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Abstract

A new kind of universal enveloping algebra for a Lie triple system is made
evident. This (new) universal enveloping algebra U(A) for the Lie triple system
A is a T -algebra (i.e., it is a commutative nonassociative algebra satisfying to a
specific identity) having the property that any Lie triple system homomorphism
of A into a T -algebra B extends to an algebra isomorphism of U(A) into B.
The algebra U(A) is a quotient of the nonassociative tensor algebra T {A} by a
suitable two sided ideal and it is a filtered algebra.

It is especially important to solve the problem of representing the ternary
composition of a certain Lie triple system by means of an appropriate binary
composition defined on its ground space. The aim of this paper is to give some
necessary conditions for the existence of a binary composition whose standard
associated h-system is a given Lie triple system.
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1 Introduction

Lie triple systems (briefly, Ltss) were first noted by E. Cartan in his study on totally
geodesic submanifolds (see [6]); they are subspaces of any Lie algebra which are closed
under the ternary composition [[x, y], z]. If G is the Lie algebra of the Lie group G,
then Ltss in G are connected with the totally geodesic subspaces of G in the same
way that Lie subalgebras of G are related to analytic subgroups of G. Ltss can be also
defined as the subspaces of any Lie algebra (over a field of characteristic 6= 2) mapped
into their negatives by an involution of the given Lie algebra. Since the symmetry in
a symmetric space give rise to the involution in the Lie algebra of the group defining
the symmetric space, the Ltss arisen also in the studies on symmetric spaces [6, 23].
From the algebraic point of view, Ltss were studied by N. Jacobson [14, 15] and W.
G. Lister [22]. Actually, they were introduced by N. Jacobson [14] in 1948 as being
the abstract algebraic structures describing the subspaces of an associative algebra
that are closed relative to the ternary operations [[x, y], z] where [x, y] = xy − yx.
They had also arisen in a natural way in the study of Jordan algebras and Jordan
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triple systems (Jts). Particular Ltss and Jtss have been early arisen (1938, 1943) in
quantum mechanics [9, 19]. It must be also remarked that they arose naturally in
the investigation by H. Freudenthal (1954) on the geometries of exceptional simple
Lie groups [10]. Ltss were also used in differential geometry by P. I. Kovalev in the
study of certain manifolds endowed with affine connections (see [20, 21]). Recently,
N. Kamiya and S. Okubo connect Ltss with the study of the Yang-Baxter equation.
A crucial moment in the development of Ltss structural theory was the result proved
in 1951 by N. Jacobson [14], stating that every Lts (T, [., ., .]) can be embedded into a
Lie algebra (L, [., .]) such that its ternary operation is a superposition of Lie brackets
of L (i.e., [x, y, z] = [[x, y], z],∀ x, y, z ∈ T ). This embedding suggests that Ltss are
the tangent algebras of particular homogeneous spaces.

Another important class of Ltss is connected with a class of commutative algebras
satisfying an identity of degree 4 (see [25]), the so called T -algebras. This connection
is yielded by means of the ternary operation [x, y, z] = x(yz)− y(xz) (see Proposition
2.2). On other hand, such a commutative algebra can be associated with every nonas-
sociative algebra (see Proposition 2.4), that allows us to give an embedding result for
Ltss similar to the Jacobson’s embedding result. More exactly, it is proved the follow-
ing result: any Lts can be embedded into a commutative algebra satisfying to a certain
identity of degree 4. Actually, we shall prove that a universal enveloping T-algebra
can be associated with every Lts. For a Lie triple system A, the universal enveloping
T -algebra U(A) is a nonassociative algebra having the property that any Lie triple
system homomorphism of A into the Lts associated to a nonassociative T -algebra B
extends to an algebra isomorphism of U(A) into B. The algebra U(A) is a quotient
of the nonassociative tensor algebra T {A} by a suitable two sided ideal and it is a
filtered algebra.

In this paper we also give some necessary conditions for an Lts be the h-system
(see [3]) associated with a binary algebra. The importance of solving this problem
comes from the possibility that a Lts can be the tangent structure of a homogeneous
space. There exist Ltss for which this problem has a solution but, unfortunately, the
problem of representing the ternary composition of a Lie triple system by means of
an appropriate binary composition, defined on its ground space, has not always a
positive answer (see, for example, the meson triple system).

2 Preliminaries

A Lie triple system (briefly, Lts) is a vector space V over the field K, with a ternary
composition [., ., .] : V × V × V → V, (a, b, c) → [a, b, c], which is trilinear and satisfies
the following axioms:

(Lts.1) [x, x, y] = 0,
(Lts.2) [x, y, z] + [y, z, x] + [z, x, y] = 0,
(Lts.3) [x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]],

∀ x, y, z, u, v, w ∈ V . For every x, y ∈ V we can define the vector space endomorphism
D(x,y) : V → V by D(x,y)(z) = [x, y, z]; the equation (Lts. 3) says that D(x,y) is a Lts-
derivation which is called a inner derivation of V. Moreover, the axiom (Lts. 3) assures
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that the usual bracket of endomorphisms endows D = SpanK{D(x,y)| x, y ∈ V } with a
Lie algebra structure; D is the so-called inner derivation algebra and it is also denoted
by InnDer(V ). Consequently, it becomes clear that the possibility of using the Lie
algebra representation theory in the study of Ltss arose.

Let LT SK denote the category of Lie triple systems over K with the Lts homo-
morphisms as morphisms.

If L is a Lie algebra with product [a, b], then the ternary composition [a, b, c] =
[[a, b], c] satisfies the above identities. N. Jacobson shown in 1951 [15] that any Lts may
be considered as a subspace of a Lie algebra L in such a way that [a, b, c] = [[a, b], c].
The construction is: let L be the vector space direct sum T ⊕ (T ⊗ T )−, where
(T ⊗T )− is the factor space of T ⊗T modulo the subspace of all

∑
i ai⊗ bi such that∑

i[ai, bi, x] = 0, for all x ∈ T . The product [x, y] in L is defined by

[a, b] = (a⊗ b)−, ∀a, b ∈ T,

[
(
∑

i[ai, bi]), c
]

=
∑

i[ai, bi, c], ∀ai, bi, c ∈ T,

[
c, (

∑
i[ai, bi])

]
= −∑

i[ai, bi, c], ∀ai, bi, c ∈ T,

[
(
∑

i[ai, bi]), (
∑

j [cj , dj ])
]

=
∑

i,j [[ai, bi, cj ], dj ]−
∑

i,j [[ai, bi, dj ], cj ],

(2.1)

∀ ai, bi, ci, di ∈ T . L is then a Lie algebra, called the standard enveloping Lie algebra
of T , and it is denoted by Ls(T ) or merely Ls. It is clear that the natural map of T
into Ls(T ) is 1-1. One can also construct a universal enveloping Lie algebra Lu(T ),
with the property that any homomorphism of T into a Lie algebra extends to a homo-
morphism of Lu(T ) and a universal associative algebra (with identity) U(T ) with the
same property relative to the homomorphisms of T into associative algebras. U(T ) is
then the universal associative algebra of Lu(T ), the natural maps of T into U(T ) and
Lu(T ) are 1-1 and Lu(T ) = T ⊕ [T, T ].

A Lts is called Abelian if [x, y, z] = 0 for any triple (x, y, z). Of course, every K-
module T is an Abelian Lts by defining the Lts-bracket as [x, y, z] = 0. In this case,
Ls(T ) identifies with the Abelian Lie algebra having underlying vector space T . Also,
Lu(T ) = T⊕Λ2T , with [x, y] = x∧y for x, y ∈ T and with all other products vanishing.

In what follows we prove the existence of a new kind of universal enveloping algebra
for Ltss, that is neither a Lie algebra nor an associative algebra; it is a commutative
algebra satisfying to a certain identity, i.e., it is the so called T -algebra (see Definition
2.1). The origin for the construction of such a universal enveloping is the following
classifying result given by J.M. Osborn in 1965 [25].

Theorem 2.1. Let A(·) be a commutative (nonassociative) algebra with unity ele-
ment over a field of characteristic not 2 or 3, and let A satisfies an identity of degree
≤ 4 not implied by the commutative law. Then A satisfies at least one of the following
three identities

(x2 · x) · x = x2 · x2,

2(yx · x) · x + y · (x2 · x) = 3(y · x2) · x,(2.2)
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2(y2 · x) · x− 2(yx · y) · x + 2(yx · x) · x− y2 · x2 + yx · yx = 0.

Definition 2.1. Any commutative algebra (with or without identity element) satis-
fying the identity (2.22) is called a T -algebra.

Let us denote by T −ALGK the category of T -algebras over K with the algebra
homomorphisms as morphisms.

Proposition 2.2. Let A(·) be a T -algebra over K. Then A becomes a Lts LT (A)
where the underlying K-module is A and the Lts-composition is defined by

[x, y, z] = x · yz − y · xz, ∀x, y, z ∈ A.(2.3)

Proof. In [25] it is proved that (2.22) is equivalent with

(x · yz)w + (x · zw)y + (x · wy)z = (y · xz)w + (y · zw)x + (y · wx)z,(2.4)

∀x, y, z, w ∈ A. More suitable for our purpose is the following form of (2.4):

x · (y · zw)− y · (x · zw)− z · (x · yw) + z · (y · xw)−(2.5)

−(x · yz)w + (y · xz)w = 0,

∀x, y, z, w ∈ A. (Lts.1) and (Lts.2) yield as consequences of (2.3) and commutativity
of ” · ”. By a straightforward computation one gets

[x, y, [u, v, w]]− [[x, y, u], v, w]− [u, [x, y, v], w]− [u, v, [x, y, w]] =

= f(x, y, u, v · w)− v · f(x, y, u, w)− f(x, y, u, v) · w − f(x, y, v, uw)+

+u · f(x, y, v, w) + f(x, y, v, u) · w,

where

f(x, y, z, w) = x · (y · zw)− y · (x · zw)− z · (x · yw) +(2.6)

+z · (y · xw)− (x · yz)w + (y · xz)w.

Consequently, (Lts.3) holds on A.

Therefore, Proposition 2.2 assures us that there exists a covariant functor LT :
T −ALGK → LT SK .

Later, will be useful the following result.

Proposition 2.3. Any inner derivation of LT (A) is a derivation for A(·).
Proof. Taking into account that D(x,y) = [Lx, Ly] it can be proved that (2.5) is

just the equation D(x,,y)(zw) = D(x,y)(z) · w + z ·D(x,y)(w).

Proposition 2.2 gives the suggestion to associate a Lts with any binary (nonasso-
ciative and non-commutative) algebra.

Let B(·) be a nonassociative algebra over a field K of characteristic not 2 or 3 and
I be its two-sided ideal generated by {x · y − y · x, f(x, y, z, w)| ∀x, y, z, w ∈ B}. We
set B̃ = B/I and define the binary composition

B̃ × B̃ 3 (x = x + I, y = y + I) → x · y = x · y + I ∈ B̃.(2.7)
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Proposition 2.4. B̃(·) is a commutative algebra that satisfies the identity (2.22).

Proof. The assertion is a consequence of the following identities:

x · y = x · y + I = y · x + (x · y − y · x) + I = y · x, ∀ x, y ∈ B̃,

f(x, y, z, w) = f(x, y, z, w) + I = I, ∀ x, y, z, w ∈ B̃.

Remark 2.5. If B(·) has the identity element 1 then B̃(·) has the identity element
1 + I.

Remark 2.6. Proposition 2.4 is a proof for the existence of algebras satisfying iden-
tity (2.22).

Corollary 2.7. B̃ becomes a Lts relative to the ternary operation defined by

[x, y, z] = x · yz − y · xz, ∀x, y, z ∈ B̃.

Now, the question arises, whether the functor LT has or not an adjoint; i.e., does
there exists a functor U:LT SK → T −ALGK with property

HomLts(T,LT(A)) w HomAlg(U(T ), A),

or, more exactly, is there a functor U which is left adjoint to LT? This problem give
rise to the construction of the universal enveloping T -algebra.

To this end we shall introduce, following closely Shestakov [29], the nonassociative
tensor algebra over a vector space.

3 The nonassociative tensor algebra

Recall, following Shestakov [29], the definition and some properties of the nonasso-
ciative tensor algebra associated with any K-module.

Consider the nonassociative tensor algebra T {V } of a K-module V as being

T {V } = V ⊕ (V ⊗ V )⊕ ...⊕ V ⊗n ⊕ ...

where, for n  1

V ⊗n =
n−1∑

i=1

V ⊗i ⊗ V ⊗n−i ,

and the product of v ∈ V ⊗i and w ∈ V ⊗j is defined as v · w = v ⊗ w. T {V } is the
free nonassociative K-algebra over V .

The algebra T {V } has the following universal property: for any K-linear mapping
of V into an arbitrary K-algebra A there exists a unique extension of it to an algebra
homomorphism from T {V } to A. More precisely, to any K-algebra A and any K-
linear map f : V → A there exists a unique algebra homomorphism f0 : T {V } → A
extending f . In other words, the functor T is left adjoint to the underlying functor
to K-vector space which forgets the algebra structure. This assertion is easily proved
by observing that f0([v1 ⊗ ... ⊗ vn]) may be defined by [f(v1)f(v2)...f(vn)] (here
[v1 ⊗ ... ⊗ vn] denotes the tensor product of the ordered set (v1, ..., vn) realized in
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pairs delimited by parenthesis, and [f(v1)f(v2)...f(vn)] is the element obtained in A
by composing the elements f(vi) and preserving the parenthesis from [v1 ⊗ ...⊗ vn]).
T {V } has a natural (positive) Z-grading: T {V } = ⊕i∈ZV ⊗i where V ⊗i = 0 if i 6 0.
This grading induces in T {V } the ascending filtration

T1 ⊆ T2 ⊆ ... ⊆ Tn ⊆ ...,

where Tk = ⊕k
i=1V

⊗i . If J is a two-sided ideal of T {V } , U = U(V ) = T {V }/J
and π : T {V } → U be the natural projection, then the grading of T {V } induces the
ascending filtration in U(V )

U1 ⊆ U2 ⊆ ... ⊆ Un ⊆ ...,

with Uk = π(Tk). Let denote by i the restriction of π on V (here V is considered a K-
submodule of T {V }), i.e. i(v) = π(v) = v + J , ∀ v ∈ V . Remark that U is generated
by U1 = i(V ). Consider now the Z-graded algebra gr(U) = ⊕i∈Z(grU)i associated
with the filtered algebra U . Its components are defined by the condition: (grU)n = 0,
for n 6 0, (grU)1 = U1 and (grU)i = Ui/Ui−1 for i  1. If a = a+Ui−1 ∈ (grU)i, b =
b + Uj−1 ∈ (grU)j , then

a · b = ab + Ui+j−1

.
Notice that i(V ) = U1 = (grU)1, hence the problem of the injectivity of i is reduced
to the structure of the graded algebra grU(V ). Usually, a graded algebra associated
with a filtered one is more easy to deal with, so we may turn our attention to the
algebra grU(V ).

4 Universal enveloping algebra

We shall associate to each Lts A over K an (nonassociative) algebra which is generated
as ”freely” as possible by A subject to the ternary relations in A.

Definition 4.1. Let A be a Lts over K. The pair (U , i) where U is a T -algebra over
K and i is a Lts-homomorphism from A to LT (U) (i.e., it is a linear map such that

i([x, y, z]) = i(x) · [i(y) · i(z)]− i(y) · [i(x) · i(z)], ∀ x, y, z ∈ A)(4.1)

is called a universal enveloping T -algebra of A if the following property holds: for any
T -algebra B and any Lts-homomorphism j from A to LT (B), there exists a unique
homomorphism of T -algebras Φ : U → B such that Φ ◦ i = j.

Uniqueness. The uniqueness of the universal enveloping T -algebra (U , i) of A
is easily proved in a standard way. Indeed, if (V, j) is another universal enveloping
T -algebra for A, we get the homomorphisms Φ : U → V, Ψ : V → U such that Φ◦i = j
and Ψ ◦ j = i. It results: (Ψ ◦ Φ) ◦ i = i and (Φ ◦Ψ) ◦ j = j. By definition 4.1, there
is a unique map F : U → U such that F ◦ i = i. But 1U and Ψ ◦Φ both do the trick,
so Ψ ◦ Φ = 1U . Similarly, it is proved Φ ◦Ψ = 1V .

Existence. The existence of a suitable pair (U, i) is also not difficult to es-
tablish. Let T {A} be the nonassociative tensor algebra on A and let J be the
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two sided ideal in T {A} generated by {x ⊗ y − y ⊗ x, x ⊗ (y ⊗ z) − y ⊗ (x ⊗ z) −
[x, y, z], f⊗(x, y, z, w)| x, y, z, w ∈ A}, where A is considered naturally imbedded in
T {A}and f⊗ is formally obtained from f in (2.6) by changing ”·” with ”⊗”. We define
the universal enveloping algebra U(A) of A to be the quotient of the nonassociative
tensor algebra T {A} by the ideal J , i.e., U(A) = T {A}/J . Let π : T (A) → U(A)
be the canonical homomorphism. Notice that J ⊂ ⊗∞i=1T

⊗i(A), so π maps T 1(A)
isomorphically into U1(A) = A.

Proposition 4.1. (U , i), where i : A → U(A) is the restriction to A of the natural
projection π : T (A) → U(A), is a universal enveloping T -algebra of A.

Proof. Since U(A) is a commutative algebra over K satisfying the second identity
(2.2), according Corollary 2.7, U(A) carries a natural Lts-structure such that i is a
Lts-monomorphism. Let j : A → B be as in Definition 4.1. The universal property of
T {A} yields an algebra homomorphism Φ′ : T {A} → B which extends j. The special
property (4.1) of j forces all x⊗y−y⊗x, x⊗(y⊗z)−y⊗(x⊗z)−[x, y, z], f⊗(x, y, z, w)
to lie in kerΦ′, so Φ′ induces an algebra homomorphism Φ : U(A) → B such that
Φ ◦ i = j. Actually, Φ is a Lts-homomorphism. The uniqueness of Φ is evident since
Im i generate U(A).

Therefore, the functor U is a left adjoint to the functor LT.

Theorem 4.2. 1. The T -algebra U = U(A) is generated by i(A).
2. Let A1 and A2 be two Ltss, (U1, i1), (U2, i2)-their corresponding universal envelop-
ing T -algebras, and α : A1 → A2 be a T -algebra homomorphism. Then, there exists
a unique T -homomorphism α′ : U1 → U2 such that α′ ◦ i1 = i2 ◦ α.
3. Let B be a two-sided ideal of A and let R be the two-sided ideal of U generated
by i(B). If a ∈ A, then j : a + B → i(a) + R is a Lts-homomorphism of A/B and
LT (V), where V = U/R, and (V, j) is the universal enveloping T -algebra for A/B.
4. The T -algebra U has a uniquely defined antiautomorphism π such that π ◦ i = −i;
moreover, π2 = 1.
5. If D is a derivation for the Lts A then there exists a uniquely defined derivation
D′ for the T -algebra U such that D′ ◦ i = i ◦D.

Proof. 1. Let V be the subalgebra of U generated by i(A). The map i can be
viewed as a mapping between Lts A and LT (V). Then, there exists a uniquely defined
T -homomorphism i′ of T -algebras U and V such that i = i′ ◦ i. Since i = 1U ◦ i and
i′ can be considered as mapping of U in U , by taking into account of the uniqueness
condition for such a T -homomorphism, it follows i′ = 1U . Consequently, U = 1U (U) =
i′(U) ⊆ V , that means V ≡ U .

2. If α is a Lts-homomorphism of A1 into A2, then i2 ◦ α is a Lts-homomorphism
of A1 and LT (U2). Then, there exists a uniquely defined T -homomorphism α′ from
U1 into U2 such that α′ ◦ i1 = i2 ◦ α.

3. Let us denote that the mapping a → i(a) + R from A to V = U/R is a
Lts-homomorphism of A into LT (V). Since i(B) ⊆ R, B is carried in 0 by this
homomorphism. Consequently, we obtain the induced Lts-homomorphism a + B →
i(a) + R from Lts A/B to LT (V ). This is just the mapping j. Let now θ be a
Lts-homomorphism of the Ltss A/B and LT (U), where U is a T -algebra. Then, the
mapping η : a → θ(a + B) is a Lts-homomorphism of A into LT (U). Consequently,
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there exists a T -homomorphism η′ : U → U such that η′ ◦ i = η. If b ∈ B, then
ηb = 0, so that i(b) ∈ ker η′. Then, R ⊆ ker η′ and, consequently, we obtain the
induced T -algebra homomorphism θ′ : u+R → η′(u) from V = U/R into U . Further,
it results θ = θ′ ◦ j. We must prove now that θ′ is uniquely defined. For this end it
is enough to prove that j(A/B) generates V. According to 1, U is generated by i(A),
so it follows that V is generated by elements of the form j(A + B), i.e., by the set
j(A/B).

4. In order to prove the existence of this antiautomorphism π we consider, for any
n > 1, the map defined by

(x1, ..., xn) → (−1)n[xn ⊗ xn−1 ⊗ ...⊗ x1],

it is n-multilinear from A× ...×A into Tn{A} and hence extends to a linear map of
Tn{A} into itself by

[x1 ⊗ ...⊗ xn] → (−1)n[xn ⊗ xn−1 ⊗ ...⊗ x1]

(here the presence of brackets [, ] tells us that the places of the parenthesis (, ) in [x1⊗
...⊗xn] are preserved in [xn⊗...⊗x1]). Taking the direct sum of these maps as n varies
(and for any positioning of the brackets) we obtain a linear map of T{A} into itself
(sending 1 into 1, if it is the case). It is clear that this map is an antiautomorphism
and extends x → −x in T 1{A}. Composing it with passage to the quotient by J ,
we obtain an antiautomorphism of T{A} into U(A). Its kernel is an ideal. To show
that the map descends to U(A) it is enough to show that each generator of J maps
to 0. But each generator maps in T{A} to itself and then maps to 0 in U(A). Hence
the ”transpose” map π descents to U(A). It is clearly of order two and thus it is a
one-one onto. The uniqueness of π is the result of the fact that i(A) generates U(A).

5. Let D be a derivation of the Lts A. We construct the algebra U2 of 2 × 2-
matrices with entries in the universal enveloping T -algebra U = U(A) defined by the
usual matrix composition connected with the binary product in U . Let us consider
the mapping

θ : a →
[

i(a) i(D(a))
0 i(a)

]

of A into U2. It is a linear mapping satisfying the property

[θ(x), θ(y), θ(z)] = θ([x, y, z]).

Then the vector subspace Ũ2 of U2 consisting from the matrices of the form
[

x y
0 x

]

with x, y ∈ U is a T -algebra. Consequently, θ is a Lts-homomorphism from A to
LT (Ũ2). In order to prove this assertion we remark that the following two identities
holds in any T -algebra:

(yx · x)z = 2(y · xz)x− (xz · x)y − (yz · x)x + (y · x2)z,

2(yx · z)x− 2(y · zx)x− (y · x2)z + (z · x2)y = 0, ∀x, y, z ∈ U .

This identities are obtained from (2.5) changing z → x, w → z and x → z, w → x,
respectively. It follows that there is a T -algebra homomorphism θ′ of U into Ũ2 such



A universal enveloping algebra for a Lie triple system 67

that θ = θ′ ◦ i. Since

θ′(i(a)) =
[

i(a) i(D(a))
0 i(a)

]

and the elements i(a) generates U we have for any x ∈ U

θ′(x) =
[

x y
0 x

]

where y is uniquely determined by x. We put y = D′x and a straightforward com-
putation shows that D′ is a derivation of U . Then it results D′ ◦ i = i ◦ D. The
uniqueness of D′ follows from the fact that i(A) generates U and the derivation is
determined by its action on a set of generators.

5 The representability of Lts composition by binary
operations

Obviously, it is especially important to solve, for any Lts (T, [., ., .]), the following
problem.

Problem : Exists or not a binary K-algebra T (·) whose associated h.s. be just
(T, [., ., .])?

In what follows, we try to give some necessary conditions for the existence of a
binary composition whose standard associated h.s. is a given Lie triple system.

Let (T, [., ., .]) be finite dimensional Lts, n = dimKT and B = {e1, e2, ..., en} be a
basis for it. The equations

[ei, ej , ek] = tsijkes, i, j, k ∈ {1, 2, ..., n}

define the structure constants of Lts T . Then, the linear operators Dij := Deiej with
i � j gives a family of generators for Lie algebra D. If T (·) is a commutative algebra,
then its structure constants are defined by

eiej = as
ijes, i, j ∈ {1, 2, ..., n}.

The solving of our problem consists in solving the following quadratic algebraic system

aq
ipa

p
jk − aq

jpa
p
ik = tqijk,(5.1)

which is a very difficult problem. We can pass to the easier problem of solving a linear
homogeneous system. Indeed, a necessary condition for (T, [., ., .]) be the standard (see
[3]) associated h-system with T (·) is

[Dij , Lek
]− L[ei,ej ,ek] = 0, ∀i, j, k ∈ {1, 2, ..., n}, i � j.(5.2)

Using the before defined structure constants we get

tqijpa
p
ks − tpijsa

q
kp = tpijkaq

ps, i, j, k, p, q, s ∈ {1, 2, ..., n}, i � j.(5.3)
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(5.3) is an algebraic system of n3 n2−n
2 linear equations with nn2+n

2 unknown numbers
ak

ij . Of course, the study of the compatibility of this system is, in general, a difficult
problem but in concrete cases it can be solved. In case (5.3) is a compatible system,
its solutions ãk

ij must satisfy necessarily the conditions

ãq
ipã

p
jk − ãq

jpã
p
ik = tqijk.(5.4)

6 Uniqueness of a solution

In case when the Problem has a solution, the problem of the uniqueness of this solution
arises.

Let us suppose that T (·) and T (∗) have the same associated Lts. Then, the so-
called deformation algebra T (•) of this pair of algebras is defined by

x • y = x · y − x ∗ y, ∀x, y ∈ T.

Of course, D must be a Lie algebra of derivations for T (•), too. Further,

[x, y, z]• = x • (y · z)− y • (x · z) + x · (y • z)− y · (x • z), ∀x, y, z ∈ T.

The 3-linear mapping [., ., .]• satisfies the identities

[x, y, z]• + [x, y, z]• = 0, ∀x, y ∈ T,

[x, y, z]• + [y, z, x]• + [z, x, y]• = o, ∀x, y ∈ T,

but (T, [., ., .]•) is not necessarily a Lts.

7 Examples

Example 1. Let T be a finite dimensional real vector space and ω : T → R be a
linear form. The ternary composition defined on T by

[x, y, z] =
1
4
ω(z)[ω(y)x− ω(x)y], ∀x, y, z ∈ T,

endows T with a Lts-structure. On other hand, the binary algebra T (·) with the
binary multiplication defined by

2x · y = ω(x)y + ω(y)x, ∀x, y ∈ T

has (T, [., ., .]) as its associated h-system. Indeed, a straightforward computation
proves that

[x, y, z] = x · (y · z)− y · (x · z), ∀x, y, z ∈ T,

[x, y, z · v]− z · [x, y, v] = [x, y, z].v, ∀x, y, z ∈ T.

Consequently, the posed Problem for the Lts (T, [., ., .]) has a solution.
The following lemma is useful to prove some negative examples.
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Lemma 7.1. Let V be a finite dimensional real vector space and D ∈ EndV be an
endomorphism which has the set of all eigenvalues Λ = {λi | i = 1, 2, ..., n} ⊂ R∗
satisfying the conditions | Λ |= n and λi + λj /∈ Λ, ∀i, j = 1, 2, ..., n. Then, the only
commutative binary algebra on V having D as an own derivation is the null-algebra.

Proof. Let us consider a basis B = {e1, e2, ..., en} consisting from the eigenvectors
of D. Then, D(ei · ej) = (λi + λj)ei · ej holds. Since λi + λj /∈ Λ, ∀i, j = 1, 2, ..., n it
results ei · ej = 0,∀i, j = 1, 2, ..., n.

Example 2. A particular example of Lts has arisen in quantum mechanics; it is the
so-called meson triple system. It was been introduced by R.J.Duffin in 1938 [6] by
means of the following multiplication table

[ei, ej , ek] = δkiej − δkjei

on a finite dimensional real vector space T with the basis B = {e1, ..., en}. We
shall prove that the meson triple system cannot be obtained from a binary algebra
by means of the standard construction [3]. Indeed, De1e2(e1) = e2, De1e2(e2) =
−e1, De1e2(ek) = 0, k  2; moreover, for i � j, Deiej (ei) = ej , Deiej (ej) = −ei,
Deiej (ek) = 0, k 6= i, j. If ei · ej =

∑n
k=1 ak

ijek with ak
ij = ak

ji define a commutative
binary multiplication on T then, imposing that every Deiej is a derivation for T (·),
we shall obtain the following equalities:

De1e2(e
2
1) = 2De1e2(e1) · e1 ⇔ a1

11e2 − a2
11e1 = 2e1 · e2

De1e2(e1 · e2) = De1e2(e1) · e2 + e1 ·De1e2(e2) ⇔ a1
12e2 − a2

12e1 = e2
2 − e2

1

De1e2(e
2
2) = 2De1e2(e2) · e2 ⇔ a1

22e2 − a2
22e1 = −2e1 · e2

By equating coefficients of these equalities it results e1 · e2 = 0 and e2
1 = e2

2 =∑n
k=3 ak

11ek. Similarly, we shall obtain ei · ej = 0 for i 6= j and e2
1 = e2

2 = ... = e2
n = 0.

Consequently, there is no commutative binary algebra on T whose associated Lts be
(T, [., ., .]).
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