
An algebraic computing program for studying

cosmological models without singularities

Simona Babeti and Gheorghe Zet

Abstract

In order to study cosmological models, which involve tensorial operations,
we have conceived an analytical program using GRTensorII package for Maple 8.
This program use a de-Sitter gauge teory of gravitational field over a spherical
symmetric Minkowski space-time. We define the gauge fields with GRTensorII,
we choose a particular ansatz and using special commands we compute the com-
ponents of the strength tensor and of other quantities defined with gauge fields
and strength tensor. Using some invariants of strength tensor like higher deriv-
ative terms in the integral of action we obtain field equations with nonsingular
solutions.

Mathematics Subject Classification: 83F05, 83D05, 83C75.
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1 Introduction

The gauge theory of gravitation allows to describe the gravity in a similar way with
other interactions (electromagnetic, weak, strong). As gauge group of gravitation
we use the de-Sitter group in order to obtain models with cosmological constant for
the gravitational field. The Poincaré gauge theory is obtained as a limit of de-Sitter
model when the cosmological constant vanishes.

The Section 2 is devoted to the formulation of the de-Sitter gauge model on a
spherical symmetric Minkowski space-time. The general expressions for the compo-
nents FA

µν of the strength tensor of the gauge fields are obtained. A particular ansatz
for the gauge fields is chosen and the corresponding components FA

µν are presented in
Section 3. The tensorial operations involve a great number of calculations, and that
imposes computer implementation. From this point of view, the symbolic programs,
as Maple, are appropriate. The calculations are performed with analitical programs
using the GRTensorII computer algebra package, running on the Maple 8 platform.
An algebraic computing program for the developed gauge theory of gravitation is
presented in Section 3.
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In order to obtain solutions without singularities in the gauge theory of gravitation
in Section 4 we choose to develope models with higher derivative corrections in the
case of null torsion. One of these begin with an action with two invariants I1 and
I2 coupled by two Lagrange multiplier ψ1(t), ψ2(t) and a potential V (ψ1, ψ2). The
other model, for heterotic string cosmology, is a gravidilaton model with string α′

corrections. The both models implement restrictions on the invariants like the so-
called ”limiting curvature hypothesis” in the cosmology with metrics.

For the particular ansatz of spherically symmetric gauge fields of Section 3 we write
the equations of motion in Section 4. Solutions for the field equations are presented
in Section 5. These solutions are nonsingular.

2 Gauge theory of gravitation

We consider a gauge theory of gravitation having deSitter (DS) group as local sym-
metry. Let XA, A = 1, 2, ..., 10, be a basis of DS Lie algebra with the corresponding
equations of structure given by [3]:

[XA, XB ] = ifC
ABXC ,(2.1)

where fC
AB = − fC

BA are the constants of structure whose concrete expressions will
be given below [see eq.(2.4)]. We envision space-time as a four-dimensional manifold
M4; at each point we have a copy of DS group. Introduce, as usually, 10 gauge fields
hA

µ (x), A = 1, 2, ..., 10, µ = 0, 1, 2, 3, where (x) denotes the local coordinates on M4.
Then, we construct the tensor of the gauge fields (strength tensor) Fµν = FA

µνXA

which takes its values in the Lie algebra of the DS group (Lie algebra-valued tensor).
The components of this tensor are given by:

FA
µν = ∂µhA

ν − ∂νhA
µ + fA

BChB
µ hC

ν .(2.2)

In order to write the constants of structure fC
AB , we use the following notation for

the index A:

A =
{

a = 0, 1, 2, 3,
[ab] = [01], [02], [03], [12], [13], [23].(2.3)

This means that A can stand for a single index like 2 as well as for a pair of indices
like [01], [12] etc. The infinitesimal generators XA are interpreted as: Xa ≡ Pa

(energy-momentum operators) and X[ab] ≡ Mab (angular momentum operators) with
property Mab = −Mba, a, b = 0, 1, 2, 3 [1]. For the constants of structure fC

AB we find
the following expressions:

fa
bc = f

[ab]
c[de] = fa

[bc][de] = 0,

f
[ab]
cd = 4λ2

(
δb
cδ

a
d − δa

c δb
d

)
= −f

[ab]
dc ,(2.4)

fa
b[cd] = −fa

[cd]b =
1
2

(ηbcδ
a
d − ηbdδ

a
c ) ,

f
[ef ]
[ab][cd] =

1
4

(
ηbcδ

e
aδf

d − ηacδ
e
bδ

f
d + ηadδ

e
bδ

f
c − ηbdδ

e
aδf

c

)
− e ←→ f,
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where λ is a real parameter, and ηab = diag(1,−1,−1,−1) is the Minkowski metric.
In fact here we have a deformation of DS Lie algebra having λ as parameter. When
λ → 0, we obtain the Poincaré Lie algebra, i.e. the DS group contracts to the Poincaré
group.

We will denote the gauge fields (or potentials) hA
µ (x) by ea

µ (x) (tetrad fields) if
A = a and by ωab

µ (x) = −ωba
µ (x) (spin connection) if A = [ab]. Then, introducing

the relations (2.4) into the definition (2.2), we find the following expressions of the
strength tensor components:

F a
µν = ∂µea

ν − ∂νea
µ +

(
ωab

µ ec
ν − ωab

ν ec
µ

)
ηbc,(2.5)

F ab
µν = ∂µωab

ν − ∂νωab
µ +

(
ωac

µ ωdb
ν − ωac

ν ωdb
µ

)
ηcd − 4λ2

(
ea
µeb

ν − ea
νeb

µ

)
.(2.6)

The action associated to the gravitational gauge fields, quadratic in the compo-
nents FA

µν , is writen in the form [4]:

Sg =
∫

d4xεµνρσFA
µνFB

ρσQAB ,(2.7)

where εµνρσ is the Levi-Civita symbol of rang four. This action is independent of any
specific metric on M4. The quantities QAB are constants, symmetric with respect to
the indices A, B: QAB = QBA. If we chose [1]:

QAB =
{

εabcd, for A = [ab], B = [cd]
0 otherwise

(2.8)

then we obtain the action of the General Relativity (GR).

3 An analytical program for de-Sitter
gauge theory of gravitation

We develop a gauge theory of the DS group in a 4-dimensional Minkowski space-time
M4, endowed with spherical symmetry:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(3.1)

In addition we chose a particular form of gauge fields of the DS group ea
µ (x) and

ωab
µ (x) given by the following ansatz:

e0
µ = (N(t), 0, 0, 0) , e1

µ =
(

0,
a(t)√

1− kr2
, 0, 0

)
,(3.2)

e2
µ = (0, 0, ra(t), 0) , e3

µ = (0, 0, 0, ra(t) sin θ)

respectively

ω01
µ = (0, U(t, r), 0, 0) , ω02

µ = (0, 0, V (t, r), 0) ,

ω03
µ = (0, 0, 0, W (t, r) sin θ) , ω12

µ = (0, 0, Y (t, r), 0) ,(3.3)

ω13
µ = (0, 0, 0, Z(t, r) sin θ) , ω23

µ = (0, 0, 0, cos θ) ,
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where N(t) and a(t) are functions only of the time variable t; k is a constant;
U(t, r), V (t, r),W (t, r), Y (t, r) and Z(t, r) are functions of time t and three-dimensional
radius r. We use the above expressions to compute the components of the tensors,
F a

µν and F ab
µν . The calculations are performed using an analytical program conceived

by us using GRTensorII package for Maple 8.

The program call the GRTensorII package with grtw( ) and load the Minkowski
metric in spherical coordinates (with grload( )), which already exists in Metrics direc-
tor of Grtii(6). The gauge fields ea

µ (denoted by ev) and ωab
µ (denoted by omega) are

defined in the program by grdef( ). After the definition, these potentials are intro-
duced during of the running program by the command grcalc( ). For our purpose it is
necessary to define and introduce ηab = diag(1,−1,−1,−1) and we will use Kronecker
delta kdelta(up,dn). GRTensorII allows to define new tensors outside of the standard
GRTensorII library and so we can calculate the components of the strength tensor
field F a

µν , respectively F ab
µν . In program we denoted F a

µν by Famn and F ab
µν by Fabmn

and we define these components with (2.5) and (2.6).

Program ”gauge-theory.mws”

restart: grtw():
grload(minknou, ‘c:/grtii(6)/metrics/minknou.mpl‘);
grdef(‘ev{^a miu}‘); grcalc(ev(up,dn));
grdef(‘omega{[^a ^b] miu}‘); grcalc(omega(up,up,dn));
grdef(‘eta1{(a b)}‘); grcalc(eta1(dn,dn));
grdef(‘Famn{^a miu niu} := ev{^a niu,miu} - ev{^a miu,niu}

+ omega{^a ^b miu}*ev{^c niu}*eta1{b c}
- omega{^a^b niu}*ev{^c miu}*eta1{b c}‘);

grcalc(Famn(up,dn,dn)); grdisplay(_);
grdef(‘Fabmn{^a ^b miu niu} := omega{^a ^b niu, miu}

-omega{^a ^b miu, niu} + (omega{^a ^c miu}*omega{^d ^b niu}
-omega{^a ^c niu}*omega{^d ^b miu})*eta1{c d}
-4*lambda^2*(ev{^a miu}*ev{^b niu}-ev{^b miu}*ev{^a niu})‘);

grcalc(Fabmn(up,up,dn,dn)); grdisplay(_);

The non-null components of F a
µν and F ab

µν are:

F 1
01 =

ȧ√
1− kr2

+ UN, F 2
02 = rȧ + V N, F 3

03 = (rȧ + WN) sin θ,

F 2
12 = a− V√

1− kr2
, F 3

13 = a sin θ

(
1− Z√

1− kr2

)
,(3.4)
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respectively

F 12
12 = −

(
∂Y

∂r
+ UV +

4λ2ra2

√
1− kr2

)
, F 02

12 =
∂V

∂r
− UY,

F 13
13 =

(
∂Z

∂r
− UW − 4λ2ra2

)
sin θ, F 03

13 =
(

∂W

∂r
− UZ

)
sin θ,

F 01
01 =

∂U

∂t
− 4λ2Na√

1− kr2
, F 03

23 = (W − V ) cos θ,(3.5)

F 23
23 =

(−1 + ZY + 4λ2r2a2 + WV
)
sin θ, F 13

23 =
∂Z

∂t
sin θ,

F 12
02 =

∂Y

∂t
, F 02

02 =
∂V

∂t
− 4λ2Nra,

F 03
03 =

(
∂W

∂t
− 4λ2Nra

)
sin θ, F 13

03 =
∂Z

∂t
sin θ.

where ȧ is the derivative of a(t) with respect to the variable t.
If we assume that all the components F a

µν of the strength tensor vanish and if we
remember the Riemann-Cartan theory of gravitation, then the torsion tensor T ρ

µν =
ēρ
aF a

µν vanish, in acccord with GR theory. Here, ēρ
a denotes the invers of ea

µ with the
properties:

ea
µēµ

b = δa
b , ea

µēν
a = δν

µ.

From this condition and Eq. (3.4) we obtain the following constraints:

U(t, r) = − ȧ(t)
N(t)

√
1− kr2

, V (t, r) = W (t, r) = −rȧ(t)
N(t)

Y (t, r) = Z(t, r) =
√

1− kr2.(3.6)

Using these constraints the program compute the resulting components F ab
µν of the

strength tensor and the quantities F a
µ = F ab

µν ēν
b , F = F ab

µν ēµ
a ēν

b , e = det(ea
µ):

Program ”gauge-theory.mws” (continued)

U(t,r):=-diff(a(t),t) /(N(t)*sqrt(1-k*r^2));
V(t,r):=-r*diff(a(t),t)/N(t);
W(t,r):=-r*diff(a(t),t)/N(t);
Y(t,r):=sqrt(1-k*r^2);
Z(t,r):=sqrt(1-k*r^2);
grdef(‘Fabmn{^a ^b miu niu} := omega{^a ^b niu, miu}

-omega{^a ^b miu, niu} + (omega{^a ^c miu}*omega{^d ^b niu}
-omega{^a ^c niu}*omega{^d ^b miu})*eta1{c d}
-4*lambda^2*(ev{^a miu}*ev{^b niu}-ev{^b miu}*ev{^a niu})‘);

grcalc(Fabmn(up,up,dn,dn)); grdisplay(_);
grdef(‘evi{^miu a}‘); grcalc(evi(up,dn));
grdef(‘F:=Fabmn{^a ^b miu niu}*einv{a ^miu}*einv{b ^niu }‘);
grcalc(F); grdisplay(_);
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grdef(‘Fam{^a miu}:=Fabmn{^a ^b miu niu}*einv{b^niu }‘);
grcalc(Fam(up,dn)); grdisplay(_);
grdef(‘de‘); grcalc(de);

With this results the components F ab
µν of the strength tensor becomes:

F 12
12 = − r

N2
√

1− kr2

(
kN2 + 4λ2a2N2 + ȧ2

)
,

F 13
13 =

r sin θ

N2
√

1− kr2

(
kN2 + 4λ2a2N2 + ȧ2

)
,(3.7)

F 01
01 = − äN − ȧṄ + 4λ2aN3

N2
√

1− kr2
, F 23

23 = −r2 sin θ

N2

(
kN2 + 4λ2a2N2 + ȧ2

)
,

F 02
02 = − r

N2

(
äN − ȧṄ + 4λ2aN3

)
, F 03

03 = −r sin θ

N2

(
äN − ȧṄ + 4λ2aN3

)
,

and the scalar F is:

F = −6
aäN − aȧṄ + kN3 + ȧ2N + 8λ2a2N3

a2N3
.(3.8)

4 Actions and field equations for cosmological mod-
els without singularities

Using proper invariants of the strength tensor in an action with higher derivatives
terms [5, 6, 7] we obtain field equations with nonsingular solutions.

First we work with an action with two invariants I1, I2 and correspondently two
Lagrange multiplier ψ1, ψ2:

S = − 1
16πG

∫
d4xe [F + ψ1f1(I1) + ψ2f2(I2) + V (ψ1, ψ2)] ,(4.1)

where the functions f1 and f2 are:

f1(I1) = I1, f2(I2) = −
√

I2.(4.2)

We chose the invariants I1, I2 in the form:

I1 = F −
√

3
(
4F a

µFµ
a − F 2

)1/2
,(4.3)

respectively

I2 = 4F a
µFµ

a − F 2,(4.4)

and we set the potential V (ψ1, ψ2) to be separated:

V (ψ1, ψ2) = V1(ψ1) + V2(ψ2).(4.5)
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Then, the action (4.1) becomes:

S = − 1
16πG

∫
d4xe

[
F + ψ1I1 − ψ2

√
I2 + V1(ψ1) + V2(ψ2)

]
.(4.6)

In order to use the variational principle δS = 0 we must express the Lagrangian in
terms of N(t), ψ1(t), ψ2(t) and those derivatives. The analytical program aids us to
do these using the aboves calculated quantities and the commands grdef( ), grcalc( ):

Program ”gauge-theory.mws” (continued)

grdef(‘I2:=4*Fam{^a miu}*Faminv{a ^ miu-F^ 2)‘);
grcalc(I2); grdisplay(_);
grdef(‘I1:=F-sqrt(3)*sqrt(I2)‘);
grcalc(I1); grdisplay(_);
grdef(‘Lg:=(F+psi1(t)*I1-psi2(t)*sqrt(I2)+ V1(psi1)+V2(psi2))*de‘);
grcalc(Lg)); grdisplay(_);

We obtain the following expressions of the invariants I1, I2:

I1 = −12
kN2 + ȧ2 + 4λ2a2N2

a2N2
,(4.7)

I2 = 12

(
kN3 + ȧ2N − aäN + aȧṄ

)2

a4N6
,(4.8)

where ä is the second derivative of a(t) with repect to t.
From the variational principle, for the particular case N(t) = 1, we obtain the

following field equations:

−1
2
(V1 + V2) + 3H2(1− 2ψ1) + 3

k

a2
(1 + 2ψ1)− 2Λ =

=
√

3(ψ̇2 + 3Hψ2 − k

Ha2
ψ2),(4.9)

k

a2
+ H2 − Λ

3
=

1
12

dV1

dψ1
,(4.10)

Ḣ − k

a2
= − 1

2
√

3
dV2

dψ2
,(4.11)

with

H =
ȧ

a
, Ḣ =

dH

dt
=

äa− ȧ2

a2
,(4.12)

where ψ̇2 is the derivative of ψ2(t) with respect to t, and Λ = −12λ2 is interpreted as
cosmological constant [4].
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For heterotic string theory, in the four-dimensional Einstein frame, we work with
an action with time-dependent homogenous dilaton φ(t), a potential for dilaton V (φ)
and α′ expansions (truncated to first order) [8, 9] given by:

Ss = − 1
16πG

∫
d4xe

[
F − 2(∇φ)2 +

α′

8
exp(−2φ)L2 − V (φ)

]
,(4.13)

A proper choice of invariant L2 is

L2 = F ab
µνFµν

ab −
1
6
F 2(4.14)

With the following commands:

Program ”gauge-theory.mws” (continued)

grdef(‘L2:=Fabmn{^a ^b miu niu }*Fabmninv{a b ^ miu ^niu}-
(1/6)F^ 2)‘);

grcalc(L2); grdisplay(_);
grdef(‘de‘); grcalc(de);
grdef(‘Lgs:=(F-2*diff(phi(t),t)^2 +

c*exp(-2*phi(t))*L2- V(phi(t))*de‘);
grcalc(Lgs)); grdisplay(_);

we obtain L2:

L2 = 6

(
kN3 + ȧ2N − aäN + aȧṄ

)2

a4N6
,(4.15)

and the Lagrangian of the string model. Imposing the variational principle δSs = 0
with respect to φ(t) and N(t) we obtain the corresponding field equations. These
field equations for the particular case N(t) = 1 are:

12
α′

8

(
k

a2
− Ḣ

)2

= − exp(2φ)
(

∂V (φ)
∂φ

+ 4φ̈ + 12Hφ̇

)
,(4.16)

6
α′

8

[
Ḣ2 − 2HḦ − 6H2Ḣ + 4HḢφ̇ +

k

a2

(
2Hφ̇ + Ḣ −H2 − k

a2

)]
=

= − exp(2φ)
(

V (φ) + 2φ̇2 + 6H2 − 4Λ +
k

a2

)
(4.17)

where Λ = −12λ2 is also interpreted as cosmological constant [3].
If we consider the limit λ → 0 or equivalently Λ = 0, in the case of model with two

Lagrange multipliers we obtain the results in Ref.[2] and for the model of heterotic
string theory we obtain the results in Ref.[8]; but, for Λ 6= 0 we can study in addition
the dependence on the cosmological constant of the solutions (without singularities)
obtained by solving (4.9)-(4.11) and (4.16)-(4.17).
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5 Example of solutions without singularities

The solution of Eqs. (4.9)-(4.11) includes a dependence on the cosmological constant
Λ. We suppose that the Lagrange-multiplier function ψ1(t) is absent, and consider
the cas when k = 0. Then, denoting ψ2(t) = ψ(t) and V2(ψ2) = V (ψ), the eqs.
(4.9)-(4.11) becomes:

Ḣ = − 1
2
√

3
dV

dψ
,(5.1)

ψ̇ = −3Hψ +
√

3H − 1
2
√

3H
V − 2Λ√

3H
.

We consider the potential V (ψ) of the form:

V (ψ) = 2
√

3λ2

(
ψ2

1 + ψ2
+

24√
3

)
,(5.2)

where λ is the real parameter that determines the cosmological constant Λ. This
parameter coincides with the constant H0 in Ref. [2] that has been interpreted as a
Planck scale of the model. Therefore, in our first example the Planck scale is related
to the cosmological constant Λ [4]. For small values of H and ψ, the eqs. (5.1) can
be written as:

Ḣ ' −2λ2ψ,(5.3)

ψ̇(t) '
√

3H2 − λ2ψ2

H
.

These equations have the periodic solution:

ψ(t) = ψ0 sin(ωt), H(t) =
ωψ0

2
√

3
[cos(ωt)− 1],(5.4)

where ψ0 is an integration constant and ω = 2× 31/4λ is the frequency of oscillation
of the corresponding gravitational field described by the gauge potentials ea

µ(x) şi
ωab

µ (x). This solution has no singularities and it is valid if the cosmological constant
is negative (Λ < 0).

For the model of the heterotic string theory developed above, the solution of
equations of motion (4.16)-(4.17) also includes a dependence on the cosmological
constant Λ. For the case with k = 0 these equations of motion becomes:

12
α′

8
Ḣ2 = − exp(2φ)

(
∂V (φ)

∂φ
+ 4φ̈ + 12Hφ̇

)
,(5.5)

6
α′

8

(
Ḣ2 − 2HḦ − 6H2Ḣ + 4HḢφ̇

)
=

− exp(2φ)
(
V (φ) + 2φ̇2 + 6H2 − 4Λ

)
.(5.6)

If we set φ(t) and V (φ) to have a proper expression with some properties we obtain
nonsingular solutions of equations of motion . At late time we demand φ → φ0
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and V (φ) → 4Λ. In this case a de-Sitter type solution a(t) = a0 exp(Ht) which
correspond to constant H = H0 satisfy the equations of motion (5.5)-(5.6) and the
constraint equation (imposing the variational principle δS = 0 with respect to a(t))
if H = 0 and, hence a(t) = const. At t = 0 we will force the solutions to be with
a(t) = a0 exp(Ht). In accord with all the above properties we choose to set the dilaton
φ(t) [8] to be:

φ(t) = φ0 tanh
(

t− t1
t0

)
,(5.7)

and the potential V (φ) in the form:

V (φ) = V0

[
(φ + 1)2 − 4

]− 48λ2.(5.8)

Setting φ0 = 1, V0 = 3
2H2

0 , t0 = 1 and t1 large enough so that φ(t = 0) ≈ −1 and
inserting (5.7) and (5.8) into (5.5), at t → 0 we obtain: Ḣ2 = 0, which imply
H = const and using (5.6) we conclude that the parameter λ have the order of H0

(interpreted in [4] as a Planck scale of the model). Therefore, this second model has
no singularities and it is also valid if the cosmological constant is negative.

6 Concluding remarks

The gauge theory of gravitation allows a complementary description of the gravita-
tional effects in which the mathematical structure of the underlying space-time is not
affected by physical events. Only the gauge potentials ea

µ (x) and ωab
µ (x) of the gravi-

tational field change as functions of coordinates. This is important when we consider
a quantum gauge theory of gravitation.

The cosmological models in this paper represent solutions of equations of motion in
two different higher derivative corrections of the action, but both with some invariants
which depend on the strength tensor field. In ours examples the Planck scale is related
to the cosmological constant Λ and the solutions has no singularities and its are valid
if the cosmological constant is negative.

A gauge theory imply tensorial operations with a great number of calculations, and
that imposes computer implementation, especially when we apply to some models.
The invariants of the models presented in this paper request an algebraic computing
program and the commads and facilities of GRTrnsorII for Maple was appropriate.
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