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Abstract

The theory of locally anisotropic superspaces (supersymmetric generaliza-
tions of various types of Kaluza–Klein, Lagrange and Finsler spaces) is laid
down. In this framework we perform the analysis of construction of the su-
pervector bundles provided with nonlinear and distinguished connections and
metric structures. Two models of locally anisotropic supergravity are proposed
and studied in details.
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1 Introduction

Differential geometric techniques plays an important role in formulation and mathe-
matical formalization of models of fundamental interactions of physical fields. In the
last twenty years there has been a substantial interest in the construction of differen-
tial supergeometry with the aim of getting a framework for the supersymmetric field
theories (the theory of graded manifolds [1-4] and the theory of supermanifolds [5-9]).
Detailed considerations of geometric and topological aspects of supermanifolds and
formulation of superanalysis are contained in [10-16].

Spaces with local anisotropy are used in some divisions of theoretical and mathe-
matical physics [17-20] (recent applications in physics and biology are summarized in
[21,22]). The first models of locally anisotropic (la) spaces (la–spaces) have been pro-
posed by P.Finsler [23] and E.Cartan [24]. Early approaches and modern treatments
of Finsler geometry and its extensions can be found in [25-30]. We shall use the gen-
eral approach to the geometry of la–spaces, developed by R.Miron and M.Anastasiei
[26,27], as a starting point for our definition of superspaces with local anisotropy and
formulation of la–supergravitational models.

In different models of la–spaces one considers nonlinear and linear connections
and metric structures in vector and tangent bundles on locally isotropic space–times
((pseudo)–Riemannian, Einstein–Cartan and more general types of curved spaces with
torsion and nonmetricity). It seems likely that la–spaces make up a more convenient
geometric background for developing in a selfconsistent manner classical and quantum
statistical and field theories in non homogeneous, dispersive media with radiational,
turbulent and random processes.In [31-35] some variants of Yang–Mills, gauge gravity
and the definition of spinors on la–spaces have been proposed. In connection with
the above mentioned the formulation of supersymmetric extensions of classical and
quantum field theories on la–spaces presents a certain interest

In works [36–38] a new viewpoint on differential geometry of supermanifolds is
discussed. The author introduced the nonlinear connection (N–connection) structure
and developed a corresponding distinguished by N–connection supertensor covariant
differential calculus in the frame of De Witt [5] approach to supermanifolds, by consid-
ering the particular case of superbundles with typical fibres parametrized by noncom-
mutative coordinates. This is the first example of superspace with local anisotropy.
But up to the present we have not a general, rigorous mathematical, definition of
locally anisotropic superspaces (la–superspaces).

In this paper we intend to give some contributions to the theory of vector and tan-
gent superbundles provided with nonlinear and distinguished connections and metric
structures (a generalized model of la–superspaces). Such superbundles contain as
particular cases the supersymmetric extensions of Lagrange and Finsler spaces. We
shall also formulate and analyze two models of locally anisotropic supergravity.

The plan of the work is the following: After giving in Sec. 2 the basic terminology
on supermanifolds and superbundles, in Sec. 3 we introduce nonlinear and linear
distinguished connections in vector superbundles.The geometry of the total space of
vector superbundles will be studied in Sec. 4 by considering distinguished connections
and their structure equations. Generalized Lagrange and Finsler superspaces will
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be defined in Sec. 5. In Sec. 6 the Einstein equations on the la–superspaces are
written and analyzed. A version of gauge like la–supergravity will be also proposed.
Concluding remarks and discussion are contained in Sec. 7.

2 Supermanifolds and Superbundles

In this section we outline some necessary definitions, concepts and results on the
theory of supermanifolds (s–manifolds) [5–14].

The basic structures for building up s–manifolds (see [6,9,14]) are Grassmann
algebra and Banach space. Grassmann algebra is considered a real associative algebra
Λ (with unity) possessing a finite (canonical) set of anticommutative generators βÂ,
[βÂ, βB̂ ]

+
= βÂβĈ + βĈβÂ = 0, where Â, B̂, ... = 1, 2, ..., L̂. This way it is defined a

Z2-graded commutative algebra Λ0+Λ1, whose even part Λ0 (odd part Λ1) represents
a 2L̂−1–dimensional real vector space of even (odd) products of generators βÂ.After
setting Λ0 = R + Λ0

′, where R is the real number field and Λ0
′ is the subspace of

Λ consisting of nilpotent elements, the projections σ : Λ → R and s : Λ → Λ0
′ are

called, respectively, the body and soul maps.
A Grassmann algebra can be provided with both structures of a Banach algebra

and Euclidean topological space by the norm [6]

‖ξ‖ = ΣÂi
|aÂ1...Âk |, ξ = ΣL̂

r=0a
Â1...ÂrβÂ1

...βÂr
.

A superspace is defined as a product

Λn,k = Λ0×...×Λ0︸ ︷︷ ︸
n

×Λ1×...×Λ1︸ ︷︷ ︸
k

.

This represents the Λ-envelope of a Z2-graded vector space V n,k = V0⊗V1 = Rn⊕Rk,
which is obtained by multiplication of even (odd) vectors of V by even (odd) elements
of Λ. The superspace (as the Λ-envelope) posses (n + k) basis vectors {β̂i, i =
0, 1, ..., n − 1, and βî, , î = 1, 2, ...k}. Coordinates of even (odd) elements of
V n,k are even (odd) elements of Λ. On the other hand, a superspace V n,k forms a
(2L̂−1)(n + k)-dimensional real vector spaces with a basis {β̂i(Λ), βî(Λ)}.

Functions of superspaces, differentiation with respect to Grassmann coordinates
,supersmooth (superanalytic) functions and mappings are defined by analogy with
the ordinary case, but with a glance to certain specificity caused by changing of real
(or complex) number field into Grassmann algebra Λ. Here we remark that functions
on a superspace Λn,k which takes values in Grassmann algebra can be considered as
mappings of the space R(2(L̂−1))(n+k) into the space R2L̂. Functions being differen-
tiable with regard to Grassmann coordinates can be rewritten via derivatives on real
coordinates, which obey a generalized version of Cauchy-Riemann conditions.

A (n, k)-dimensional s-manifold M is defined as a Banach manifold (see, for exam-
ple, [39]) modelled on Λn,k endowed with an atlas ψ = {U(i), ψ(i) : U(i) → Λn,k, (i) ∈
J} whose transition functions ψ(i) are supersmooth [6,9]. Instead of supersmooth
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functions we can use G∞-functions [6] and define G∞-supermanifolds (G∞ denotes
the class of superdifferentiable functions). The local structure of a G∞-supermanifold
can be built very much as on a C∞-manifold. Just as a vector field on a n-dimensional
C∞-manifold can be expressed locally as

Σn−1
i=0 fi(xj)

∂

∂xi
,

where fi are C∞-functions, a vector field on an (n, k)-dimensional G∞-supermanifold
M can be expressed locally on an open region U⊂M as

Σn−1+k
I=0 fI(xJ)

∂

∂xI
=

Σn−1
i=0 fi(xj , θĵ)

∂

∂xi
+ Σk

î=1
fî(x

j , θĵ)
∂

∂θî
,

where x = (x̂, θ) = {xI = (x̂i, θî)} are local (even, odd) coordinates. We shall use
indices I = (i, î), J = (j, ĵ),K = (k, k̂), ... for geometric objects on M . A vector field
on U is an element X⊂End[G∞(U)] (we can also consider supersmooth functions
instead of G∞-functions) such that

X(fg) = (Xf)g + (−)|f ||X|
fXg,

for all f, g in G∞(U), and
X(af) = (−)|X||a|

aXf,

where |X| and |a| denote correspondingly the parity (= 0, 1) of values X and a and
for simplicity in this work we shall write (−)|f ||X| instead of (−1)|f ||X|

.
A super Lie group (sl-group) [7] is both an abstract group and a s-manifold,

provided that the group composition law fulfils a suitable smoothness condition (i.e.
to be superanalytic, for short,sa [9]).

In our further considerations we shall use the group of automorphisms of Λ(n,k),
denoted as
GL(n, k, Λ), which can be parametrized as the super Lie group of invertible matrices

Q =
(

A B
C D

)
,

where A and D are respectively (n×n) and (k×k) matrices consisting of even Grass-
mann elements and B and C are rectangular matrices consisting of odd Grassmann
elements. A matrix Q is invertible as soon as maps σA and σD are invertible
matrices.A sl-group represents an ordinary Lie group included in the group of lin-
ear transforms GL(2L̂−1(n + k),R). For matrices of type Q one defines [1-3] the
superdeterminant,sdetQ, supertrace, strQ, and superrank,srankQ.

One calls Lie superalgebra (sl-algebra) any Z2-graded algebra A = A0 ⊕ A1 en-
dowed with product [, } satisfying the following properties:

[I, I ′} = −(−)|I||I
′|[I ′, I},
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[I, [I ′, I ′′}} = [[I, I ′}, I ′′} + (−)|I||I
′|[I ′[I, I ′′}},

I∈A|I|, I ′∈A|I′|, where |I|, |I ′| = 0, 1 enumerates, respectively, the possible parity
of elements I, I ′. The even part A0 of a sl-algebra is a usual Lie algebra and the
odd part A1 is a representation of this Lie algebra.This enables us to classify sl–
algebras following the Lie algebra classification [40]. We also point out that irreducible
linear representations of Lie superalgebra A are realized in Z2-graded vector spaces

by matrices
(

A 0
0 D

)
for even elements and

(
0 B
C 0

)
for odd elements and that,

roughly speaking, A is a superalgebra of generators of a sl-group.
An sl–module W (graded Lie module) [7] is a Z2-graded left Λ-module endowed

with a product [, } which satisfies the graded Jacobi identity and makes W into a
graded-anticommutative Banach algebra over Λ. One calls the Lie module G the set
of the left-invariant derivatives of a sl-group G.

One constructs the supertangent bundle (st-bundle) TM over a s-manifold M ,
π : TM → M in a usual manner (see, for instance,[39]) by taking as the typical fibre
the superspace Λn,k and as the structure group the group of automorphisms, i.e. the
sl-group GL(n, k, Λ).

A s-manifold and a st-bundle TM may be represented as a certain 2L̂−1(n + k)-
dimensional real manifold and the tangent bundle over it whose transition function
obey the special conditions of Cauchy-Riemann type.

Let us denote Ê a vector superspace (vs-space) of dimension (m, l) (with respect
to a chosen base we parametrize an element y ∈ Ê as y = (ŷ, ζ) = {yA = (ŷa, ζ â)},
where a = 1, 2, ...,m and â = 1, 2, ..., l). We shall use indices A = (a, â), B = (b, b̂), ...
for objects on vs-spaces. A vector superbundle (vs-bundle) E over base M with total
superspace E, standard fibre F̂ and surjective projection πE : E→M is defined (see
details and variants in [11,16]) as in the case of ordinary manifolds (see, for instance,
[39,26,27]). A section of E is a supersmooth map s : U→E such that πE ·s = idU .

A subbundle of Ê is a triple (B, f, f ′), where B is a vs-bundle on M , maps
f : B→E and f ′ : M→M are supersmooth, and (i) πE◦f = f ′◦πB ; (ii) f :
π−1

B (x)→π−1
E ◦f ′(x) is a vs-space homomorphism.

We denote by u = (x, y) = (x̂, θ, ŷ, ζ) = {uα = (xI , yA) = (x̂i, θî, ŷa, ζ â) =
(x̂i, xî, ŷa, yâ)} the local coordinates in Ê and write their transformations as

xI′
= xI′

(xI), srank(
∂xI′

∂xI
) = (n, k), (1)

yA′
= MA′

A (x)yA, where MA′

A (x)∈G(m, l, Λ).
For local coordinates and geometric objects on ts-bundle TM we shall not dis-

tinguish indices of coordinates on the base and in the fibre and write, for instance,
u = (x, y) = (x̂, θ, ŷ, ζ) = {uα = (xI , yI) = (x̂i, θî, ŷi, ζ î) = (x̂i, xî, ŷi, yî)}.

Finally, in this section, we remark that to simplify considerations in this work we
shall consider only locally trivial super fibre bundles.



202 S.I. Vacaru and N.A. Vicol

3 Nonlinear Connections in Vector Superbundles

The concept of nonlinear connection (N-connection) was introduced in the framework
of Finsler geometry [24,41,42].The global definition of N-connection is given in [43]. In
works [26,27] nonlinear connection structures are studied in details. In this section we
shall present the notion of nonlinear connection in vs-bundles and its main properties
in a way necessary for our further considerations.

Let us consider a vs-bundle E = (E, πE ,M) whose type fibre is F̂ and πT :
TE→TM is the superdifferential of the map πE (πT is a fibre-preserving morphism of
the st-bundle (TE , τE ,M) to E and of st-bundle (TM, τ,M) to M). The kernel of this
vs-bundle morphism being a subbundle of (TE, τE , E) is called the vertical subbundle
over E and denoted by V E = (V E, τV , E). Its total space is V E =

⋃
u∈E Vu, where

Vu = kerπT , u∈E . A vector

Y = Y α ∂

∂uα
= Y I ∂

∂xI
+ Y A ∂

∂yA
=

Y i ∂

∂xi
+ Y î ∂

∂θî
+ Y a ∂

∂ya
+ Y â ∂

∂ζ â

tangent to E in the point u ∈ E is locally represented as

(u, Y ) = (uα, Y α) = (xI , yA, Y I , Y A) =

(x̂i, θî, ŷa, ζ â, Ŷ i, Y î, Ŷ a, Y â).

Definition 1 A nonlinear connection, N-connection, in sv-bundle E is a splitting on
the left of the exact sequence

07−→V E i7−→ TE 7−→TE/V E 7−→0, (2)

i.e. a morphism of vs-bundles N : TE ∈ V E such that N◦i is the identity on V E .

The kernel of the morphism N is called the horizontal subbundle and denoted by
(HE, τE , E). From the exact sequence (2) one follows that N-connection structure
can be equivalently defined as a distribution {Eu → HuE, TuE = HuE⊕VuE} on E
defining a global decomposition, as a Whitney sum,

TE = HE + V E . (3)

To a given N-connection we can associate a covariant s-derivation on M:

5XY = XI{∂Y A

∂xI
+ NA

I (x, Y )}sA, (4)

where sA are local independent sections of E , Y = Y AsA and X = XIsI .
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S-differentiable functions NA
I from (4) written as functions on xI and yA, NA

I (x, y),
are called the coefficients of the N-connection and satisfy these transformation laws
under coordinate transforms (1) in E :

NA′

I′
∂xI′

∂xI
= MA′

A NA
I − ∂MA′

A (x)
∂xI

yA.

If coefficients of a given N-connection are s- differentiable with respect to coor-
dinates yA we can introduce (additionally to covariant nonlinear s-derivation (4)) a
linear covariant s-derivation D̂ (which is a generalization for sv-bundles of the Berwald
connection [44]) given as follows:

D̂( ∂

∂xI )(
∂

∂yA
) = N̂B

AI(
∂

∂yB
), D̂( ∂

∂yA )(
∂

∂yB
) = 0,

where

N̂A
BI(x, y) =

∂NA
I(x, y)

∂yB
(5)

and
N̂A

BC(x, y) = 0.

For a vector field on E Z = ZI ∂
∂xI + Y A ∂

∂yA and B = BA(y) ∂
∂yA being a section

in the vertical s-bundle (V E, τV , E) the linear connection (5) defines s-derivation
(compare with (4)):

D̂ZB = [ZI(
∂BA

∂xI
+ N̂A

BIB
B) + Y B ∂BA

∂yB
]

∂

∂yA
.

Another important characteristic of a N-connection is its curvature:

Ω =
1
2
ΩA

IJdxI ∧ dxJ ⊗ ∂

∂yA

with local coefficients

ΩA
IJ =

∂NA
I

∂xJ
− (−)|IJ| ∂NA

J

∂xI
+ NB

I N̂A
BJ − (−)|IJ|

NB
J N̂A

BI ,

where for simplicity we have written (−)|K||J| = (−)|KJ|
.

We note that linear connections are particular cases of N-connections, when NA
I (x, y)

are parametrized as NA
I (x, y) = KA

BI(x)xIyB , where functions KA
BI(x), defined on M,

are called the Christoffel coefficients.

4 Geometry of the Total Space of a Sv-Bundle

The geometry of the sv- and st-bundles is very rich.It contains a lot of geometrical
objects and properties which could be of great importance in theoretical physics. In
this section we shall present the main results from geometry of total spaces of sv-
bundles.In order to avoid long computations and maintain the geometric meaning the
notion of nonlinear connections will systematically used in a manner generalizing to
s-spaces the classical results [26,27].
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4.1 Distinguished tensors and connections in sv-bundles

In sv-bundle E we can introduce a local basis adapted to the given N-connection:

δα =
δ

δuα
= (δI =

δ

δxI
= ∂I − NA

I (x, y)
∂

∂yA
, ∂A), (6)

where ∂I = ∂
∂xI and ∂A = ∂

∂yA are usual partial s-derivations. The dual to (6) basis
is defined as

δα = δuα =

(δI = δxI = dxI , δA = δyA = dyA + NA
I (x, y)dxI). (7)

By using adapted bases (6) and (7) one introduces algebra DT (E) of distinguished
tensor s-fields (ds-fields, ds-tensors, ds-objects) on E , T = T pr

qs , which is equivalent
to the tensor algebra of sv-bundle πd : HE⊕V E→E , hereafter briefly denoted as Ed.

An element Q∈T pr
qs , , ds-field of type

(
p r
q s

)
, can be written in local form as

Q = Q
I1...IpA1...Ar

J1...JqB1...Bs
(x, y)δI1 ⊗ . . . ⊗ δIp ⊗ dxJ1 ⊗ . . .⊗

dxJq ⊗ ∂A1 ⊗ . . . ⊗ ∂Ar ⊗ δyB1 ⊗ . . . ⊗ δyBs . (8)

In addition to ds-tensors we can introduce ds-objects with various s-group and
coordinate transforms adapted to global splitting (3).

Definition 2 A linear distinguished connection, d- connection, in sv- bundle E is a
linear connection D on E which preserves by parallelism the horizontal and vertical
distributions in E .

By a linear connection of a s-manifold we understand a linear connection in its
tangent bundle.

Let denote by Ξ(M) and Ξ(E), respectively, the modules of vector fields on s-
manifold M and sv-bundle E and by F(M) and F(E), respectively, the s-modules of
functions on M and on E .

It is clear that for a given global splitting into horizontal and vertical s-subbundles
(3) we can associate operators of horizontal and vertical covariant derivations (h- and
v-derivations, denoted respectively as D(h) and D(v)) with properties:

DXY = (XD)Y = DhXY + DvXY,

where
D

(h)
X Y = DhXY, D

(h)
X f = (hX)f

and
D

(v)
X Y = DvXY, D

(v)
X f = (vX)f,

for every f ∈ F(M) with decomposition of vectors X,Y ∈ Ξ(E) into horizontal and
vertical parts, X = hX + vX and Y = hY + vY.
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The local coefficients of a d- connection D in E with respect to the local adapted
frame (6) separate into four groups. We introduce local coefficients (LI

JK(u), LA
BK(u))

of D(h) such that

D
(h)

( δ

δxK )

δ

δxJ
= LI

JK(u)
δ

δxI
,

D
(h)

( δ

δxK )

∂

∂yB
= LA

BK(u)
∂

∂yA
,

D
(h)

( δ

δxk )
f =

δf

δxK
=

∂f

∂xK
− NA

K(u)
∂f

∂yA
,

and local coefficients (CI
JC(u), CA

BC(u)) such that

D
(v)

( ∂

∂yC )

δ

δxJ
= CI

JC(u)
δ

δxI
, D

(v)

( ∂

∂yC )

∂

∂yB
= CA

BC
∂

∂yA
,

D
(v)

( ∂

∂yC )
f =

∂f

∂yC
,

where f ∈ F(E). The covariant d-derivation along vector X = XI δ
δxI + Y A ∂

∂yA of a

ds-tensor field Q of type
(

p r
q s

)
, see (8), can be written as

DXQ = D
(h)
X Q + D

(v)
X Q,

where h-covariant derivative is defined as

D
(h)
X Q = XKQIA

JB|KδI⊗∂A⊗dxI⊗δyA,

with components

QIA
JB|K =

δQIA
JB

δxK
+ LI

HKQHA
JB + LA

CKW IC
JB − LH

JKW IA
HB − LC

BKW IA
JC ,

and v-covariant derivative is defined as

D
(v)
X Q = XCQIA

JB⊥CδI⊗∂A⊗dxI⊗δyB ,

with components

QIA
JB⊥C =

∂QIA
JB

∂yC
+ CI

HCQHA
JB + CA

DCQID
JB − CH

JCQIA
HB − CD

BCQIA
JD.

The above presented formulas show that

DΓ = (L, L̃, C̃, C) =

(LA
JK(u), LA

BK(u), CI
JA(u), CA

BC(u))
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are the local coefficients of the d-connection D with respect to the local frame ( δ
δxI , ∂

∂ya ).
If a change (1) of local coordinates on E is performed, by using the law of transfor-
mation of local frames under it

( δα = (δI , ∂A) 7−→ δα′ = (δI′ , ∂A′), (9)

where

δI′ =
∂xI

∂xI′ δI , ∂A′ = MA
A′(x)∂A ),

we obtain the following transformation laws of the local coefficients of a d-connection:

LI′

J ′K′ =
∂xI′

∂xI

∂xJ

∂xJ′

∂xK

∂xK′ L
I
JK +

∂xI′

∂xK

∂2xK

∂xJ ′∂xK′ , (10)

LA′

B′K′ = MA′

A MB
B′

∂xK

∂xK′ L
A

BK + MA′

C

∂MC
B′

∂xK′ ,

and

CI′

J′C′ =
∂xI′

∂xI

∂xJ

∂xJ ′ M
C
C′CI

JC , CA′

B′C′ = MA′

A MB
B′MC

C′CA
BC .

As in the usual case of tensor calculus on locally isotropic spaces the transformation
laws (10) for d-connections differ from those for ds-tensors, which are written (for
instance, we consider transformation laws for ds-tensor (8)) as

Q
I′
1...A′

1...

J′
1...B′

1... =
∂xI′

1

∂xI1
. . .M

A′
1

A1
. . .

∂xJ1

∂xJ ′
1
. . .MB1

B′
1
. . .QI1...A1...

J1...B1....

We note that defined distinguished s-tensor algebra and d-covariant calculus in sv-
bundles provided with N-connection structure is a supersymmetric generalization of
the corresponding formalism for usual vector bundles presented in [26,27]. To obtain
Miron and Anastasiei local formulas we have to restrict us with even components of
geometric objects by changing, formally, capital indices (I, J,K, ...) into (i, j, k, a, ..)
and s-derivation and s-commutation rules into those for real number fields on usual
manifolds. For brevity, in this work we shall omit proofs and cumbersome computa-
tions if they will be simple supersymmetric generalizations of those presented in the
just cited monographs.

4.2 Torsion and curvature of the distinguished connection in
sv-bundle

Let E = (E, πE ,M) be a sv–bundle endowed with N-connection and d-connection
structures. The torsion of d-connection is introduced into usual manner:

T (X,Y ) = [X,DY } − [X,Y }, X, Y ⊂Ξ(M).

The following decomposition is possible by using h– and v–projections (associated to
N):

T (X,Y ) = T (hX, hY ) + T (hX, vY ) + T (vX, hX) + T (vX, vY ).
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Taking into account the skewsupersymmetry of T and the equation h[vX, vY } = 0 we
can verify that the torsion of a d-connection is completely determined by the following
ds-tensor fields:

hT (hX, hY ) = [X(D(h)h)Y } − h[hX, hY },

vT (hX, hY ) = −v[hX, hY },

hT (hX, vY ) = −D
(v)
Y hX − h[hX, vY },

vT (hX, vY ) = D
(h)
X vY − v[hX, vY },

vT (vX, xY ) = [X(D(v)v)Y } − v[vX, vY },

where X,Y ∈ Ξ(E). In order to get the local form of the ds-tensor fields which
determine the torsion of d-connection DΓ (the torsions of DΓ) we use equations

[
δ

δxJ
,

δ

δxK
} = RA

JK
∂

∂yA
,

where

RA
JK =

δNA
J

δxK
− (−)|KJ| δN

A
K

δxJ
,

[
δ

δxJ
,

∂

∂yA
} =

∂NA
J

∂yB

∂

∂yA
,

and introduce notations

hT (
δ

δxK
,

δ

δxJ
) = T I

JK
δ

δxI
, vT (

δ

δxK
,

δ

δxJ
) = T̃A

JK

∂

∂yA
, (11)

hT (
∂

∂yA
,

∂

∂xJ
) = P̃ I

JB

δ

δxI
, vT (

∂

∂yB
,

δ

δxJ
) = PA

JB
∂

∂yA
,

vT (
∂

∂yB
,

∂

∂yB
) = SA

BC
∂

∂yA
.

Now we can compute the local components of the torsions, introduced in (11),
with respect to the frame ( δ

δx , ∂
∂y ), of a d-connection DΓ = (L, L̃, C̃, C) :

T I
JK = LI

JK − (−)|JK|
LI

KJ , T̃A
JK = RA

JK , P̃ I
JB = CI

JB , (12)

PA
JB =

∂NA
J

∂yB
− LA

BJ , SA
BC = CA

BC − (−)|BC|
CA

CB .

The even and odd components of torsions (12) can be specified in explicit form by
using decompositions of indices into even and odd parts (I = (i, î), J = (j, ĵ), ..), for
instance,

T i
jk = Li

jk − Li
kj , T i

jk̂ = Li
jk̂ + Li

k̂j ,

T î
jk = Lî

jk − Lî
kj , . . .,
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and so on.
Another important characteristic of a d-connection DΓ is its curvature:

R(X,Y )Z = D[XDY } − D[X,Y }Z,

where X,Y, Z ∈ Ξ(E). By using h- and v-projections we can prove that

vR(X,Y )hZ = 0, hR(X,Y )vZ = 0 (13)

and
R(X,Y )Z = hR(X,Y )hZ + vR(X,Y )vZ,

where X,Y, Z ∈ Ξ(E). Taking into account properties (13) and the equation
R(X,Y ) = −(−)|XY |

R(Y,X) we prove that the curvature of a d-connection D in the
total space of a sv-bundle E is completely determined by the following six ds-tensor
fields:

R(hX, hY )hZ = (D(h)
[X D

(h)
Y } − D

(h)
[hX,hY } − D

(v)
[hX,hY })hZ, (14)

R(hX, hY )vZ = (D(h)
[X D

(h)
Y } − D

(h)
[hX,hY } − D

(v)
[hX,hY })vZ,

R(vX, hY )hZ = (D(v)
[X D

(h)
Y } − D

(h)
[vX,hY } − D

(v)
[vX,hY })hZ,

R(vX, hY )vZ = (D(v)
[X D

(h)
Y } − D

(h)
[vX,hY } − D

(v)
[vX,hY })vZ,

R(vX, vY )hZ = (D(v)
[X D

(v)
Y } − D

(v)
[vX,vY })hZ,

R(vX, vY )vZ = (D(v)
[X D

(v)
Y } − D

(v)
[vX,vY })vZ,

where
D

(h)
[X D

(h)
Y } = D

(h)
X D

(h)
Y − (−)|XY |

D
(h)
Y D

(h)
X ,

D
(h)
[X D

(v)
Y } = D

(h)
X D

(v)
Y − (−)|XY |

D
(v)
Y D

(h)
X

and
D

(v)
[X D

(h)
Y } = D

(v)
X D

(h)
Y − (−)|XY |

D
(h)
Y D

(v)
X .

We introduce the local components of ds-tensor fields (14) as follows:

R(δK , δJ)δH = RH
I
JKδI , R(δK , δJ)∂B = R̃·A

B·JK∂A, (15)

R(∂C , δK)δJ = P̃ ·I
J·KCδI , R(∂C , δK)∂B = PB

A
KC∂A,

R(∂C , ∂B)δJ = S̃·I
J·BCδI , R(∂D, ∂C)∂B = SB

A
CD∂A.

Putting the components of a d-connection DΓ = (L, L̃, C̃, C) in (15), by a direct com-
putation, we obtain these locally adapted components of the curvature (curvatures):

RH
I
JK = δKLI

HJ−(−)|KJ|
δJLI

HK+LM
HJLI

MK−(−)|KJ|
LM

HKLI
MJ+CI

HARA
JK ,

R̃·A
B·JK = δKLA

BJ−(−)|KJ|
δJLA

BK+LC
BJLA

CK−(−)|KJ|
LC

BKLA
KJ+CA

BCRC
JK ,
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P̃ ·I
J·KA = ∂ALI

JK − CI
JA|K + CI

JBPB
KA, (16)

PB
A

KC = ∂CLA
BK − CA

BC|K + CA
BDPD

KC ,

S̃·I
J·BC = ∂CCI

JB − (−)|BC|
∂BCI

JC + CH
JBCI

HC − (−)|BC|
CH

JCCI
HB ,

SB
A

CD = ∂DCA
BC − (−)|CD|

∂CCA
BD + CE

BCCA
ED − (−)|CD|

CE
BDCA

EC .

We can also compute even and odd components of curvatures (16) by splitting
indices into even and odd parts, for instance,

Rh
i
jk = δkLi

hj − δjL
i
hk + Lm

hjL
i
mk − Lm

hkLi
mj + Ci

haRa
jk,

Rh
i
jk̂ = δk̂Li

hj + δjL
i
hk̂ + Lm

hjL
i
mk̂ + Lm

hk̂Li
mj + Ci

haRa
jk̂ , . . ..

(we omit the formulas for the rest of even–odd components of curvatures because we
shall not use them in this work).

4.3 Bianchi and Ricci Identities for d-Connections in
SV–Bundles

The torsion and curvature of every linear connection D on sv-bundle satisfy the
following generalized Bianchi identities:∑

SC

[(DXT )(Y,Z) − R(X,Y )Z + T (T (X,Y ), Z)] = 0,

∑
SC

[(DXR)(U, Y, Z) + R(T (X,Y )Z)U ] = 0, (17)

where
∑

SC means the respective supersymmretric cyclic sum over X,Y, Z and U. If
D is a d-connection, then by using (13) and

v(DXR)(U, Y, hZ) = 0, h(DXR(U, Y, vZ) = 0,

the identities (17) become∑
SC

[h(DXT )(Y,Z) − hR(X,Y )Z + hT (hT (X,Y ), Z) + hT (vT (X,Y ), Z)] = 0,

∑
SC

[v(DXT )(Y,Z) − vR(X,Y )Z + vT (hT (X,Y ), Z) + vT (vT (X,Y ), Z)] = 0,

∑
SC

[h(DXR)(U, Y, Z) + hR(hT (X,Y ), Z)U + hR(vT (X,Y ), Z)U ] = 0,

∑
SC

[v(DXR)(U, Y, Z) + vR(hT (X,Y ), Z)U + vR(vT (X,Y ), Z)U ] = 0. (18)

In order to get the local adapted form of these identities we insert in (18) these
necessary values of triples (X,Y, Z),( = (δJ , δK , δL), or (∂D, ∂C , ∂B),) and putting
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successively U = δH and U = ∂A. Taking into account (11),(12) and (14),(15) we
obtain: ∑

SC[L,K,J}

[T I
JK|H + TM

JKT J
HM + RA

JKCI
HA − RJ

I
KH ] = 0,

∑
SC[L,K,J}

[RA
JK|H + TM

JKRA
HM + RB

JKPA
HB ] = 0, (19)

CI
JB|K − (−)|JK|

CI
KB|J − T I

JK|B + CM
JBT I

KM − (−)|JK|
CM

KBT I
JM+

TM
JKCI

MB + PD
JBCI

KD − (−)|KJ|
PD

KBCI
JD + PJ

I
KB − (−)|KJ|

PK
I
JB = 0,

PA
JB|K − (−)|KJ|

PA
KB|J − RA

JK⊥B + CM
JBRA

KM − (−)|KJ|
CM

KBRA
JM+

TM
JKPA

MB + PD
JBPA

KD − (−)|KJ|
PD

KBPA
JD − RD

JKSA
BD + R̃·A

B·JK = 0,

CI
JB⊥C − (−)|BC|

CI
JC⊥B + CM

JCCI
MB − (−)|BC|

CM
JBCI

MC+

SD
BCCI

JD − S̃·I
J·BC = 0,

PA
JB⊥C − (−)|BC|

PA
JC⊥B + SA

BC|J + CM
JCPA

MB − (−)|BC|
CM

JBPA
MC+

PD
JBSA

CD − (−)|CB|
PD

JCSA
BD + SD

BCPA
JD + PB

A
JC − (−)|CB|

PC
A

JB = 0,∑
SC[B,C,D}

[SA
BC⊥D + SF

BCSA
DF − SB

A
CD] = 0,

∑
SC[H,J,L}

[RK
I
HJ|L − TM

HJRK
I
LM − RA

HJ P̃ ·I
K·LA] = 0,

∑
SC[H,J,L}

[R̃·A
D·HJ|L − TM

HJ R̃·A
D·LM − RC

HJPD
A

LC ] = 0,

P̃ ·I
K·JD|L − (−)|LJ|

P̃ ·I
K·LD|J + RK

I
LJ⊥D + CM

LDRK
I
JM − (−)|LJ|

CM
JDRK

I
LM−

TM
JLP̃ ·I

K·MD + PA
LDP̃ ·I

K·JA − (−)|LJ|
PA

JDP̃ ·I
K·LA − RA

JLS̃·I
K·AD = 0,

PC
A

JD|L − (−)|LJ|
PC

A
LD|J + R̃·A

C·LJ|D + CM
LDRC

A
JM − (−)|LJ|

CM
JDRC

A
LM−

TM
JLPC

A
MD + PF

LDPC
A

JF − (−)|LJ|
PF

JDPC
A

LF − RF
JLSC

A
FD = 0,

P̃ ·I
K·JD⊥C − (−)|CD|

P̃ ·I
K·JC⊥D + SK

I
DC|J + CM

JDP̃ ·I
K·MC − (−)|CD|

CM
JC P̃ ·I

K·MD+

PA
JC S̃·I

K·DA − (−)|CD|
PA

JDS̃·I
K·CA + SA

CDP̃ ·I
K·JA = 0,

PB
A

JD⊥C−(−)|CD|
PB

A
JC⊥D +SB

A
CD|J +CM

JDPB
A

MC−(−)|CD|
CM

JCPB
A

MD+

PF
JCSB

A
DF − (−)|CD|

PF
JDSB

A
CF + SF

CDPB
A

JF = 0,∑
SC[B,C,D}

[SK
I
BC⊥D − SA

BC S̃·I
K·DA] = 0,
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∑
SC[B,C,D}

[SF
A

BC⊥D − SE
BCSF

A
DE ] = 0,

where, for instanse,
∑

SC[B,C,D} means the supersymmetric cyclic sum over indices
B,C,D.

Identities (19) can be detailed for even and odd components of d-connection,
torsion and curvature and become very simple if T I

JK = 0 and SA
BC = 0, .

As a consequence of a corresponding arrangement of (14) we obtain the Ricci
identities (for simplicity we establish them only for ds-vector fields, although they
may be written for every ds-tensor field):

D
(h)
[X D

(h)
Y }hZ = R(hX, hY )hZ + D

(h)
[hX,hY }hZ + D

(v)
[hX,hY }hZ, (20)

D
(v)
[X D

(h)
Y }hZ = R(vX, hY )hZ + D

(h)
[vX,hY }hZ + D

(v)
[vX,hY }hZ,

D
(v)
[X D

(v)
Y }hZ = R(vX, vY )hZ + D

(v)
[vX,vY }hZ

and

D
(h)
[X D

(h)
Y }vZ = R(hX, hY )vZ + D

(h)
[hX,hY }vZ + D

(v)
[hX,hY }vZ, (21)

D
(v)
[X D

(h)
Y }vZ = R(vX, hY )vZ + D

(v)
[vX,hY }vZ + D

(v)
[vX,hY }vZ,

D
(v)
[X D

(v)
Y }vZ = R(vX, vY )vZ + D

(v)
[vX,vY }vZ.

Considering X = XI(u) δ
δxI + XA(u) ∂

∂yA and taking into account the local form of
the h- and v-covariant s-derivatives and (11),(12),(14),(15) we can express respectively
identities (20) and (21) in this form:

XA
|K|L − (−)|KL|

XA
|L|K = RB

A
KLXB − TH

KLXA
|H − RB

KLXA
⊥B ,

XI
|K⊥D − (−)|KD|

XI
⊥D|K = P̃ ·I

H·KDXH − CH
KDXI

|H − PA
KDXI

⊥A,

XI
⊥B⊥C − (−)|BC|

XI
⊥C⊥B = S̃·I

H·BCXH − SA
BCXI

⊥A

and

XA
|K|L − (−)|KL|

XA
|L|K = RB

A
KLXB − TH

KLXA
|H − RB

KLXA
⊥B ,

XA
|K⊥B − (−)|BK|

XA
⊥B|K = PB

A
KCXC − CH

KBXA
|H − PD

KBXA
⊥D,

XA
⊥B⊥C − (−)|CB|

XA
⊥C⊥B = SD

A
BCXD − SD

BCXA
⊥D.
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4.4 Structure Equations of a d-Connection in a VS-Bundle

Let, for instance, consider ds-tensor field:

t = tIAδI⊗δA.

We introduce the so-called d-connection 1-forms ωI
J and ω̃A

B as

Dt = (DtIA)δI⊗δA

with
DtIA = dtIA + ωI

J tJA − ω̃B
A tIB = tIA|JdxJ + tIA⊥BδyB .

For the d-connection 1-forms of a d-connection D on E defined by ωI
J and ω̃A

B one
holds the following structure equations:

d(dI) − dH ∧ ωI
H = −Ω,

d(δA) − δB ∧ ω̃A
B = −Ω̃A,

dωI
J − ωH

J ∧ ωI
H = −ΩI

J ,

dω̃A
B − ω̃C

B ∧ ω̃A
C = −Ω̃A

B ,

in which the torsion 2-forms ΩI and Ω̃A are given respectively by formulas:

ΩI =
1
2
T I

JKdJ ∧ dK +
1
2
CI

JKdJ ∧ δC ,

Ω̃A =
1
2
RA

JKdJ ∧ dK +
1
2
PA

JCdJ ∧ δC +
1
2
SA

BCδB ∧ δC ,

and
ΩI

J =
1
2
RJ

I
KHdK ∧ dH +

1
2
P̃ ·I

J·KCdK ∧ δC +
1
2
S̃·I

J·KCδB ∧ δC ,

Ω̃A
B =

1
2
R̃·A

B·KHdK ∧ dH +
1
2
PB

A
KCdK ∧ δC +

1
2
SB

A
CDδC ∧ δD.

We have defined the exterior product on s-space to satisfy the property
δα ∧ δβ = −(−)|αβ|

δβ ∧ δα.

4.5 Metric Structure of the Total Spase of a SV–Bundle

We consider the base M of a vs-bundle E = (E, πE ,M) to be a connected and para-
compact s-manifold.

Definition 3 A metric structure on the total space E of a vs-bundle E is a supersym-
metric, second order, covariant s-tensor field G which in every point u ∈ E is given
by nondegenerate s-matrix Gαβ = G(∂α, ∂α) (with nonvanishing superdeterminant,
sdetG 6= 0).
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Similarly as for usual vector bundles [26,27] we establish this concordance between
metric and N-connection structures on E :

G(δI , ∂A) = 0,

or,in consequence,
GIA − NB

I hAB = 0, (22)

where
GIA = G(∂I , ∂A),

which gives
NB

I = hBAGIA,

where matrix hAB is inverse to matrix hAB = G(∂A, ∂B). Thus, in this case, the
coefficients of N-connection NA

B (u) are uniquely determined by the components of
the metric on E .

If the equality (22) holds, the metric on E decomposes as

G(X,Y ) = G(hX, hY ) + G(vX, vY ), X, Y ∈ Ξ(E),

and looks locally as
G = gαβ(u)δα ⊗ δβ =

gIJdI ⊗ dJ + hABδA ⊗ δB . (23)

Definition 4 A d-connection D on E is metric, or compatible with metric G, if con-
ditions

DαGβγ = 0

are satisfied.

We can prove that a d-connection D on E provided with a metric G is a metric
d-connection if and only if

D
(h)
X (hG) = 0, D

(h)
X (vG) = 0, D

(v)
X (hG) = 0, D

(v)
X (vG) = 0, (24)

for every X ∈ Ξ(E). Conditions (24) are written in locally adapted form as

gIJ|K = 0, gIJ⊥A = 0, hAB|K = 0, hAB⊥C = 0.

In the total space E of sv-bundle E endowed with a mertic G given by (23)
one exists a metric d-connection depending only on components of G-metric and
N-connection called the canonical d-connection associated to G. Its local coefficients
CΓ = (L̀I

JK , L̀A
BK , C̀I

JC , C̀A
BC) are as follows:

L̀I
JK =

1
2
gIH(δKgHJ + δJgHK − δHgJK),

L̀A
BK = ∂BNA

K +
1
2
hAC [δKhBC − (∂BND

K )hDC − (∂CND
K )hDB ], (25)
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C̀I
JC =

1
2
gIK∂CgJK ,

C̀A
BC =

1
2
hAD(∂ChDB + ∂BhDC − ∂DhBC).

We point out that, in general, the torsion of CΓ–connection (25) das not vanish (see
formulas (12)).

It is very important to note that on sv-bundles provided with N-connection and
d-connection and metric structures realy it is defined a multiconnection d-structure,
i.e. we can use in an equivalent geometric manner different variants of d- connections
with various properties. For example, for modeling of some physical processes we can
use the Berwald type d–connection (see (5))

BΓ = (LI
JK , ∂BNA

K , 0, CA
BC), (26)

where LI
JK = L̀I

JK and CA
BC = C̀A

BC , which is hv-metric, i.e. satisfies conditions:

D
(h)
X hG = 0

and
D

(v)
X vG = 0,

for every X ∈ Ξ(E), or in locally adapted coordinates,

gIJ|K = 0

and
hAB⊥C = 0.

As well we can introduce the Levi-Civita connection

{ α

βγ
} =

1
2
Gαβ(∂βGτγ + ∂γGτβ − ∂τGβγ),

constructed as in the Riemann geometry from components of metric Gαβ by using
partial derivations ∂α = ∂

∂uα = ( ∂
∂xI , ∂

∂yA ) which is metric but not a d-connection.
Another metric d-connection can be defined as

Γ̃α
βγ =

1
2
Gατ (δβGτγ + δγGτβ − δτGβγ), (27)

with components CΓ̃ = (LI
JK , 0, 0, CA

BC), where coefficients LI
JK and CA

BC are
computed as in formulas (26). We call the coefficients (27) the generalized Christofell
symbols on vs-bundle E .

For our further considerations it is useful to express arbitrary d-connection as a
deformation of the background d-connection (26):

Γα
βγ = Γ̃α

·βγ + Pα
βγ , (28)
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where Pα
βγ is called the deformation ds-tensor. Putting splitting (29) into (12) and

(16) we can express torsion Tα
βγ and curvature Rβ

α
γδ of a d-connection Γα

βγ as
respective deformations of torsion T̃α

βγ and torsion R̃·α
β·γδ for connection Γ̃α

βγ :

Tα
βγ = T̃α

·βγ + T̈α
·βγ (29)

and
Rβ

α
γδ = R̃·α

β·γδ + R̈·α
β·γδ, (30)

where
T̃α

βγ = Γ̃α
βγ − (−)|βγ|Γ̃α

γβ + wα
γδ, T̈α

βγ = Γ̈α
βγ − (−)|βγ|Γ̈α

γβ ,

and

R̃·α
β·γδ = δδΓ̃α

βγ − (−)|γδ|
δγΓ̃α

βδ + Γ̃ϕ
βγΓ̃α

ϕδ − (−)|γδ|Γ̃ϕ
βδΓ̃

α
ϕγ + Γ̃α

βϕwϕ
γδ,

R̈·α
β·γδ = D̃δP

α
βγ − (−)|γδ|

D̃γPα
βδ + Pϕ

βγPα
ϕδ − (−)|γδ|

Pϕ
βδP

α
ϕγ + Pα

βϕwϕ
γδ,

the nonholonomy coefficients wα
βγ are defined as

[δα, δβ} = δαδβ − (−)αβ
δβδα = wτ

αβδτ .

Finally, in this section we remark that if from geometric point of view all considered
d-connections are ”equal in rights” , the construction of physical models on la-spaces
requires an explicit fixing of the type of d-connection and metric structures.

5 Supersymmetric Generalized Lagrange Spaces

Let us fix our attention to the st-bundle TM.The aim of this section is to formulate
some results in the supergeometry of TM and to use them in order to develop the
geometry of Finsler and Lagrange superspaces (classical and new approaches to Finsler
geometry, its generalizations and applications in physics are contained,for example,
in [20-30].

All presented in the previous section basic results on sv-bundles provided with
N-connection, d-connection and metric structures hold good for TM. In this case the
dimension of the base space and typical fibre coincides and we can write locally, for
instance, s-vectors as

X = XIδI + Y I∂I = XIδI + Y (I)∂(I),

where uα = (xI , yJ) = (xI , y(J)).
On st-bundles we can define a global map

J : Ξ(TM) → Ξ(TM) (31)

which does not depend on N-connection structure:

J(
δ

δxI
) =

∂

∂yI
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and
J(

∂

∂yI
) = 0.

This endomorphism is called the natural (or canonical) almost tangent structure on
TM ; it has the properties:

1)J2 = 0, 2)ImJ = KerJ = V TM

and 3) the Nigenhuis s-tensor,

NJ(X,Y ) = [JX, JY } − J [JX, Y } − J [X,JY ]

(X,Y ∈ Ξ(TN))

identically vanishes, i.e. the natural almost tangent structure J on TM is integrable.

5.1 Notions of Generalized Lagrange, Lagrange and Finsler
Superspaces

Let M be a supersmooth (n+m)-dimensional s-manifold and (TM, τ,M) its st-bundle.
The metric of type gij(x, y) was introduced by P.Finsler as a generalization of that
for Riemannian spaces. Variables y = (yi) can be interpreted as parameters of local
anisotropy or of fluctuations in nonhomogeneous and turbulent media. The most
general form of metrics with local anisotropy have been recently studied in the frame
of the so-called generalized Lagrange geometry (GL-geometry, the geometry of GL-
spaces) [26,27]. For s-spaces we introduce this

Definition 5 A generalized Lagrange superspace, GLS– space, is a pair
GLn,m = (M, gIJ (x, y)), where gIJ (x, y) is a ds– tensor field on
T̃M = TM − {0}, supersymmetric of superrank (n, m).

We call gIJ as the fundamental ds-tensor, or metric ds-tensor, of GLS-space. In
this work we shall not intrioduce a supersymmetric notion of signature in order to
be able to consider physical models with variable signature on the even part of the
s-spaces.

It is well known that if M is a paracompact s-manifold there exists at least a
nonlinear connection in the its tangent bundle. Thus it is quite natural to fix a
nonlinear connection N in TM and to relate it to gIJ(x, y), by using equations (22)
written on TM. For simplicity, we can consider N-connection with vanishing torsion,
when

∂KN I
J − (−)|JK|

∂JN I
K = 0.

Let denote a normal d-connection, defined by using N and adapted to the almost
tangent structure (31) as DΓ = (LA

JK , CA
JK). This d-connection is compatible with

metric gIJ(x, y) if gIJ|K = 0 and gIJ⊥K = 0.
There exists an unique d-connection CΓ(N) which is compatible with gIJ(u) and

has vanishing torsions T I
JK and SI

JK (see formulas (12) rewritten for st-bundles).
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This connection, depending only on gIJ(u) and N I
J (u) is called the canonical metric

d-connection of GLS-space. It has coefficients

LI
JK =

1
2
gIH(δJgHK + δHgJK − δHgJK), (32)

CI
JK =

1
2
gIH(∂JgHK + ∂HgJK − ∂HgJK).

Of course, metric d-connections different from CΓ(N) may be found. For instance,
there is a unique normal d-connection DΓ(N) = (L̄I

·JK , C̄I
·JK) which is metric and has

a priori given torsions T I
JK and SI

JK . The coefficients of DΓ(N) are the following
ones:

L̄I
·JK = LI

JK − 1
2
gIH(gJRTR

HK + gKRTR
HJ − gHRTR

KJ),

C̄I
·JK = CI

JK − 1
2
gIH(gJRSR

HK + gKRSR
HJ − gHRSR

KJ),

where LI
JK and CI

JK are the same as for the CΓ(N)–connection (32).
The Lagrange spaces were introduced [46] in order to geometrize the concept of

Lagrangian in mechanics. The Lagrange geometry is studied in details in [26,27]. For
s-spaces we present this generalization:

Definition 6 A Lagrange s-space, LS-space, Ln,m = (M, gIJ), is defined as a partic-
ular case of GLS-space when the ds-metric on M can be expressed as

gIJ(u) =
1
2

∂2L
∂yI∂yJ

, (33)

where L : TM → Λ, is a s-differentiable function called a s-Lagrangian on M.

Now we consider the supersymmetric extension of the Finsler space:
A Finsler s-metric on M is a function FS : TM → Λ having the properties:
1. The restriction of FS to ˜TM = TM \ {0} is of the class G∞ and F is only

supersmooth on the image of the null cross–section in the st-bundle to M.
2. The restriction of F to ˜TM is positively homogeneous of degree 1 with respect

to (yI), i.e. F (x, λy) = λF (x, y), where λ is a real positive number.
3. The restriction of F to the even subspace of ˜TM is a positive function.
4. The quadratic form on Λn,m with the coefficients

gIJ (u) =
1
2

∂2F 2

∂yI∂yJ
(34)

defined on ˜TM is nondegenerate.

Definition 7 A pair Fn,m = (M,F ) which consists from a supersmooth s-manifold
M and a Finsler s-metric is called a Finsler superspace, FS-space.
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It’s obvious that FS-spaces form a particular class of LS-spaces with s-Lagrangian
L = F 2 and a particular class of GLS-spaces with metrics of type (34).

For a FS-space we can introduce the supersymmetric variant of nonlinear Cartan
connection [24,25]:

N I
J (x, y) =

∂

∂yJ
G∗I ,

where

G∗I =
1
4
g∗IJ(

∂2ε

∂yI∂xK
yK − ∂ε

∂xJ
), ε(u) = gIJ(u)yIyJ ,

and g∗IJ is inverse to g∗IJ (u) = 1
2

∂2ε
∂yI∂yJ . In this case the coefficients of canonical metric

d-connection (32) gives the supersymmetric variants of coefficients of the Cartan
connection of Finsler spaces. A similar remark applies to the Lagrange superspaces.

5.2 The Supersymmetric Almost Hermitian Model of the GLS–
Space

Consider a GLS–space endowed with the canonical metric d-connection CΓ(N). Let
δα = (δα, ∂̇I) be a usual adapted frame (6) on TM and δα = (∂I , δ̇I) its dual. The
linear operator

F : Ξ( ˜TM) → Ξ( ˜TM),

acting on δα by F (δI = −∂̇I , F (∂̇I) = δI , defines an almost complex structure on
˙TM. We shall obtain a complex structure if and only if the even component of the

horizontal distribution N is integrable. For s-spaces, in general with even and odd
components, we write the supersymmetric almost Hermitian property (almost Her-
mitian s-structure) as

Fα
β F β

δ = −(−)|αδ|
δα
β .

The s-metric gIJ (x, y) on GLS-spaces induces on ˙TM the following metric:

G = gIJ(u)dxI ⊗ dxJ + gIJ(u)δyI ⊗ δyJ . (35)

We can verify that pair (G,F ) is an almost Hermitian s-structure on ˙TM with the
associated supersymmetric 2-form

θ = gIJ(x, y)δyI ∧ dxJ .

The almost Hermitian s-space H2n,2m
S = (TM,G,F ), provided with a metric of

type (35) is called the lift on TM, or the almost Hermitian s-model, of GLS-space
GLn,m. We say that a linear connection D on ˙TM is almost Hermitian supersymmetric
of Lagrange type if it preserves by parallelism the vertical distribution V and is
compatible with the almost Hermitian s-structure (G,F ), i.e.

DXG = 0, DXF = 0, (36)

for every X ∈ Ξ(TM).
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There exists an unique almost Hermitian connection of Lagrange type D(c) having
h(hh)- and v(vv)–torsions equal to zero. We can prove (similarly as in [26,27]) that
coefficients (LI

JK , CI
JK) of D(c) in the adapted basis (δI , δ̇J) are just the coefficients

(32) of the canonical metric d-connection CΓ(N) of the GLS-space GL(n,m). Inversely
, we can say that CΓ(N)–connection determines on ˜TN and supersymmetric almost
Hermitian connection of Lagrange type with vanishing h(hh)- and v(vv)-torsions. If
instead of GLs-space metric gIJ in (34) the Lagrange (or Finsler) s-metric (32) (or
(33)) is taken, we obtain the almost Hermitian s-model of Lagrange (or Finsler) s-
spaces Ln,m (or Fn,m).

We note that the natural compatibility conditions (36) for the metric (35) and
CΓ(N)–connections on H2n,2m–spaces plays an important role for developing physical
models on la–superspaces. In the case of usual locally anisotropic spaces geometric
constructions and d–covariant calculus are very similar to those for the Riemann and
Einstein–Cartan spaces. This is exploited for formulation in a selfconsistent manner
the theory of spinors on la-spaces [35], for introducing a geometric background for
locally anisotropic Yang–Mills and gauge like gravitational interactions [31,32] and
for extending the theory of stochastic processes and diffusion to the case of locally
anisotropic spaces and interactions on such spaces [47]. In a similar manner we shall
use in this work N–lifts to sv- and st-bundles in order to investigate supergravitational
la–models.

6 Supergravity on Locally Anisotropic Superspaces

In this section we shall introduce a set of Einstein and (equivalent in our case) gauge
like gravitational equations, i.e. we shall formulate two variants of la–supergravity,
on the total space E of a sv-bundle E over a supersmooth manifold M. The first
model will be a variant of locally anisotropic supergravity theory generalizing the
Miron and Anastasiei model [26,27] on vector bundles (they considered prescribed
components of N-connection and h(hh)- and v(vv)–torsions, in our approach we shall
introduce algebraic equations for torsion and its source). The second model will be a
la–supersymmetric extension of constructions for gauge la-gravity [31,32] and affine–
gauge interpretation of the Einstein gravity [55,56]. There are two ways in developing
supergravitational models. We can try to maintain similarity to Einstein’s general rel-
ativity (see in [48,49] an example of locally isotropic supergravity) and to formulate a
variant of Einstein–Cartan theory on sv–bundles, this will be the aim of the subsection
A, or to introduce into consideration supervielbein variables and to formulate a super-
symmetric gauge like model of la-supergravity (this approach is more accepted in the
usual locally isotropic supergravity, see as a review [45]). The last variant will be anal-
ysed in subsection B by using the s-bundle of supersymmetric affine adapted frames
on la-superspaces. For both models of la–supergravity we shall consider the matter
field contributions as giving rise to corresponding sources in la-supergravitational field
equations. A detailed study of supersymmetric of la–gravitational and matter fields
is a matter of our further investigations [58].
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6.1 Einstein–Cartan Equations on SV–Bundles

Let consider a sv–bundle E = (E, π,M) provided with some compatible nonlinear
connection N, d–connection D and metric G structures.For a locally N-adapted frame
we write

D( δ
δuγ )

δ

δuβ
= Γα

βγ

δ

δuα
,

where the d-connection D has the following coefficients:

ΓI
JK = LI

JK , ΓI
JA = CI

JA,ΓI
AJ = 0, ΓI

AB = 0, ΓA
JK = 0,

ΓA
JB = 0, ΓA

BK = LA
BK , ΓA

BC = CA
BC . (37)

The nonholonomy coefficients wγ
αβ , defined as [δα, δβ} = wγ

αβδγ , are as follows:

wK
IJ = 0, wK

AJ = 0, wK
IA = 0, wK

AB = 0, wA
IJ = RA

IJ ,

wB
AI = −(−)|IA| ∂NB

A

∂yA
, wB

IA =
∂NB

A

∂yA
, wC

AB = 0.

By straightforward calculations we can obtain respectively these components of tor-
sion,
T (δγ , δβ) = T α

·βγδα, and curvature, R(δβ , δγ)δτ = R·α
β·γτδα, ds-tensors:

T I
·JK = T I

JK , T I
·JA = CI

JA, T I
·JA = −CI

JA, T I
·AB = 0, (38)

T A
·IJ = RA

IJ , T A
·IB = −PA

BI , T A
·BI = PA

BI , T A
·BC = SA

BC

and
R·J

I·KL = RJ
I
KL,R·J

B·KL = 0,R·A
J·KL = 0,R·A

B·KL = R̃·A
B·KL, (39)

R·I
J·KD = PJ

I
KD,R·A

B·KD = 0,R·A
J·KD = 0,R·A

B·KD = PB
A

KD,

R·I
J·DK = −PJ

I
KD,R·I

B·DK = 0,R·A
J·DK = 0,R·H

B·DK = −PB
A

KD,

R·I
J·CD = SJ

I
CD,R·I

B·CD = 0,R·A
J·CD = 0,R·A

B·CD = SB
A

CD

(for explicit dependencies of components of torsions and curvatures on components
of d–connection see formulas (12) and (16)).

The locally adapted components Rαβ = Ric(D)(δα, δβ) (we point that in general
on st-bundles Rαβ 6= (−)|αβ|Rβα) of the Ricci tensor are as follows:

RIJ = RI
K

JK ,RIA = −(2)PIA = −P̃ ·K
I·KA (40)

RAI = (1)PAI = P̃ ·B
A·IB ,RAB = SA

C
BC = SAB .

For scalar curvature, Ř = Sc(D) = GαβRαβ , we have

Sc(D) = R + S, (41)

where R = gIJRIJ and S = hABSAB .
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The Einstein–Cartan equations on sv-bundles are written as

Rαβ − 1
2
GαβŘ + λGαβ = κ1Jαβ , (42)

and
Tα
·βγ + Gβ

αT τ
γτ − (−)|βγ|

Gγ
αT τ

βτ = κ2Q
α

βγ , (43)

where Jαβ and Qα
βγ are respectively components of energy-momentum and spin-

density of matter ds–tensors on la-space, κ1 and κ2 are the corresponding interaction
constants and λ is the cosmological constant. To write in a explicit form the men-
tioned matter sources of la-supergravity in (42) and (43) there are necessary more
detailed studies of models of interaction of superfields on la–superspaces (see first
results for Yang–Mills and spinor fields on la-spaces in [31,32,35] and, from different
points of view, [28,29,38]). We omit such considerations in this paper.

Equations (42), specified in (x,y)–components,

RIJ − 1
2
(R + S − λ)gIJ = κ1JIJ , (1)PAI = κ1

(1)JAI , (44)

SAB − 1
2
(S + R − λ)hAB = κ2J̃AB , (2)PIA = −κ2

(2)JIA,

are a supersymmetric, with cosmological term, generalization of the similar ones pre-
sented in [26,27], with prescribed N-connection and h(hh)– and v(vv)–torsions. We
have added algebraic equations (43) in order to close the system of s–gravitational
field equations (really we have also to take into account the system of constraints (22)
if locally anisotropic s–gravitational field is associated to a ds-metric (23)).

We point out that on la–superspaces the divergence DαJ α does not vanish (this
is a consequence of generalized Bianchi and Ricci identities (17),(19) and (20),(21)).
The d-covariant derivations of the left and right parts of (42), equivalently of (44),
are as follows:

Dα[R·α
β − 1

2
(Ř − 2λ)δ·αβ ] =

{
[RJ

I − 1
2 (R + S − 2λ)δJ

I ]|I + (1)PA
I⊥A = 0,

[SB
A − 1

2 (R + S − 2λ)δB
A]⊥A

− (2)P I
B|I = 0,

where

(1)PA
J = (1)PBJhAB , (2)P I

B = (2)PJBgIJ , RI
J = RKJgIK , SA

B = SCBhAC ,

and
DαJ α

·β = Uα, (45)

where

DαJ α
·β =

{
J I
·J|I + (1)J A

·J⊥A = 1
κ1
UI ,

(2)J I
·A|I + J B

·A⊥B = 1
κ1
UA,

and
Uα =

1
2
(GβδR·γ

δ·ϕβT
ϕ
·αγ − (−)|αβ|

GβδR·γ
δ·ϕαT

ϕ
·βγ + Rβ

·ϕT
ϕ
·βα). (46)
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¿From the last formula it follows that ds-vector Uα vanishes if d-connection (37) is
torsionless.

No wonder that conservation laws for values of energy–momentum type, being
a consequence of global automorphisms of spaces and s–spaces, or, respectively, of
theirs tangent spaces and s–spaces (for models on curved spaces and s–spaces), on la–
superspaces are more sophisticated because, in general, such automorphisms do not
exist for a generic local anisotropy. We can construct a la–model of supergravity, in a
way similar to that for the Einstein theory if instead an arbitrary metric d–connection
the generalized Christoffel symbols Γ̃α

·βγ (see (27)) are used. This will be a locally
anisotropic supersymmetric model on the base s-manifold M which looks like locally
isotropic on the total space of a sv-bundle. More general supergravitational models
which are locally anisotropic on the both base and total spaces can be generated by
using deformations of d-connections of type (28). In this case the vector Uα from (46)
can be interpreted as a corresponding source of generic local anisotropy satisfying
generalized conservation laws of type (45).

More completely the problem of formulation of conservation laws for both locally
isotropic and anisotropic supergravity can be solved in the frame of the theory of
nearly autoparallel maps of sv-bundles (with specific deformation of d-connections
(28), torsion (29) and curvature (30)), which have to generalize our constructions
from [33,34,51]. This is a matter of our further investigations.

We end this subsection with the remark that field equations of type (42), equiva-
lently (44), and (43) for la-supergravity can be similarly introduced for the particular
cases of GLS–spaces with metric (35) on ˜TM with coefficients parametrized as for
the Lagrange, (33), or Finsler, (34), spaces.

6.2 Gauge Like Locally Anisotropic Supergravity

The great part of theories of locally isotropic s-gravity are formulated as gauge su-
persymmetric models based on supervielbein formalism (see [45,51–53]). Similar ap-
proaches to la-supergravity on vs-bundles can be developed by considering an arbi-
trary adapted to N-connection frame Bα(u) = (BI(u), BC(u)) on E and supervielbein,
s-vielbein, matrix

Aα
α(u) =

(
AI

I(u) 0
0 AC

C(u)

)
⊂ GLm,l

n,k(Λ) =

GL(n, k, Λ) ⊕ GL(m, l, Λ)

for which
δ

δuα
= Aα

α(u)Bα(u),

or, equivalently, δ
δxI = AI

I(x, y)BI(x, y) and ∂
∂yC = AC

CBC(x, y), and

Gαβ(u) = Aα
α(u)Aβ

β(u)ηαβ ,

where, for simplicity, ηαβ is a constant metric on vs-space V n,k ⊕ V l,m.
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We denote by LN(E) the set of all adapted frames in all points of sv-bundle E .

Considering the surjective s-map πL from LN(E) to E and treating GLm,l
n,k(Λ) as the

structural s-group we define a principal s–bundle,

LN(E) = (LN(E), πL : LN(E) → E , GLm,l
n,k(Λ)),

called as the s–bundle of linear adapted frames on E .

Let denote the canonical basis of the sl-algebra Gm,l
n,k for a s-group GLm,l

n,k(Λ) as
Iα̂, where index α̂ = (Î , Ĵ) enumerates the Z2 –graded components. The structural
coefficients fα̂β̂

γ̂ of Gm,l
n,k satisfy s-commutation rules

[Iα̂, Iβ̂} = fα̂β̂
γ̂Iγ̂ .

On E we consider the connection 1–form

Γ = Γα
βγ(u)I

β
αduγ , (47)

where

Γα
βγ(u) = Aα

αAβ
βΓα

βγ + Aα δ

δuγ
Aα

β(u),

Γα
βγ are the components of the metric d–connection (37), s-matrix Aβ

β is

inverse to the s-vielbein matrix Aβ
β , and I

α
β =

(
I

I
J 0
0 I

A
B

)
is the standard

distinguished basis in SL–algebra Gm,l
n,k .

The curvature B of the connection (47),

B = dΓ + Γ ∧ Γ = R·β
α·γδI

α
β δuγ ∧ δuδ (48)

has coefficients
R·β

α·γδ = Aα
α(u)Aβ

β(u)R·β
α·γδ,

where R·β
α·γδ are the components of the ds–tensor (39).

Aside from LN(E) with vs–bundle E it is naturally related another s–bundle, the
bundle of adapted affine frames EN(E) = (AN(E), πA : AN(E) → E , AFm,l

n,k(Λ)) with
the structural s–group ANm,l

n,k(Λ) = GLm,l
n,k(Λ) ¯ Λn,k ⊕ Λm,l being a semidirect

product (denoted by ¯ ) of GLm,l
n,k(Λ) and Λn,k ⊕ Λm,l. Because as a linear s-space

the LS–algebra Afm,l
n,k of s–group AFm,l

n,k (Λ), is a direct sum of Gm,l
n,k and Λn,k ⊕ Λm,l

we can write forms on AN(E) as Θ = (Θ1,Θ2), where Θ1 is the Gm,l
n,k –component and

Θ2 is the (Λn,k ⊕ Λm,l)–component of the form Θ. The connection (47) in LN(E)
induces a Cartan connection Γ in AN(E) (see, for instance, in [55] the case of usual
affine frame bundles ). This is the unique connection on s–bundle AN(E) represented
as i∗Γ = (Γ, χ), where χ is the shifting form and i : AN(E) → LN(E) is the trivial
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reduction of s–bundles. If B = (Bα) is a local adapted frame in LN(E) then B = i◦B
is a local section in AN(E) and

Γ = BΓ = (Γ, χ), (49)

B = BB = (B, T ),

where χ = eα ⊗ Aα
αduα, eα is the standard basis in Λn,k ⊕ Λm,l and torsion T is

introduced as
T = dχ + [Γ ∧ χ} = T α

·βγeαduβ ∧ duγ ,

T α
·βγ = Aα

αTα
·βγ are defined by the components of the torsion ds–tensor (38).

By using metric G (35) on sv–bundle E we can define the dual (Hodge) operator
∗G : Λ

q,s
(E) → Λ

n−q,k−s
(E) for forms with values in LS–algebras on E (see details,

for instance, in [52]), where Λ
q,s

(E) denotes the s–algebra of exterior (q,s)–forms on
E .

Let operator ∗−1
G be the inverse to operator ∗ and δ̂G be the adjoint to the absolute

derivation d (associated to the scalar product for s–forms) specified for (r,s)–forms as

δG = (−1)r+s∗−1
G ◦ d ◦ ∗G.

Both introduced operators act in the space of LS–algebra–valued forms as

∗G(Iα̂ ⊗ φα̂) = Iα̂ ⊗ (∗Gφα̂)

and
δG(Iα̂ ⊗ φα̂) = Iα̂ ⊗ δGφα̂.

If the supersymmetric variant of the Killing form for the structural s–group of a
s–bundle into consideration is degenerate as a s–matrix (for instance, this holds for s–
bundle AN(E) ) we use an auxiliary nondegenerate bilinear s–form in order to define
formally a metric structure GA in the total space of the s–bundle. In this case we
can introduce operator δE acting in the total space and define operator ∆ .= Ĥ ◦ δA,
where Ĥ is the operator of horizontal projection. After Ĥ–projection we shall not
have dependence on components of auxiliary bilinear forms.

Methods of abstract geometric calculus, by using operators ∗G, ∗A, δG, δA and ∆,
are illustrated, for instance, in [54-57] for locally isotropic, and in [32] for locally
anisotropic, spaces. Because on superspaces these operators act in a similar manner
we omit tedious intermediate calculations and present the final necessary results. For
∆B one computers

∆B = (∆B,Rτ + Ri),

where Rτ = δGJ + ∗−1
G [Γ, ∗J } and

Ri = ∗−1
G [χ, ∗GR} = (−1)n+k+l+mRαµGαα̂eα̂δuµ. (50)

Form Ri from (50) is locally constructed by using the components of the Ricci ds–
tensor (40) as it follows from the decomposition with respect to a locally adapted
basis δuα (7).
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Equations
∆B = 0 (51)

are equivalent to the geometric form of Yang–Mills equations for the connection Γ (see
(49)). In [55–57] it is proved that such gauge equations coincide with the vacuum Ein-
stein equations if as components of connection form (47) are used the usual Christoffel
symbols. For spaces with local anisotropy the torsion of a metric d–connection in gen-
eral is not vanishing and we have to introduce the source 1–form in the right part of
(51) even gravitational interactions with matter fields are not considered [32].

Let us consider the locally anisotropic supersymmetric matter source J con-
structed by using the same formulas as for ∆B when instead of Rαβ from (50) is
taken κ1(Jαβ − 1

2GαβJ ) − λ(Gαβ − 1
2GαβG·τ

τ ). By straightforward calculations we
can verify that Yang–Mills equations

∆B = J (52)

for torsionless connection Γ = (Γ, χ) in s-bundle AN(E) are equivalent to Einstein
equations (42) on sv–bundle E . But such types of gauge like la-supergravitational
equations, completed with algebraic equations for torsion and s–spin source, are not
variational in the total space of the s–bundle AL(E). This is a consequence of the
mentioned degeneration of the Killing form for the affine structural group [55,56]
which also holds for our la-supersymmetric generalization. We point out that we
have introduced equations (52) in a ”pure” geometric manner by using operators
∗, δ and horizontal projection Ĥ.

We end this section by emphasizing that to construct a variational gauge like su-
persymmetric la–gravitational model is possible, for instance, by considering a min-
imal extension of the gauge s–group AFm,l

n,k (Λ) to the de Sitter s–group Sm,l
n,k (Λ) =

SOm,l
n,k (Λ), acting on space Λm,l

n,k ⊕ R, and formulating a nonlinear version of de Sit-
ter gauge s–gravity (see [57] for locally isotropic gauge gravity and [32] for a locally
anisotropic variant). Such s–gravitational models will be analyzed in details in [58].

7 DISCUSSION AND CONCLUSIONS

In this paper we have formulated the theory of nonlinear and distinguished connec-
tions in sv–bundles which is a framework for developing supersymmetric models of
fundamental physical interactions on la-superspaces. Our approach has the advan-
tage of making manifest the relevant structures of supersymmetric theories with local
anisotropy and putting great emphasis on the analogy with both usual locally isotropic
supersymmetric gravitational models and locally anisotropic gravitational theory on
vector bundles provided with compatible nonlinear and distinguished linear connec-
tions and metric structures.

The proposed supersymmetric differential geometric techniques allows us a rigor-
ous mathematical study and analysis of physical consequences of various variants of
supergravitational theories (developed in a manner similar to the Einstein theory, or
in a gauge like form). As two examples we have considered in details two models
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of locally anisotropic supergravity which have been chosen to be equivalent in or-
der to illustrate the efficience and particularities of applications of our formalism in
supersymmetric theories of la–gravity.

We emphasize that there are a number of arguments for taking into account effects
of possible local anisotropy of both the space–time and fundamental interactions. For
example, it’s well known the result that a selfconsistent description of radiational pro-
cesses in classical field theories requiers adding of higher derivation terms (in classical
electrodynamics radiation is modelated by introducing a corresponding term propor-
tional to the third derivation on time of coordinates). A very important argument
for developing quantum field models on the tangent bundle is the unclosed character
of quantum electrodynamics. The renormalized amplitudes in the framework of this
theory tend to ∞ with values of momenta p → ∞. To avoid this problem one intro-
duces additional suppositions, modifications of fundamental principles and extensions
of the theory, which are less motivated from physical point of view. Similar construc-
tions, but more sophisticated, are in order for modelling of radiational dissipation in
all variants of classical and quantum (super)gravity and (supersymmetric) quantum
field theories with higher derivations. It is quite possible that the Early Universe was
in a state with local anisotropy caused by fluctuations of quantum space-time ”foam”.

The above mentioned points to the necessity to extend the geometric background
of some models of classical and quantum field interactions if a careful analysis of phys-
ical processes with non–negligible beak reaction, quantum and statistical fluctuations,
turbulence, random dislocations and disclinations in continuous media and so on.
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