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Abstract

In this paper we define and analyse the concepts of multidimensional resid-
ual spectral capacities (S-spectral capacities) and the S-decomposable systems
of operators (see preliminaries). For a commuting S-decomposable system of
operators a = (a1, a2, . . . , an) ⊂ B(X), there exists a S-spectral capacity E and
E(F ) is a spectral maximal space of a (F ⊂ Cn closed).
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Preliminaries.
Let X be a Banach space, let S(X) be the family of the closed linear subspaces of

X, let S ⊂ Cn be a compact set and let FS be the family of closed sets F ⊂ Cn that
have the property: either F ∩ S = ∅ or F ⊃ S.

We shall call S-spectral capacity an application E : FS → S(X) that meets the
properties:

1. E(∅) = {0}, E(Cn) = X;
2. E (∩∞i=1Fi) = ∩∞i=1E(Fi) for any series {Fi}i∈N ⊂ FS ;
3. for any open finite S-covering {GS} ∪ {Gj}m

j=1 of Cn we have

X = E(ḠS) +
m∑

j=1

E(ḠS).

A commuting system of operators a = (a1, a2, . . . , an) ⊂ B(X) is said to be S-
decomposable if there exists a S-spectral capacity such that

4. ajE(F ) ⊂ E(F ) for any F ∈ FS and for any j;
5. σ(a,E(F )) ⊂ F for any F ∈ FS ,

In case S = ∅, the S-spectral capacity is said to be a spectral capacity, and the system
is decomposable.

If a = (a1, a2, . . . , an) ⊂ B(X) is a commuting system of operators and σ(a,X)
is the system’s Taylor spectrum reported to X, we shall denote by U(σ(a, X)) the
algebra of the seeds of analytic functions defined in a neighbourhood of σ(a, X). It is
known that there exists a homomorphism from U(σ(a,X)) to B(X) so that 1 → 1X
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and zi → ai, (i = 1, 2, . . . , n) where 1 means the seed associated to the function z → 1
and zi the seed associated to the coordinate function [1]. We shall further make use
of the following result, proved in [1].

Proposition 1. Let Y, Z be two Banach spaces, τ : Y → Z a continuous ho-
momorphism and let b = (b1, b2, . . . , bn) ⊂ B(Y ), c = (c1, c2, . . . , cn) ⊂ B(Z) be two
systems of operators that commute such that τbi = ciτ , for any i = 1, 2, . . . , n. If
f ∈ U(σ(b, Y )) ∪ σ(c, Z)) then we also have τf(b) = f(c)τ .

Proposition 2. Let a = (a1, a2, . . . , an) ⊂ B(X) and σ(a, X) = σ1 ∪ σ2 with
σ1 ∩ σ2 = ∅, σ1, σ2 closed. If X = X1 ⊕X2 is the direct sum decomposition according
to ([1, Theorem 4.9]), where σ(a,X1) = σ1, σ(a,X2) = σ2, then X1, X2 are spectral
maximal spaces of a.

Proof. Let Y be a closed subspace of X invariant to a such that σ(a, y) ⊂ σ(a, X1).
We mark with p2 the projection of X on X2, with bi the restriction of ai at Y ,
bi = ai|Y , with ci the restriction of ai at X2, ci = ai|X2, and with τ the restriction
of p2 at Y , τ = p2|Y . Since p2 commutes with ai (i = 1, 2, . . . , n) ([1], 4.9) we have

τbi = xiτ.

By setting b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn), we have

σ(b, Y ) ∩ σ(c,X2) = ∅.
Let now f be the seed of the analytic function equal with 1 in a neighbourhood of
σ(b, Y ), and equal with 0 in a neighbourhood of σ(c,X2). According to Proposition
1 we obtain p2IY = 0 (since f(b) = IY f(c) = 0) for Y ⊂ X1; consequently X1 is a
spectral maximal space of a, and the same can be similarly proved for X2.

Theorem 3. Let a = (a1, a2, . . . , an) ⊂ B(X) be a S-decomposable system and
E a spectral S-capacity of a. Then E(F ) is a spectral maximal space of a (F ⊂ Cn

closed).
Proof. Let Y be an invariant closed subspace of X to a with σ(a, Y ) ⊂ F for a

certain closed set F ⊂ Cn. Let F ⊃ S. Then there exists an open S-covering of Cn

{GS , G} such that GS ⊃ S and Ḡ ∩ F = ∅, and

X = E(ḠS) + E(Ḡ).

According to a isomorphism theorem, the quotient space X/E(ḠS) is isomorphic with

E(Ḡ)/E(ḠS) ∩ E(Ḡ) = E(ḠS)/E(ḠS ∩ Ḡ).

Taylor’s theorem concerning the inclusion of the spectra ([1], Lemma 1.2) yields

σ(a,E(Ḡ))/E(ḠS ∩ Ḡ) ⊂ σ(a,E(ḠS ∩ Ḡ)) ∪ σ(a, E(Ḡ)) ⊂ (ḠS ∩ Ḡ) ∪ Ḡ = Ḡ,

meaning
σ(a,X/E(ḠS)) ⊂ Ḡ.

Denoting by ϕ the canonical map of X on X/E(ḠS), by bi the restriction of ai to Y ,
by ci the operator induced by ai in Z = X/E(ḠS) and by τ the restriction of ϕ to
Y , we shall put b = (b1, b2, . . . , bn), c = (c1, c2, . . . , cn). This implies
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σ(b, Y ) ∩ σ(c, Z) ⊂ F ∩G = ∅.

If f is the embryo of the analytic function equal to 1 on σ(b, Y ) and to 0 on σ(c, Z)
then f(b) = lY and f(c) = 0. By applying Proposition 1 we obtain ϕ · lY = 0
hence Y ⊂ E(ḠS). Since GS is arbitrary with the property GS ⊃ F we infer that
Y ⊂ ∩{E(ḠS), GS ⊃ F} = E(F ). When F ∩ S = ∅ we proceed similarly.

Corollary 4. Let a = (a1, a2, . . . , an) ⊂ B(X) be a S-decomposable system. Then
a admits a single S-spectral capacity E.

Proof. Let E and E1 be two spectral S-capacities of a. Then, according to the
preceeding theorem E(F ) and E1(F ) are spectral maximal spaces of a and from the
inclusions

σ(a,E(F )) ⊂ F, σ(a, E1(F )) ⊂ F

it follows that
E(F ) ⊂ E1(F ), E1(F ) ⊂ E(F ),

hence the two S-spectral capacities coincide.

Remark 5. If E is the S-spectral capacity of the S-decomposable system a =
(a1, a2, . . . , an) ⊂ B(X), then E(F1 ∪ F2) = E(F1) ⊕ E(F2) if F1, F2 are closed and
disjoint F1, F2 ∈ FS meaning E is disjoint additive [11]. Indeed, we have E(F1) ⊂
E(F1∪F2), (i = 1, 2), therefore E(F1)⊕E(F2) ⊂ E(F1∪F2); but E(F1∪F2) = YF1⊕
YF2 (see [1, Theorem 4.9]), where σ(a, YFi) ⊂ Fi (i = 1, 2), according YFi ⊂ E(Fi)
and YF1 ⊕ YF2 = E(F1)⊕ E(F2).

Proposition 6. Let a = (a1, a2, . . . , an) ⊂ B(X) be a S-decompo-sable system
such that dimS = 0. Then a admits the following spectral decomposition: for any open
covering {Gj}m

1 of Cn there exists the spectral maximal spaces {Yj}m
1 of a, such that

X =
m∑

j=1

and σ(a, Yj) ⊂ Gj (j = 1, 2, . . . , m).

Proof. Let {Gj}m
1 be an open and finite covering of Cn. By putting G′j = Gj ∩

(Cn \ S) and by observing that {Gj}m
1 is also a covering of S, it follows that there

exists an open covering {G′′j }m
1 of S such that G′′j ⊂ Gj , G′′i ∩ G′′j = ∅ (i 6= j,

i, j = 1, 2, . . . ,m); indeed, this fact is a consequence of [13, Lemma 6.2], because S is
totally disconnected, then dim S = 0. Then there will exist a covering

{Hj}m
1 ∪ {H ′

j}m
1

of Cn such that H̄j ⊂ G′j , H̄ ′
j ⊂ G′′j (j = 1, 2, . . . , m). Let us set HS =

m⋃

j=1

H ′
j ; then

{HS} ∪ {Hj}m
1

is a S-covering of Cn. There will exist the spectral maximal spaces

{YS} ∪ {Y ′
j }m

1

of a such that
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X = YS +
m∑

j=1

Yj , σ(a, YS) ⊂ HS , σ(a, Yj) ⊂ Hj .

But YS = Y
(1)
S ⊕Y

(2)
S ⊕ . . .⊕Y

(m)
S with σ(a, Y

(j)
S ) ⊂ H ′

j (j = 1, 2, . . . ,m) according to
[1, Theorem 4.9]. It will suffice to show that there exists a spectral maximal space Xj

of a such that Y
(j)
S ⊂ Xj , Yj ⊂ Xj and σ(a,Xj) ⊂ Gj (j = 1, 2, . . . , m). By setting

F
(j)
1 = H̄j ∪ H̄ ′

j and F
(j)
1 = S ∩ (H ′

1 ∪H ′
2 ∪ . . . ∪H ′

j−1 ∪H ′
j+1 ∪ . . . ∪H ′

m) we notice

that F
(j)
1 ∩ F

(j)
2 = ∅ and F

(j)
1 ∪ F

(j)
2 ⊂ S, hence

E(F (j)
1 ∪ F

(j)
2 ) = Y

(j)
1 ⊕ F

(j)
2

(according to Proposition 2 and using [1, Theorem 4.9]), the wanted spectral maximal
space will be Xj = Y

(j)
1 (j = 1, 2, . . . ,m). In this sense we have the following

Lemma 7. Let a = (a1, a2, . . . , an) ⊂ B(X) a decomposable system. Then

σai(x) = πiσ(a, x)

for all 1 ≤ i ≤ n and for any x ∈ X, where πi is the projection of Cn on the plane C
corresponding to the index i.

Proof. Let z ∈ σ(z, x) and let us suppose that πi(z) = zi /∈ σai(x); then there
exists an analytic function fi : Vzi → X such that

x ≡ (zi − ai)fi(zi) = (z1 − a1)0 + . . . + (zi − ai)fi(z) + . . . + (zn − an)0

hence z ∈ σ(a, x), a contradiction; hence πiσ(a, x) ⊂ σai(x). Conversely, let F =
σ(a, x); from x ∈ Xa(F ) = X[a](F ) and σ(a,X[a](F )) ⊂ F implies that

σai(x) ⊂ πiσ(a,X[a](F )) = σ(ai|X[a](F )) ⊂ πiF = πiσ(a, x)

whence follows the equality
σai(x) = πiσ(a, x).

References

[1] Taylor, J.L., Analytic functional calculus for several commuting operators, Acta
Math., 125 (1970), 1-38.

[2] Andreian-Cazacu, C., Deleanu, A., Jurchescu, M., Topology, Category, Riemann
Surfaces, Ed. Academiei R.S.R., 1966.

[3] Bacalu, I., Descompuneri Spectrale Reziduale I, Stud. Cerc. Mat., 32 (1980), 467-
504.

[4] Vasilescu, F.H., Analytic Functional Calculus and Spectral Decompositions, D. Rei-
del Publishing Co., Dordrecht, Ed. Academiei, Bucharest, 1982.

Ioan Bacalu
University Politehnica of Bucharest,
Department of Mathematics II,
Splaiul Independenţei 313,
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