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Abstract

The Markov models are frequently proposed to quickly obtain forecasts of
the weather ”states” at some future time using information given by the current
state. One of the applications of the Markov chain models is the daily precip-
itation occurrence forecast. There is tested a Markov chain model with two
states for the daily precipitation in summer and winter seasons of 1961-1990 at
several stations in Romania. The states of the Markov chain are precipitation
occurrence and precipitation non-occurrence, that is wet and respectively dry
days. There are computed the sets of conditional (or transition) probabilities
for first-order, second-order and third-order Markov chain. To find the most ap-
propriate model order among the different orders of the Markov chains for the
daily precipitation series, the Bayesian information criterion (BIC) was used.
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1 Introduction

There are three methods used for precipitation forecasting: the subjective prognosis
based on the experience of the forecasters, the deterministic prognosis obtained from
the models of numerical weather prediction and the statistical prognosis. The two
last are part of the objective techniques.

One of the statistical techniques is the Markov chain used to predict precipitation
on short term, at meteorological stations. The Markov chain models have two ad-
vantages: (1) the forecasts are available immediately after the observations are done
because the use as predictors only the local information on the weather and (2) they
need minimal computation after the climatological data have been processed.

The idea of applying the stochastic processes theory in meteorology belongs to
Gabriel and Neuman (1962) who have developed a Markov chain model for the daily
precipitation in Tel Aviv. Using a set of data containing the daily mean values of
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departmental precipitation over 11 years of observations, Ladoy (1974) have calcu-
lated the transition probabilities of the daily spatial distributions in France. The
Australians researchers (Hess et al. 1989) have demonstrated that this technique is
good enough to build an objective base of the precipitation occurrence probability in
short-term prognosis. It can be also reminded the study on evaluating the monthly
precipitation amounts anomalies of the Romania’s territory (Mares 1976), based on
a Markov chain model of 1st and 2nd order. A 5-order Markov chain was applied to
analyse the producing of extreme events in the monthly precipitation field at meteo-
rological stations in Romania (Mares and Mares 1993).

In this paper there are presented the results of testing the Markov chain of first,
second and third-order from the daily precipitation series in summer and winter sea-
sons at some representative meteorological stations in Romania.

2 First-Order Markov Chain

A first-order Markov chain is one in which knowing one variable (like cloudiness,
precipitation amount, temperature, fog, frost, wind) at time t is sufficient to forecast
it at some later time.

The simplest kind of discrete variable is that which has binary values (yes/no),
corresponding to the two states in which it can exist. For the daily precipitation,
those are their occurrence or non-occurrence. A sequence of daily observations of
”precipitation” and ”no precipitation” from a meteorological station constitute a time
series of that discrete variable.

For the first-order Markov chain, the transition probabilities controlling the future
state of the studied variable depend only on its current state (Wilks 1995). Knowing
that at time t the variable X is either in state 0 (no precipitation occurs and Xt = 0),
or in state 1 (precipitation occurs and Xt = 1), conditional transition probabilities
are computed at time t+1, where the time step is one day. That is,

p00 = Pr(Xt+1 = 0 | Xt = 0)
p01 = Pr(Xt+1 = 1 | Xt = 0)
p10 = Pr(Xt+1 = 0 | Xt = 1)
p11 = Pr(Xt+1 = 1 | Xt = 1)

(2.1)

The transition probabilities estimation procedure consists of computing the con-
ditional relative frequencies, as follows:

p̂01 =
n01

n0•
, p̂11 =

n11

n1•
(2.2)

Notations used were:n01-number of transitions from state 0 to state 1, n11-number
of pairs of time steps in which the system keeps in state 1,n0• -number of states 0 in
the series followed by another data point, and n1• -number of states 1 in the series
followed by another data point. That is, n1• = n10 + n11 and n0• = n00 + n01.

For a Markov chain describing the daily occurrence or non-occurrence of pre-
cipitation, the stationary probability for precipitation (state 1), π1, corresponds to
the (unconditional) climatological probability of precipitation. Using the transition
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probabilities p01 and p11,

π1 =
p01

1 + p01 − p11
.(2.3)

The transition probabilities also imply a serial correlation degree or persistence
for the time series. The lag-1 autocorrelation or persistence parameter of the time
series writes in terms of the transition probabilities as

r1 = p11 − p01.(2.4)

The mean length of the persistence sequence is computed (Yao 1982) with the
formula:

LE =
1

1− pE
, E = 0, 1.(2.5)

where pE is the occurrence probability of event E which may take value 0 or 1,
respectively.

3 Higher-Order Markov Chains

Consider for instance a second-order Markov chain. Second-order time dependency
means that the transition probabilities depend on the states at lags of both one and
two time periods. Then, the transition probabilities for a second-order Markov chain
require three subscripts: the first refers to the state at time t-1, the second to the
state at time t, and the third specifies the state at time t+1. The notation for the
transition probabilities of a second-order Markov chain can be defined as

phij = Pr(Xt+1 = j | Xt = i,Xt−1 = h), h, i, j = 0, 1.(3.6)

The transition probabilities for a second-order Markov chain yield with formula

p̂hij =
nhij

nhi•
.(3.7)

That is, knowing that the value of the time series at time t-1 was Xt−1 = h and
at time t, Xt = i, the probability that the future state of the time series Xt+1 = j is
phij .

Similarly, for a third-order Markov chain, the notation requires four subscripts on
the transition counts and transition probabilities: the first refers to the state at time
t-2, the second to the state at time t-1, the third to the state at time t, and the fourth
specifying the state at time t+1. The notation for the transition probabilities of a
third-order Markov chain can be defined as

pghij = Pr(Xt+1 = j | Xt = i,Xt−1 = h,Xt−2 = g), g, h, i, j = 0, 1.(3.8)

The transition probabilities for a third-order Markov chain are obtained from the
conditional relative frequencies of the transition counts Xt−2 = g, the value of the
time series at time t-1 was Xt−1 = h and the value of the time series at time t, Xt = i,
the probability that the future state of the time series Xt+1 = j is pghij .
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4 Determining the Order of the Markov Chain

Two criteria are use to decide among different orders of the Markov chain models:
the Akaike criterion (AIC) and Bayesian criterion (BIC). Both are based on the log-
likelihood functions for the transition probabilities of the Markov chains constructed
on a certain data series. These log-likelihoods depend on the transition counts and
the estimated transition probabilities. The log-likelihoods for Markov chains of order
0, 1, 2 and 3 are

L0 =
s−1∑

j=0

nj ln(p̂j)

L1 =
s−1∑

i=0

s−1∑

j=0

nij ln(p̂ij)

L2 =
s−1∑

h=0

s−1∑

i=0

s−1∑

j=0

nhij ln(p̂hij)

L3 =
s−1∑
g=0

s−1∑

h=0

s−1∑

i=0

s−1∑

j=0

nghij ln(p̂ghij)

(4.9)

Here the summations are performed over all the states s of the Markov chain. For
two states there will be included just two terms corresponding to the binary time
series. Statistics of the two criteria differ slightly as can be seen below

AIC(m) = −2Lm + 2sm (s− 1),
BIC(m) = −2Lm + sm (ln(m)).(4.10)

The order m is chosen as appropriate that minimizes either equation (3.6)1 or
equation (3.6)2. BIC criterion tends to be more conservative, indicating lower orders
than AIC. It is preferable to use BIC statistic for sufficiently long time series, i.e. for
those containing a number of data from around n=100 to over n=1000.

5 Results

There are presented the results of the application of the Markov chains of 1, 2nd
and 3rd order to the daily precipitation series in the summer and winter seasons at 8
representative stations (Table 1) from Romania.

5.1 First-Order Markov Chain

The stationary (climatological) probability for the summer precipitation (see Figure
1b), calculated with equation (2.3), has the highest values in the northwest of the
country and in the mountain area. The western atmospheric circulations carrying
wet air masses mostly influence these areas and determine here a bigger number of
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wet days than in the rest of the territory. A similar distribution is pointed out in
winter (see Figure 1a) when the stationary probability is bigger than in summer, but
is not so homogeneous in the mountain area.

Figure 1: Climatological probability of daily precipitation occurance over Romania:
a) in winter and b) in summer (1961-1990)

The persistence parameter given by (2.4), shows in both seasons a substantial
serial correlation in the time series in the northwestern part of Romania (see Figure
2a and Figure 2b), where are placed the highest values. The persistence parameter
field has a much higher gradient in winter than in summer, and is better highlighted in
the cold season than in the warm one, accordingly to the nature of the precipitation.

The sequential analysis of the precipitation occurrence during the summer shows
that the greatest mean lengths of the persistence sequences, calculated with the re-
lation (2.5), are reached in the mountain area: 2.46 days in the northern part of the
Eastern Carpathians, 2.4 days at Vladeasa Mount and 2.42 days in Bucegi Mounts
(see Figure 3b). In winter, the mean length of the persistence sequence is longer
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Figure 2: Persistence parameter for daily precipitation over Romania: a) in winter
and b) in summer (1961-990)
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than in summer (see Figure 3a) reaching 2.64 days in Bucegi Mounts, 2.54 days at
Vladeasa Mount and 2.5 days in Eastern Moldova. The longest mean persistence se-
quence of the precipitation non-occurrence that results from (2.5), is being recorded
in the southwest and southeast parts of the country (see Figure 4a and Figure 4b),
with higher values in summer than in winter.

Figure 3: Mean length persistence sequence of the precipitation occurrence (days)
over Romania: a) in winter and b) in summer (1961-1990)

The transition probabilities of the dry sequence, p00 are higher than those of the
wet sequence, p11 in both seasons at all the stations (Table 1). The highest probability
that a dry day will be followed by a dry day too is being registered in wintertime in
southwest (Piclisa) Romania and in summertime in southeast (Constanta) Romania.
A wet day will be followed with the highest probability by another wet day in the
western part of territory during the winter (Baia Mare) and in the central part during
the summer (Tg. Mures).
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Figure 4: Mean length persistence sequence of the precipitation non-occurrence (days)
over Romania: a) in winter and b) in summer (1961-1990)
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5.2 Second-Order Markov Chain

For the second-order Markov chain with two states, applied to the time series of
the daily precipitation in summer and in winter of 1961-1990 at the meteorological
stations in Romania, the transition probabilities have been calculated accordingly to
the relation (3.2) and a few results are presented in Table 1. The probability that
two dry days will be followed by another dry day, p000, is higher at the southern
stations than in the rest of the territory, during the summer season. In winter, the
highest probability of lack of precipitation in three consecutive days was found in
southwest of the country (Turnu Severin and Piclisa). Two wet days will be followed
with the highest probability by another wet day in northwestern Romania (Baia
Mare), in both summer and winter. Comparing the two seasons, the probability of
precipitation occurrence in three consecutive days, p111, is higher in winter than in
summer, at almost all the stations, in accordance with the dominant precipitation
nature in each season.

Table 1. Transition probabilities computed for 1st, 2nd and 3rd order Markov
chains at several stations from Romania

Season Avra- Bacau Baia Buc. Con- Turnu Pi- Tirgu

meni Mare Baneasa stanta Severin clisa Mures

Winter p00 0.669 0.665 0.65 0.699 0.681 0.735 0.753 0.656

Summer 0.69 0.682 0.682 0.709 0.799 0.759 0.659 0.651

Winter p11 0.597 0.628 0.732 0.643 0.596 0.67 0.58 0.687

Summer 0.535 0.553 0.599 0.561 0.463 0.462 0.575 0.608

Winter p000 0.677 0.676 0.699 0.725 0.695 0.753 0.776 0.689

Summer 0.698 0.686 0.679 0.711 0.812 0.773 0.673 0.655

Winter p111 0.595 0.614 0.727 0.638 0.592 0.677 0.555 0.676

Summer 0.527 0.537 0.612 0.537 0.435 0.464 0.591 0.588

Winter p0000 0.69 0.663 0.711 0.732 0.708 0.764 0.784 0.716

Summer 0.698 0.703 0.69 0.719 0.81 0.771 0.671 0.647

Winter p1111 0.615 0.653 0.742 0.659 0.557 0.694 0.603 0.694

Summer 0.55 0.557 0.608 0.526 0.47 0.497 0.588 0.593

5.3 Third-Order Markov Chain

For the third-order Markov chain with two states, applied to the time series of the
daily precipitation for the summer and winter seasons of 1961-1990, the transition
probabilities have been calculated accordingly to the relation (3.4). The results for a
few stations in Romania are presented in Table 1. There is a significant difference be-
tween the precipitation regime for southeast (Constanta) and northwest (Baia Mare)
or west (Piclisa) of the territory. As concerning the other stations, the results obtained
for Bucharest are similar to the ones in Bacau, both stations being representative for
the extra-Carpathian area of Romania’s territory.
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The performances of the third-order Markov chain are better in winter than in
summer for the wet sequence, p1111, at all stations. The results for the dry sequence,
p0000, must be used locally.

5.4 Determining the Order of the Markov Chain

The order of the most appropriate Markov chain model to represent the series of daily
precipitation is determined accordingly to the BIC criterion (3.6)2 at each station in
both summer and winter. The BIC criterion values have been calculated based on
the transition gure 5), a first-order Markov chain is the best representation for the
daily precipitation occurrence.

The results show that in summer the best model is the first-order Markov chain for
all stations in Romania, accordingly to the convective nature of the precipitation and
their low persistence. In winter, the daily precipitation occurrence is well simulated by
a second-order Markov chain in the almost northwestern Romania and the mountain
region. As for the rest of the territory (see Figure 5), a first-order Markov chain is
the best representation for the daily precipitation occurrence.

Figure 5: The order of the most appropriate Markov chain model for the daily winter
precipitation occurrence (1961-1990)

6 Conclusions

The Markov chain approach for simulating daily precipitation occurrence points out
significant differences between the precipitation regime in summer and winter. The
results depend on the space domain too.

The occurrence probabilities of the wet sequences (2, 3 or 4 consecutive days with
precipitation) are higher in winter than in summer at almost all the stations used in
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this study.The conditions of the occurrence of precipitation are less favourable in the
extra-Carpathian area than in the rest of the territory.

A first-order Markov chain gives the most appropriate representation of the daily
precipitation occurrence in the summer season. In winter, the occurrence of the daily
precipitation is well simulated by a first-order Markov chain in the extra-Carpathian
area and by a second-order one in the rest of Romania’s territory. This result points
out the influence of the shape and massiveness of the Carpathian on daily precipitation
occurrence and their variability.

An interesting application of the Markov chain model for daily precipitation oc-
currence is in relation to the short-range forecasting of the precipitation probabilities.
In this case, it could be used the transition probabilities calculated with the first-
order or the second-order Markov chains to find the future distribution of the daily
precipitation over Romania

References

[1] Gabriel K.R. and Neuman I., Markov chain model for daily rainfall occurrence
at Tel Aviv, Q. J. Roy. Met. Soc, 88 (1962), 90-95.

[2] Hess G.D., Leslie L.M., Guymer A.E. and Fraedrich K., Application of a Markov
technique to the operational, short-term forecasting of rainfall, Australian Mete-
orological Magazine, 37 (1989), 2, 83-91.
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