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in the problem of covering the unit interval
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Abstract

Tε represents the coverage time of unit interval when it is bombed with
segments of 2ε length. A formula and estimates of the expectation of Tε are
obtained.
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1 Introduction

The statement of the problem. The unit interval I = [0, 1] is randomly bombed
with segments of length 2ε. The following problem arises: how long does it take to
cover with such segments the whole interval [0, 1] ? In other words, how many random
segments of length 2ε are necessary to cover the whole unit interval ?

Let (ω,K, P ) be a probability field and (Un)n≥1 a sequence of independent random
variables, uniformly distributed on I, defined on this probability field. We define the
minimal waiting time until the complete covering of the interval I with segments of
length 2ε centered at U1, . . . , Un by

Tε(ω) = inf

{
n ≥ 1

∣∣∣∣∣ I ⊂
n⋃

k=1

[Uk(ω)− ε, Uk(ω) + ε]

}
.(1.1)

In other words, Tε(ω) represents the first moment at which the segment I was entirely
destroyed due to the bombing with segments of length 2ε. For any a ∈ I we define
the minimal expectance time until attending the point a as consequence of covering
the interval I with segments of length 2ε by

Tε,a(ω) = inf

{
n ≥ 1

∣∣∣∣∣ a ∈
n⋃

k=1

[Uk(ω)− ε, Uk(ω) + ε]

}
,(1.2)

∗Proceedings of The 3-rd International Colloquium ”Mathematics in Engineering and Numerical
Physics” October 7-9 , 2004, Bucharest, Romania, pp. 40-50.
c© Balkan Society of Geometers, Geometry Balkan Press 2005.



An estimate of waiting times 41

which means that Tε,a(ω) is the first moment at which the point a ∈ I was attended
as consequence of the bombing with segments of length 2ε. Obviously we have

Tε = sup
a∈I

Tε,a.(1.3)

From (1.3) it does not follow that Tε is a random variable, since the supremum of
a family of measurable functions is not necessary a measurable function. We shall
further consider another approach for Tε, which shall point out its measurability.

Let Cn(ω) = {U1(ω), U2(ω), . . . , Un(ω)}. We remark that

a ∈
n⋃

k=1

[Uk(ω)− ε, Uk(ω) + ε] ⇔ d(a, Cn(ω)) ≤ ε,(1.4)

where for any set C ⊆ I,

d(a,C) = inf {|x− a| | x ∈ C}.(1.5)

The Hausdorff distance between two closed sets A,B ⊆ R is

D(A,B) = sup
a∈A

d(a,B) + sup
b∈B

d(A, b).(1.6)

In particular, if A ⊆ B, then

A(A,B) = sup
b∈B

d(A, b).(1.7)

Having in view these relations, we can write

Tε,a(ω) = inf {n ≥ 1 | d(a,Cn(ω)) ≤ ε}(1.8)

and
Tε(ω) = inf {n ≥ 1 | d(I, Cn(ω)) ≤ ε}.(1.9)

Since for any A ⊆ I we have D(I,A) = sup
x∈Γ

d(x,A) (where Γ is a countable subset of

I, dense in I), it follows that Tε is measurable.

2 The distribution of Tε

Let n ≥ 2 be fixed and let V = (U(1), U(2), . . . , U(n)) be the order statistics of the
vector U = (U1, U2, . . . , Un). In other words, the components of V are the com-
ponents of U , permuted such that U(1) ≤ U(2) ≤ . . . ≤ U(n). Consider the set
Cn = {U(1), U(2), . . . , U(n)} defined above. Then

d(a, Cn) = min
1≤k≤n

|a− U(k)| = |a− U(1)|1[
0,

U(1)+U(2)
2

](a)+

+
n−1∑

k=1

|a− U(k)|1[
U(k−1)+U(k)

2 +
U(k)+U(k+1)

2

](a)+

+|a− U(n)|1[
U(n−1)+U(n)

2 ,1

](a).
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According to these relations, we have

d(I, Cn) = max
(

U(1),
U(2) − U(1)

2
, . . . ,

U(n) − U(n−1)

2
, 1− U(n)

)
,(2.1)

and hence, from (1.9) we get

{Tε ≤ n} = {U(1) ≤ ε, U(2) − U(1) ≤ 2ε, . . . , U(n) − U(n−1) ≤ 2ε,
U(n) ≥ 1− ε}.(2.2)

For computing Fε(n) = P (Tε ≤ n) we use that the distribution of V is

P ◦ V −1 = (n! 1ε)λn,(2.3)

where λn is the Lebesgue measure in Rn, and E = {x ∈ Rn | 0 ≤ x1 ≤ x2 ≤ . . . ≤
xn ≤ 1} (see Wilks [5, p.236]). We perform the change of coordinates

y = f(v) : y1 = v1, y2 = v2 − v1, . . . , yn = vn − vn−1,(2.4)

whose Jacobian is equal to 1. Let Y = f(V ). Then

P ◦ Y −1 = (n! 1S)λn,(2.5)

where S = Sn = co ({0, e1, . . . , en}) (we have denoted by 0 the null vector of Rn, and
(ej)1≤j≤n is the canonic basis of Rn). Then S = {x ∈ [0, 1]n | x1 +x2 + . . .+xn ≤ 1}
(see Wilks [5, p. 237]). We denote this distribution with µ. We conclude that the
distribution of Tε is given by:

Proposition 2.1. Assuming that the previous conditions are fulfilled, the following
relations hold true:

P (Tε ≤ n) = P (Y1 ≤ ε, Y2 ≤ 2ε, . . . , Yn ≤ 2ε,

Y1 + . . . + Yn ≥ 1− ε) = µ(An),
(2.6)

where

An = {x ∈ S | x1 ≤ ε, x2 ≤ 2ε, . . . , xn ≤ 2ε, x1 + . . . + xn ≥ 1− ε}.(2.7)

We shall determine a formula for computing µ(An). To this aim we shall use two
results from [1, pp. 43-44].

Lemma 2.2. Let Sj(ε) = εej + (1 − ε)S the homotheties of S. Then the closure
of S\An is

S\An = S0(ε) ∪ S1(ε) ∪
n⋃

j=2

Sj(2ε).(2.8)

Lemma 2.3. Let k ≤ n be fixed, let εt > 0, t = 1, n and let ε = ε1 + . . . + εk. We
denote J = {0 ≤ j1 < j2 < . . . < jk ≤ n} ⊆ {0, 1, . . . , n}. Then

n⋂
t=1

Sjt(εt) =





n∑

i=1

εtejt + (1− ε)S, for ε ≤ 1

g¡ , for ε > 1.

(2.9)
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We can compute now the probability that the expectance time Tε be greater than a
given n.

Proposition 2.4. Let 0 < ε ≤ 1. Then

P (Tε > 1) = min(1, 2(1− ε)).(2.10)

For any n ≥ 2, we have

P (Tε > n) = σ1(n)− σ2(n) + σ3(n)− . . . + (−1)nσn+1(n),(2.11)

with
σk(n) =

(
n−1
k−2

)
(1− (2k − 2)ε)n

+ + 2
(

n−1
k−1

)
(1− (2k − 1)ε)n

++

+
(

n−1
k

)
(1− 2kε)n

+,
(2.12)

where (n
k ) represent the binomial coefficient ”n choose k”, with the condition that (n

k )0
except the case when 0 ≤ k ≤ n and (. . .)+ is zero when the quantity in brackets is
negative. For example,

σ1(n) = 2(1− ε)n + (n− 1)(1− 2ε)n
+

σ2(n) = (1− 2ε)n
+ + 2(n− 1)(1− 3ε)n

+ + (n−1)(n−2)
2 (1− 4ε)n

+

. . .

σn(n) = (n− 1)(1− (2n− 2)ε)n
+ + 2(1− (2n− 1)ε)n

+

σn+1(n) = (1− 2nε)n
+.

The formula (2.11) is rather complex. Still, for ε ∈ [ 12 , 1] it becomes quite simple:

P (Tε > n) =

{
1, for n = 0

2(1− ε)n, for n ≥ 1.

For ε ∈ (
1
3 , 1

2

]
we get

P (Tε > n) =

{
1, for n = 0, 1

2(1− ε)n + (n− 2)(1− 2ε)n, for n ≥ 1.

The smaller ε is, the more complex the formula becomes. For very small ε, even the
Bonferoni inequalities cannot be of much help. Indeed, if estimating P (Tε > n) by

σ1 − σ2 ≤ P (Tε > n) ≤ σ1,(2.13)

we get

2(1− ε)n + (n− 2)(1− 2ε)n
+ − 2(n− 1)(1− 3ε)n

+ − n(n−1)
2 (1− 4ε)n

+ ≤
≤ P (Tε > n) ≤ 2(1− ε)n + (n− 1)(1− 2ε)n

+.

We can obtain an estimate in terms of known data. The random variables U(1), . . . , U(n)

split the segment [0, 1] into n+1 segments [0, U(1)], [U(1), U(2)], . . . , [U(n), 1]. The max-
imal length of these segments is a random variable Ln whose distribution is known
(see Wilkis [5, p. 238]). Obviously {Ln > 2ε} ⊆ {Tε > n}. But
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P (Ln > 2ε) = µ({x ∈ S | x1 ≥ 2ε or . . . xn ≥ 2ε, x1 + . . . + xn ≤ 1− 2ε}).
Based on the preceeding results we infer

P (Ln > 2ε) =
(

n+1
1

)
(1− 2ε)n

+ −
(

n+1
2

)
(1− 4ε)n

+ + . . .

. . . + (−1)n
(

n+1
n+1

)
(1− (2n + 2)ε)n

+,
(2.14)

and hence we have the estimate(
n+1
1

)
(1− 2ε)n

+ −
(

n+1
2

)
(1− 4ε)n

+ + . . . + (−1)n
(

n+1
n+1

)
(1− (2n + 2)ε)n

+ ≤
≤ P (Tε > n) ≤ 2(1− ε)n + (n− 1)(1− 2ε)n

+.

In fact, the probability that the length Ln be greater than some value x is

P (Ln > x) =
(

n+1
1

)
(1− x)n

+ −
(

n+1
2

)
(1− 2x)n

+ + . . .

. . . + (−1)n
(

n+1
n+1

)
(1− (n + 1)x)n

+.
(2.15)

Since
∫ 1

0
(1− kx)n

+dx = 1
k(n+1) , it follows that the mean of Ln is

E(Ln) =
∫ 1

0

P (Ln > x)dx =
1 + 1

2 + . . . + 1
n+1

n + 1
.(2.16)

The Haussdorf distance Dn := D([0, 1], {U1, . . . , Un}) enters the calculation for ob-
taining an estimate for P (Tε > n) with very small ε, better than (2.13).

Let Gn(x) := P (Dn > x) = P (Tx > n) (according to (1.9)). Taking into account
the relations (2.10)-(2.12), we have

Gn+1(x) =
∑

k≥0

(−1)k(
(

n
k−1

)
(1− 2kx)n

+ +2(n
k )(1− (2k + 1)x)n

++

+
(

n
k+1

)
(1− 2k + 2)x)n

+).

(2.17)

Then

E(Dn+1) =
∫ 1

0

Gn+1(x)dx =

=
1

n + 1

∑

k≥0

(−1)k

((
n
k−1

) 1
2k

+ 2(n
k )

1
2k + 1

+
(

n
k+1

) 1
2k + 2

)
=

=
1

n + 1

[
1

2

∑
k≥0

(−1)k
(

n
k−1

) 1

k
+ 2

∑
k≥0

(−1)k(n
k )

1

2k + 1
+

1

2

∑
k≥0

(−1)k
(

n
k+1

) 1

k + 1

]
.

We consider that (n
k ) = 0 except of the case when 0 ≤ k ≤ n; it follows that

1
2

∑

k≥0

(−1)k
(

n
k−1

)1
k

= −1
2

∑

k≥0

(−1)k
(

n
k+1

) 1
k + 1

= − 1
2(n + 1)

2
∑

k≥0

(−1)k(n
k )

1
2k + 1

= 2
2 · 4 · . . . · (2n)

3 · 5 · . . . · (2n + 1)

1
2

∑

k≥0

(−1)k
(

n
k+1

) 1
k + 1

=
1
2

(
1 +

1
2

+ . . . +
1
n

)
,

(2.18)
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hence the mean of Dn+1 is, for any n ≥ 1, given by

E(Dn+1) = 1
n+1

[
1
2

(
1 + 1

2
+ . . . + 1

n
− 1

n+1

)
+ 2 2·4·...·(2n)

3·5·...·(2n+1)

]
.(2.19)

We further obtain an estimate for P (Tε > n) with very small ε, better than in (2.13).
For any natural k ≥ 1, consider the net Gk =

{
j
k | 0 ≤ j ≤ k

}
. Let T

(k)
ε = max

0≤j≤k
Tε, j

k

the first moment when all the points of the net Gk have been bombed. Obviously,
Tε ≥ T

(k)
ε .

Proposition 2.5. Let 0 < ε ≤ 1
2k . Then

P (Tε > n) ≥ P (T (k)
ε > n)(2.20)

and
P (T (k)

ε > n) = θ1 − θ2 + . . . + (−1)kθk+1,(2.21)

where
θj =

(
k−1
j−2

)
(1− 2(2j − 2)ε)n+

+2
(

k−1
j−1

)
(1− (2j − 1)ε)n +

(
k−1
j

)
(1− 2jε)n.

(2.22)

Proof. Consider the set

Cj =

{
j

k
/∈

n⋃
m=1

[Um − ε, Um + ε]

}
=

n⋂
m=1

{∣∣∣∣U−
j

k

∣∣∣∣ > ε

}
.

Since the random variables Um are independent and ε is sufficiently small, we notice
that

P (Cj) =
{

(1− ε)n, for j ∈ {0, k}
(1− 2ε)n, for 1 ≤ j ≤ k − 1.

(2.23)

Taking into account that for J ⊆ {0, 1, . . . , k} and j = |J | we have

P

(⋂

∈J

Hi

)
=





(1− (2j − 2)ε)n, for {0, k} ⊂ J

(1− (2j − 1)ε)n, for |{0, k} ∩ J | = 1

(1− 2jε)n, for {0, k} ∩ J = g¡ ,

(2.24)

it follows that (2.21) represents the Poincaré formula. ut
In the case when ε = 1

t , where t is a positive integer, t ≥ 2, we can determine an
upper bound for the probability P (Tε > n). The idea relies on considering the net Gt

an on waiting until all the intervals Ij =
[

j
t ,

j+1
t

)
are bombed.

We define T ′ε as the first moment when the interval I is covered such that the
segments Ij determined by the points of the net, segments of length greater than ε,
contain a bomb center Uk, hence

T ′ε = inf {n ≥ 1 | Cn ∩ Ij 6= g¡ ,∀0 ≤ j ≤ t− 1},(2.25)

where the intervals Ij were defined above.
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Proposition 2.6. Assuming that the conditions stated above hold true, it follows
that Tε ≤ T ′ε, and hence

P (Tε > n) ≤ P (T ′ε > n).(2.26)

Moreover,

P (T ′ε > n) =
(

t
1

)
(1− ε)n − (

t
2

)
(1− 2ε)n + . . . + (−1)t−1

(
t
t

)
(1− tε)n.(2.27)

3 The mean of T ′
ε: a calculation formula and an es-

timate

Proposition 3.1. Let t = 1
ε . If 1 ≤ t ≤ 2, then

E(Tε) = 2t− 1.(3.1)

If t > 2, then

E(Tε) =
t2

4
+t−

∑

k≥2

(−1)k

((
t

2k − 2
− 1

)k−1

+ 2
(

t

2k − 1
− 1

)k

+
(

t

2k
− 1

)k+1
)

.

(3.2)
For example,

- if 2 ≤ t ≤ 3, then E(Tε) = 1 + t
2 + t2

4 ;

- if 3 ≤ t ≤ 4, then E(Tε) = 1 + t
2 + t2

4 − 2( t
3 − 1)2;

- if 4 ≤ t ≤ 5, then E(Tε) = 1 + t
2 + t2

4 − 2( t
3 − 1)2 + ( t

4 − 1)2 − ( t
4 − 1)3.

For the proof, we address to [1, pp. 50-51].

Remark 3.2. Let us denote E(Tε) by E(t), where t = 1
ε . Examining the expression

of E(t) given by (3.2), we remark that for t ∈ [m,m + 1), with m positive integer,
E(t) is a polynomial function. Its degree is given by the last k for which t > 2k. For
t sufficiently big, the degree of E(t) considerably increases.

For example, for t = 100, the degree of E(t) is 50. Formula (3.2) has the dis-
advantage that the sum in the right side of the equality is hard to compute in the
neighborhood of 0, since the alternating terms occuring in the sum are very big.
Therefore, for a big value of t is necessary an estimate E(t).

Proposition 3.3. For any positive integer t > 2, the following inequalities hold
true:

t
2 log( t

2 − 1)− 2
t−2 +

√
2t < E(t) < t

(
1 + 1

2 + . . . + 1
t

)
<

< t(1 + log t).
(3.3)

Proof. According to Proposition 2.6. we have

P (Tε > n) ≤ P (T ′ε > n) =
(

t
1

)
(1− ε)n − (

t
2

)
(1− 2ε)n + . . . + (−1)t−1

(
t
t

)
(1− tε)n.

Hence



An estimate of waiting times 47

E(t) ≤ E(T ′ε) =
∑

n≥0

P (T ′ε > n) =

= −1 +
(

t
1

)
(1−ε)n

ε −
(

t
2

)
(1−2ε)n

2ε + . . . + (−1)t−1

(
t
t

)
(1−tε)n

nε =

=
[
1− (

t
1

)
+

(
t
2

)− (
t
3

)
+ . . . + (−1)t−1

(
t
t

)]
+

+t
[(

t
1

)− 1
2

(
t
2

)
+ 1

3

(
t
3

)
+ . . . + (−1)t−1 1

t

(
t
t

)]
=

= (1− 1)t + t
(
1 + 1

2 + . . . + 1
t

)
= t

(
1 + 1

2 + . . . + 1
t

)
.

(3.4)

On the other side, Tε ≥ T
(k)
ε , and hence E(t) ≥ E(T (k)

ε ). We assume that t ≥ 2k.
Applying Proposition 2.5 and taking into consideration that

∞∑
n=0

(1−mε)n =
1

mε
,

we get

E(T (k)
ε ) =

∞∑
n=0

P (T (k)
ε > n) = 1 + E1 − E2 + . . . + (−1)kEk+1,(3.5)

where

Ej = t

(
k−1
j−2

)

2(j − 1)
+ 2t

(
k−1
j−1

)

2j − 1
+ t

(
k−1
j

)

2j
− (

k
j

)
(3.6)

for any j ≥ 2, with the condition that
(

k−1
j

)
= 0, except the case when 0 ≤ j ≤ k− 1.

We can write (3.5) as E(T (k)
ε ) = A + B + C +

k∑

j=0

(−1)j
(

k
j

)
= A + B + C + (1− 1)k =

A + B + C, where

A = − t
2

[(
k−1
0

)− 1
2

(
k−1
1

)
+ 1

3

(
k−1
2

)− . . .
]

= − t
2

1
k

B = 2t
[(

k−1
1

)− 1
3

(
k−1
2

)
+ 1

5

(
k−1
3

)− . . .
]

= 2t · 2·4·...·(2k−2)
3·5·...·(2k−1)

C = t
2

[(
k−1
1

)− 1
2

(
k−1
2

)
+ 1

3

(
k−1
3

)− . . .
]

= t
2

(
1 + 1

2 + . . . + 1
k−1

)
.

(3.7)

It follows that

E(T (k)
ε ) = − t

2k
+ 2t · 2 · 4 · . . . · (2k − 2)

3 · 5 · . . . · (2k − 1)
+

t

2

(
1 +

1
2

+ . . . +
1

k − 1

)
.

But since 2·4·...·(2k−2)
3·5·...·(2k−1) >

√
2k+1
2k > 1√

2k
for any k ≥ 2 (the first inequality can be

immediately verified by induction, and the second is obvious) and

t

2

(
1 +

1
2

+ . . . +
1

k − 1

)
>

t

2
log k,

we infer
E(T (k)

ε ) > − t

2k
+ 2t

1√
2k

+
t

2
log k
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for any t ≥ 2k. Replacing k by
[

t
2

]
, we obtain the inequality

E(T ) ≥ E(T (k)
ε ) > − t

2

[
t

2

]
+ 2t

1√
2

[
t
2

] +
t

2
log

[
t

2

]
>

t

2
log

(
t

2
− 1

)
− 2

t− 2
+

2t√
2t

,

hence we have obtained exactly the estimate (3.3) for E(t) ut

Corollary 3.4. The following inequalities hold true:

1
2
≤ lim inf

t→∞
T1/t

t log t
≤ lim sup

t→∞

T1/t

t log t
≤ 1.

Proof. The claim follows straightforward, passing to limit for t →∞ in the sequence
of inequalities (3.3). ut

Let us denote the lower and the upper bounds in (3.3) by m and M respectively.
Then m = t

2 log( t
2 − 1) − 2

t−2 +
√

2t and M = t(1 + log t). As well, let us denote by

E′(t) = E(T ′ε) and by E(t, [t/2]) = E(T (k)
ε ) for k = [t/2]. Obviously, for any t ≥ 4,

the following inequalities hold true (according to the proof of the Proposition 2.3)

m ≤ E(t, [t/2]) ≤ E(t) ≤ E′(t) ≤ M.

The attached table contains all these data computed for 40 values of t = 1
ε , included

for big values of t (e.g., for t = 500, when the degree of E(t) is 250 according to the
Remark 3.2). Cook has computed the mean E(t) ([3]) for 12 values of t up to t = 200,
both for the unit interval and for the unit circle.

It can be seen, as expected, that the values increase on horizontal from left to
right, and on vertical, from up down. The values of E(t) seem to be closer to m than
to M . Moreover, it can be noticed that, in the considered cases, where E(t) < m+M

2 ,
but we cannot obviously draw any conclusion for the general case. As well, we can
observe that the values of E(t) are closer to E(t, [t/2]) than to E′(t). In other words,
the lower estimates are somewhat better than the upper ones.

In order to follow easier the evolution of the computed data for the 40 values of t,
we include as well the graphics of m, E(t, [t/2]), E(t), E′(t), M with respect to the
same system of axes, in which the abscyssa is the t-axis.

We notice that, indeed, the graphic of E(t) is closer to the graphic of m than to
the one of M .
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[1] Bontaş, S. (1998), Studiul repartiţiilor timpilor de aşteptare ı̂ntr-un proces de
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