ∈ S. Physically, a
system is linear if it satisfies the superposition principle.

4.2. Carleman operators. We suppose that E,G are (separated) topological
vector spaces. The operator U : E −→ F ⊆ Φ(S, G) is named Carleman ([7]) if there
is a function ϕ : S −→ L(E,G), named generating function or kernel of U , so that

U(e)(s) = ϕ(s)(e)⊗ e, ∀s ∈ S, ∀e ∈ E. (16)

This is equivalent with the fact that the operator U is continous when the space
F is endowed with the pointwise convergence topology. Every Carleman operator is
linear. The initial notion was given by T. Carleman in 1932 in the case E = F =
L2(a, b) (see 5.2.2. below). Several extensions were given for example on [20] and
[27]. In the general case, presented here, this notion was introduced and studied by
the author in [23], without the actual denomination, also in [7] and in other papers.
The notion of Carlemn operator is taken as a mathematical model for a linear physical
system, the function ϕ being its admittance function.

4.3. Continuous systems. We suppose that F is a topological vector space
having the topology finer than the pointwise convergence topology. With some neces-
sary precautions it will be also considered the case when F is composed from classes
of functions equal almost everywhere on a measure space S.

4.3.1. Every linear continuous operator U : E −→ F is Carleman. This means
that every linear continuous system has the admittance function given by

ϕ(s) = δs ◦ U ∈ L(E, G), ∀s ∈ S. (17)

A system is continuous if close outputs correspond to close inputs (in the sense of
the considered topologies).

4.3.2. Every Carleman operator is closed, hence is continuous if the pair of spaces
(E,F ) fulfil the closed graph theorem ([9]).

4.3.3. The dual system UT : L(F,G) −→ L(E,G)has the representation (5) while
the admittance ϕ is given by (3).

5 Examples of time-varying linear continuous sys-
tems.

5.1. The scalar case G = K. In this case U : E −→ F, UT = U ′ : F ′ −→ E′,
δs ∈ F ′, ϕ(s) = U ′(δs) = e′s ∈ E′, (U(e))(s) = e′s(e) = e′s ⊗ e), (U ′(f ′))(e) =
(e′s ⊗ f ′)(e) = f ′(e′s(e)), ∀s ∈ S, ∀e ∈ E, ∀f ′ ∈ F ′. For simplicity, all the following
examples will be considered only in the real scalar case (hence G = K = R).

5.2. E Hilbert space. Taking into account the isomorphism between E and its
dual E′ given by the Riesz theorem, we have U : E −→ F , U ′ : F ′ −→ E, ϕ(s) =
U ′(δs) = es ∈ E, (U(e))(s) = (es) ⊗ e = (es, e), (U ′(f ′))(e) = ((es) ⊗ f ′)(e) =
f ′((es, s)), ∀s ∈ S, ∀e ∈ E, ∀f ′ ∈ F ′, where (·, ·) denotes the scalar product in E.
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5.2.1. Matricial systems. Discrete variable systems. Let S = {1, . . . , m}, E =
Rn, F = Rm. Then ϕ = A = [ai,j ] ∈ Mm,n[R ], where ϕ(s) = Ls = [as,1 . . . as,n] ∈
M1,n[ R ] ∼= Rn ∼= (Rn)′, s = 1, . . . ,m. The linear (continuous) system U : Rn −→
Rm has the representation U(X) = ϕ ⊗ X = AX, ∀X ∈ Mn,1[ R ] ∼= Rn. The
system obtained by the series connection of the systems governed by the matrices
A ∈ Mm,n, B ∈ Mn′k is governed by the matrix AB ∈ Mm,k. The system obtained
by the parallel connection of the systems governed by the matrices A,B ∈ Mm,n is
governed by the matrix A + B ∈ Mm,n.

5.2.2. Integral systems governed. Continuous variable systems. Let S = (a, b)
with −∞ ≤ a < b ≤ ∞, E = F = L2(a, b). Then the linear continuous operator
U : L2(a, b) −→ L2(a, b) has the representation

(U(e(t)))(s) =

b∫

a

K(s, t)e(t)dt, ∀e(t) ∈ L2(a, b),

the admittance function being ϕ(s) = K(s, t) ∈ (L2(a, b))′ ∼= L2(a, b), for almost
all s ∈ (a, b). This is the initial notion defined by T. Carleman. The system
obtained by series connection of the systems that have the admittance functions
ϕ1(s) = K1(s, t), ϕ2(s) = K2(s, t), has the admittance function ϕ1(s) ⊗ ϕ2(r) =
b∫

a

K1(s, r)K2(r, t)dr, named Fredholm product, while in the case of parallel connec-

tion the admittance function is K1(s, t) + K2(s, t).
5.3. Distributional systems. Let S = Rn, G = K, E = C∞0 ( Rm) =

D( Rm), F = D(Rn). Every linear continuous operator U : D( Rm) −→ D(Rn) and
its dual UT = U ′ : D′( Rn) −→ D′(Rm) have the representations (Ue)(s) = e′s(e) =
e′s ⊗ e, (U ′f ′)(e) = f ′(e′s(e)) = (e′s ⊗ f ′)(e), ∀s ∈ Rn, ∀e ∈ D(Rm), ∀f ′ ∈ D′(Rn),
where the admittance function ϕ(s) = U ′(δs) = e′s ∈ D′(Rm), ∀s ∈ Rn is a indefinite
differentiable distributional function, weak with compact support. Here δs ∈ D′( Rn)
is the Dirac distribution concentrated at s ∈ Rn (impulse at s). The same holds for
other spaces from distribution theory or Sobolev spaces.

5.3.1. Systems multiplicatively governed. If n = m and α ∈ C∞(Rn), the operator
Ue = αe, ∀e ∈ D(Rn) is Carleman with the admittance function ϕ(s) = α(s)δs ∈
D′(Rn), ∀s ∈ Rn and U ′(f ′) = αf ′, ∀f ′ ∈ D′(Rn).

5.3.2. Convolutional systems. If n = m and u ∈ E′(Rn), then the convolution
operator Ue = u ∗ e, ∀e ∈ D(Rn) is Carleman with the admittance function ϕ(s) =
τsu ∈ D′( Rn), ∀s ∈ Rn and the dual U ′f ′ = u ∗ f ′, ∀f ′ ∈ D′( Rn).

5.3.3. The derivative operator as distributional systems. If n = m = 1, the deriv-

ative operator Ue(x) =
de(x)
dx

, ∀e(x) ∈ D(R) is a Carleman operator U : D( R) −→

D( R), with the admittance function ϕ(s) =
dδs(x)

dx
∈ D′(r), ∀s ∈ R and the dual

U ′ : D′(R) −→ D′(R), given by U ′(f ′) =
df ′

dx
, ∀f ′ ∈ D′(R).

5.3.4. Differential governed systems. If n = m, the differential operator U ′(f ′(x)) =
∑
|k|≤q

ak(x)
∂|k|f ′(x)

∂xk1
1 · · · ∂xkn

n

∈ D′(Rn), ∀f ′(x) ∈ D′(Rn), x = (x1, . . . , xn) ∈ Rn,
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k = (k1, . . . , kn) ∈ Nn, |k| =
n∑

j=1

kj , is the dual of a Carleman operator with the

admittance function ϕ(s) =
∑
|k|≤q

ak(s)
∂|k|δs(x)

∂xk1
1 · · · ∂xkn

n

∈ D′(Rn), ∀s ∈ Rn.

5.3.5. Difference governed systems. If n = m = 1, the difference operator

U ′(f ′(x)) =
q∑

k=1

ak(x)f ′(x−xk) ∈ D′(R), ∀f ′ ∈ D′(R), where xk ∈ R , k = 1, . . . , q,

is the dual of a Carleman operator with the admittance function ϕ(s) =
q∑

k=1

ak(x)δ(x−
xk) ∈ D′(R), ∀s ∈ R .

5.4. Fourier transform of admittance functions ([3]). We consider the
Fourier transform

F (e(t)) =
∫

Rn

ei(t,s)e(t)dt ∈ Z(Rn) = F (D(Rn)), ∀e(t) ∈ D( Rn).

The function ψ = F (ϕ) : Rn −→ Z ′(Rn), defined by the formula

(ψ(t))(Fe) = F ((ϕ(s))(e)), ∀e ∈ D( Rn), ∀s, t ∈ Rn,

is the Fourier transform of the admittance function ϕ : Rn −→ D′(Rn). If χ : Rn −→
D′(Rn) is a distributional arbitrary function, we have F (ϕ ⊗ χ) = F (ϕ) ⊗ F (χ).
Particularly, if u ∈ E′( Rn) and v ∈ D′(Rn), having ϕ(s) = τsu, χ(s) = τsv, it is
obtained F (u ∗ v) = F (u)F (v).

5.5. Laplace transform of admittance functions ([4]). We consider the
Laplace transform

L(e(t)) =

∞∫

−∞
e−tse(t)dt ∈ L(D(R)), ∀e(t) ∈ D(R), s ∈ C,

complex variable. The function ψ = Lϕ : C −→ (L(D( R)))′, defined by the formula

(ψ(s))(Le) = L((ϕ(t)))(e), ∀e ∈ D(R), ∀t ∈ R , ∀s ∈ C,

is the Laplace transform of the admittance function ϕ : R −→ D′(R). It satisfies
analogous properties as the Fourier transform.

6 Time-invariant linear continuous systems

. In the hypotheses made both in Sections 3 and 4, we consider the statements
(i) U : E −→ F is a convolution operator;
(ii) UT : L(F,G) −→ L(E, G) is a convolution operator;
(iii) U commutes with the translations;
(iv) UT commutes with the translations.

Then ([8]) there holdtime the following implications (i)⇐⇒(ii)=⇒(iii)⇐⇒(iv). If U
is a Carleman operator, then the above implications are equivalent.
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7 Causality of the time-varying systems relative to
a scale of sets

We encourage of reader to see [16] and [21] for a particular linear distributional setting.
We further consider fulfilled the hypotheses from the Section 4.

7.1. Scale of sets. It is named scale of sets the family of sets Sa ⊆ S, ∀a ∈ S,
with the properties:

i) a ∈ Sa, b ∈ Sa =⇒ Sb ⊆ Sa

ii) ISa = Sa;
iii) there exists s0 ∈ S so that CSa − λs0 ⊆ CSa, ∀λ > 0,

where I, C denotes the adherence of the interior, respective of the complementary of
the set.

7.2. Examples of scales of sets
7.2.1. Let S be a topological space and Γ ⊆ S a cone (s ∈ Γ, λ ≥ 0 =⇒ λs ∈ Γ),

closed, convex and having the interior non-void. Then the sets s + Γ, ∀s ∈ S make a
scale.

7.2.2. If S = R , Γ = [0,∞) the sets s + Γ = [0,∞), ∀s ∈ R make a scale.
7.2.3. If S = R4, Γ = {(x, y, z, t) ∈ R4, x2 + y2 + z2 ≥ c2t2}, the light cone,

then the sets s + Γ, ∀s ∈ R4, make a scale.

7.3. Causal nonlinear time-varying systems. If E, F ⊆ Φ(S,G), with G
vector space, the operator U : E −→ F is named causal relative to the scale Sa if for
every a ∈ S, e ∈ E and e(t) = 0, ∀t ∈ CSa then (Ue)(t) = 0, ∀t ∈ CSa.

If U is linear, this implies that for every a ∈ S we have

e1, e2 ∈ E, e1(t) = e2(t), ∀t ∈ CSa ⇒ (Ue1)(t) = (Ue2)(t), ∀t ∈ CSa

(hence in the past of every moment a to equal causes correspond via the system equal
effects).

7.4. Null applications on open sets. It is named the support of a function
e ∈ E the adherence in S of the point s ∈ S at which e(s) 6= 0. It is said that an
application e′ ∈ Φ(E, G) is null on an open set A ⊆ S if for every function e ∈ E
having its support in the set A, we have e′(e) = 0.

7.5. Causal dual systems. It is said that the dual system UT : Φ(F, G) −→
Φ(E,G) is causal relative to the scale Sa if for every a ∈ S we have f ′ ∈ Φ(F,G), f ′ =
0 on CSa ⇒ UT (f ′) on CSa.

7.6. Criteria of causality. In the hypotheses by the Section 4, if U : E −→ F
is a Carleman operator, then the following sentences are equivalent (i) U is causal
relative to the scale Sa; (ii) UT is causal relative to the scale Sa; (iii) ϕ(a) = 0 on Sa

for every a ∈ S.

7.7. Causal time-invariant systems. In the hypotheses from Section 6, if
U : E −→ F is the operator Ue = u ∗ e, ∀e ∈ E, then the following sentences are
equivalent (i) U is causal relative to the scale Sa; (ii) UT is causal relative to the same
scale; (iii) u = 0 on C.
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8 Passivity of the time-varying systems relative to
a scale of sets.

We encourage the reader to check see [17] and [21] for a particular linear distributional
setting.

We consider fulfilled the hypotheses from Section 4 and we assume that the spaces
E, F ⊆ Φ(S, R) are composed by integrable functions defined almost everywhere on
a measure space S.

8.1. Passivity. The operator is named passive relative to the scale of measurable
sets Sa, ∀a ∈ S if

∫
CSa

(Ue)(s)e(s)ds ≥ 0, ∀e ∈ E, ∀a ∈ S. Hence at every moment a,

every input e provides to the system a energy.

8.2. Causal and passivity. Every time-varying linear passive system is causal,
relative to the same scale (which in the classic case is stated by the Youla, Castriota-
Carlin theorem).

8.3. Weak passive systems are the generalization of the systems that satisfy
the condition

∫
S

(Ue)(s)(e)ds ≥ 0, ∀e ∈ E.

8.4. Examples

8.4.1. For S = Rn, the systems Ue = (−1)k ∂2ke(s)
∂s2k

i

and, particularly, −∆ =

−
n∑

i=1

∂2

∂s2
i

are weak passive.

8.4.2. Passivity and weak passivity. Every passive system relative to a scale
that satisfies some special conditions, is weak passive.

8.4.3. If the system U that satisfies some special condition is weak passive and
causal, then it is passive, relative to the same scale.

8.4.4. Weak passivity of the time-invariant system.
If S = Rn, then the time-invariant system Ue = u ∗ e, ∀e ∈ E is weak passive if

u

(∫
R

e(s)e(t + s)ds

)
≥ 0, ∀e ∈ E.
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[3] M. Ĉırnu, Sur la transformation de Fourier des fonctions distributionnelles com-
posables, Revue Roum. Math. Pures Appl. 13 (1968), 25-34.



Contributions to the mathematical theory of physical systems 113

[4] M. Ĉırnu, Laplace Transformation of Distributional Functions (in Romanian),
I-V St. Cerc. Mat. I, 20 (1868), 994-995; II, 22 (1970), 23-30; III, 24 (1972),
335-339; IV, 24 (1972), 729-735; V, 25 (1973), 827-831.
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