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Abstract

Within the framework of first order jet-Generalized Lagrange Spaces, the
present survey article provides a survey presenting the work of a Romanian
research group in the field of d−geometric structures on the first order jet space
J1(T, M). Recent advances and actual open questions regarding these basic
distinguished structures - which extend the corresponding generalized Lagrange,
Lagrange, Finsler and Riemann d−structures of the tangent bundle framework,
are described.
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1. Basic structures and d−geometric objects on J1(T,M)
The study of the Riemann - Finsler - Lagrange - Generalized Lagrange structures

{Rn} ⊂ {Fn} ⊂ {Ln} ⊂ {GLn},(1.1)

defined on the tangent bundle ξT = (TM, π, M) of a real differentiable manifold
M ([35, 36, 37, 23, 21]) and further, defined on osculating spaces of higher order
([34, 35, 33])

ξO,k = (Osc(k)(M) = i∗{0}×MJk(R ,M), πk, M ≡ {0} ×M),

(k ≥ 1) has flourished in the last decades. The main common feature relies on the
presence of the distinguished (d−) geometrized approach, characterized by the ex-
istence of a nonlinear connection. This permits to build d−tensor fields, i.e. tensor
fields living on the total space of the bundle, whose components linearly change in
terms of the Jacobian matrix of the base manifold coordinate-change.

Later, the d−framework was naturally extended to the fibration of first-order jets
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ξ = (E = J1(T,M), π, T ×M), dim T = m ≥ 1,

with roots in the works of G.S.Asanov and S.F.Ponomarenko ([3]-[6]), further devel-
oped by Neagu and Udriste ([42]-[50]) and by other authors ([9]-[13], [18], [39]). This
d−jet (also called geometrized jet) framework provides an alternative to the osculator
extensions ξO,k, while still generalizing the structures (1.1) on the tangent case ξT -
recaptured as the autonomous mono-parametric flat subcase of ξ.

The basic object of the geometrized jet framework is the (Ehresmann) non-linear
connection on E ([27]) which determines the local adapted basis of X (E) and of its
dual, essential in locally expressing the d-tensor fields on E.

The similar chain to (1.1) on J1(T, M) of main geometric structures

{JRn} ⊂ {JFn} ⊂ {JLn} ⊂ {J GLn},(1.2)

was rigorously defined in [14] for the case when the bundle admits a nondegenerate
(0,2) vertical d−tensor field. As subcases, the structures JGLn and JLn were first
introduced and developed respectively by Neagu and Udriste in [43], [48] and [51].

The foundations of the d−jet approach, pointing out fundamental non-linear con-
nections and Berwald and Cartan-type d−linear connections with applications in rel-
ativity, were provided in [51]. A primer of d−geometric objects on J1(T, M) - includ-
ing harmonic maps induced by multi-time sprays and discussing non-linear connec-
tions and lifts of vector fields, can be found in [49, 52, 65]. The study of the basic
d−geometric objects in natural coordinates and of splittable metrics was provided
in [61]. Further, in [50, 65] were described geometrical aspects related to JLn for
Kronecker reducible affine second-order Lagrangians

L = G(Y, Y ) + B(Y ) + U,

where G = 1
2HessY (L) = g−1

T ⊗ gM , B is an 1-form, U is a function on T × M
and gT is a given multi-time dependent vertical metric; the autonomous subcase was
developed in [47].

The equations which produce naturally a nonlinear connection - the basic concept
of the d−jet approach, were shown to represent extended harmonicity equations for
the jets ([69]). The attempt to find a nonlinear connection naturally induced by the
metric structure by using the variational principle was successfull just in the particular
Kronecker case ([43, 7, 65]), but the general case is still untractable ([30, 54]). However,
alternative methods of providing a nonlinear connection were pointed out, both for
the splittable General Lagrange ([43, 65]) and the Finsler ([7]) d−jet structures.

The complete characterization of the class of non-linear connections produced
by certain geometric objects (metrics or Lagrangians) or just the vertical metric on
J1(T, M) represents still an open problem (see [43, 47] and [9]).

An open problem remains to define and characterize a d−almost tangent struc-
ture on TE, essential in developing the d−submanifold theory endowed with induced
structures.

As well, the geometries of the (pseudo)-Riemannian metric space (J1(T, M), G)
endowed with the metric given by a d−Sasaki-type lift provided by gT and gM and
of the dual space are subject of present research.
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2. Einstein and Maxwell equations in d−jet framework
Among the d−metric structures on E were emphasized and extensively studied

by Neagu ([43]) the splittable jet-Generalized Lagrange metrics; for these metrics
the Cartan and Berwald d-linear connections were explicitely constructed and the
attached Bianchi identities were derived ([45]). In this ansatz, the generalized Einstein
and Maxwell equations without sources were developed, for JGLn in ([48]), and for
JLn of Kronecker-reductive type in ([47, 43, 10, 8, 9]).

Related to symmetries exhibited by the Einstein equations, Killing fields were
discussed in [16], while Einstein models involving different energy-momentum tensor
fields were examined in [10].

Regarding Maxwell equations, the possible extension of the Hodge operator to
the d−jet framework and conservation laws for the generalized electromagnetic field
theory in Miron-Tatoiu sense were discussed in [15]. The complete set of Maxwell
equations of JLn were derived in ([8, 10, 15]).

The Einstein and Maxwell equations were obtained in the subcases of conformal
metric and relativistic optics Kronecker metric ([46, 43]), which proved to be success-
fully applied in the Finslerian framework ([22]).

An open problem is to examine the applicability in physics of the developed mod-
els, and to construct alternative ones based primarily on nonlinear and d−linear con-
nection which might prove their usefulness in GR.

Significant progress in applying the d−framework to multisymplectic Lagrangian
and Hamiltonian formalisms of first-order field theory was achieved in [65] - which
introduces a jet-covariant Hamiltonian theory. As well, the usefulness of such models
for economy was revealed in [59].

3. Paths and d−geodesics in d−jet framework
The notions of (h- and v-)paths, and of (h- and v-) geodesics in J1(T, M) extend

the corresponding definitions of the tangent subcase provided in [37, 57]. The same
holds for stationary curves, which rely on the notion of force/acceleration d−vector
fields. An analytic description of stationary curves, paths and geodesics on J1(T, M)
in the Cartan-Kronecker case was provided in [11, 10].

For specific Lagrangians, the Euler-Lagrange equations were shown to provide in
the 1-parametric autonomous case the classical Lorentz equations ([11, 10]). As well,
analytic solutions for the path and geodesic equations, with numerical simulations
were obtained in [17, 18].

The equations of geodesics and of Jacobi fields of the d−jet framework were ob-
tained in ([19, 20]). These equations extend the Finslerian particular case ([21, 28])
and adjust a previous extension attempt ([1]). An interesting survey of applications
of geodesic surfaces is included in [59].

Remains as open problem to provide physical models which involve non-torsionless
linear connections ([13]), where the depending on torsion force-term in the adapted
equations of d−Jacobi fields gets physical meaning ([19, 20, 24]). As well, the role
played by the nonlinear connection (which is present in the force term) in the Morse
theory of geodesics remains an open problem.

4. PDEs and Dynamical systems vs. the d− jet framework
The solutions of certain ODEs and PDEs were shown ([48, 66]) to be solutions of

certain classes of harmonic maps between certain jet-Generalized Lagrange spaces.
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Within this approach, the solution of the Poincaré problem was provided in the
geometrized jet-framework ([64]), and in [26, 68] was proved the existence of peri-
odical solutions of multi-time Hamilton equations via periodical extremals of the dual
action, when the Hamiltonian satisfies suitable conditions.

As well, structures of Finsler, Lagrange and Hamilton type were studied, in relation
with the quadratic Lagrangians on J1(T, M) attached to SODEs and control systems
([60]). The equivalence between Euler-Lagrange equations and Hamilton equations
in multi-time framework was studied in [26] and the action that produces multi-
time Hamilton equations was described, emphasizing the role of the polysymplectic
structure ([70]).

As subject of research, remains to reveal the physical meaning of the extended
Legendre transform, and to point out the physical relevance of the extended laws of
conservation of energy ([69, 70, 15]).
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[26] I. Duca, A.-M. Teleman and C. Udrişte, Poisson-gradient dynamical systems with convex
potential, Proc. of The 3-rd Int. Coll. ”Math. in Engg. and Numerical Physics” (MENP-
3), 7-9 October 2004, Bucharest, Romania, BSG Proc. ?, Geometry Balkan Press 2005,
?-?.

[27] Ch. Ehresmann, Extension du calcul des jets aux jets non holonomes, C.R. Acad Sci,
Paris 239, 1762-1764 (1954).

[28] B.T.M. Hassan, Sprays ans Jacobi fields in Finsler geometry, An. Univ. Timişoara, Ser.
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