Associativity condition for some alternative algebras of degree three

MIRELA STEFANESCU and CRISTINA FLAUT

Abstract

In this paper we find an associativity condition for a class of alternative algebras of degree three. This is given in the last two statements of the paper.

AMS Subject Classification: 17A30.

Key words: Alternative algebra, composition algebra, isotopic subspace, bilinear form.

The algebras A over a field K satisfying the identities

$$x^2y = x(xy)$$
 and $yx^2 = (yx)x, \forall x, y \in A$,

are called *alternative algebras*. It is obvious that an alternative algebra is powerassociative: $x^2x = xx^2 = x^3$, for all $x \in A$.

An algebra A over a field K is called a *composition algebra* if we have a quadratic form $n : A \to K$ satisfying the relation n(xy) = n(x)n(y), for every $x, y \in A$, and the associated bilineare form $f : A \times A \to K$,

$$f(x,y) = \frac{1}{2}(n(x+y) - n(x) - n(y))$$

is non-degenerate.

An alternative algebra A is of *degree three*, if, for every $x \in A$, a polynomial relation of degree three is satisfied, namely:

$$x^{3} - T(x) x^{2} + S(x) x - N(x) \cdot 1 = 0,$$

where T is a linear mapping, called the generic trace, S is a bilinear form and N is a cubic form, called the norm form.

The subset $A_0 = \{x \in A / T(x) = 0\}$ is a subspace of A called the *isotopic* subspace of the algebra A and $A = K \cdot 1 \oplus A_0$.

Editor Gr.Tsagas Proceedings of The Conference of Applied Differential Geometry - General Relativity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 2002, 121-130 ©2004 Balkan Society of Geometers, Geometry Balkan Press

We suppose the field K has the characteristic $\neq 2, 3$. Let ω be the cubic root of unity, q be the solution of equation $x^2 + 3 = 0$ and μ be the root of the equation $3x^2 - 3x + 1 = 0$.

We consider two cases:

Case 1. $\omega \in K$, therefore $q, \mu \in K$.

We recall now some necessary results.

Proposition 1. [3] Let A be an alternative algebra of degree three and A_0 be its isotopic subspace. The bilinear form S is nondegenerate on A if and only if S is nondegenerate on A_0 .

Proposition 2. [3] Let A be a finite dimensional alternative algebra of degree three over the field K. On A_0 we define the multiplication " * ":

$$a * b = \omega a b - \omega^2 b a - \frac{2\omega + 1}{3} T (a b) \cdot 1.$$
(1)

Then S preserves the composition, that is S(a * b) = S(a) S(b).

If A is a separable algebra over K (i.e. $A_F = F \otimes_K A$ is a direct sum of simple ideals, for every extension F of K) then the quadratic form S is nondegenerate and we find an operation " ∇ " such that (A_0, ∇) is a Hurwitz algebra. If dim A =9, then (A_0, ∇) is an octonion algebra. Here, the operation ∇ is:

$$a\nabla b = (u * a) * (b * u), with S(u) \neq 0.\Box$$
⁽²⁾

Proposition 3. [2] Let A be an alternative algebra of degree three over the field K with the generic minimum polynomial :

$$P_x(\lambda) = \lambda^3 - T(x)\lambda^2 + S(x)\lambda - N(x)\cdot 1.$$

On the isotopic subspace A_0 , the operation " * " is defined as in Proposition 2. Then we have:

i)

$$(a * b) * a = a * (b * a) = S(a) b, \text{ for every } a, b \in A_0.$$

$$(3)$$

ii) S preserves composition and

$$S\left(x*y,z\right) = S\left(x,y*z\right),$$

for all $x, y, z \in A_0$.

iii) $(A_0, *)$ does not have a unit element.

iv) There exists an element $a \in A_0$, such that $\{a, a * a\}$ is a linearly independent system. A is finite dimensional and separable if and only if S is nondegenerate. \Box

The Proposition 3 has a converse statement and we see this in the next proposition. These two propositions show us that always in an alternative algebra of degree three we can find a flexible (i.e. $x(yx) = (xy)x, \forall x, y \in A$) and composition subalgebra and its symmetric associated bilinear form is associative.

Proposition 4. [2] Let (B, *) be a nonunitary algebra over the field K with quadratic form S satisfying the condition (3) from above. If B has an element b_0 such that the system $\{b_0, b_0 * b_0\}$ is linearly independent, then we find an alternative algebra A of degree three over K such that (B, *) is isomorphic to the algebra $(A_0, *)$ defined in Proposition 2.

If S(x, y) is the symmetric bilinear form associated to the quadratic form S and $A = K \cdot 1 \oplus B$, for $x \in A$, $x = \alpha + a$, $\alpha \in K$, $a \in B$, then define the multiplication on A:

$$ab = -\frac{2S(a,b)}{3} \cdot 1 + \frac{1}{3} [(\omega^2 - 1) a * b - (\omega - 1) b * a], \forall a, b \in B,$$
(4)

and $1x = x1 = x, \forall x \in A$. We show, by straightforward calculation, that A is an alternative algebra of degree three over K.

If we take
$$T(x)=3\alpha$$
, $S(x)=3\alpha^2+S(a)$, $N(x)=\alpha^3+S(a)\alpha-\rho\frac{2S(a*a,a)}{3}$, we obtain
tain
 $x^3 - T(x)x^2 + S(x)x - N(x) \cdot 1 = 0, \forall x \in A$

and $B = A_0 = \{x \in A/T(x) = 0\}$. Then A is the asked algebra of degree three.

Proposition 5. [2] With the assumptions and the notations from Proposition 4, the algebras $(B_1, *), (B_2, *)$ are isomorphic if and only if the corresponding alternative algebras of degree three are isomorphic.

We need some more properties of the computation " \star ".

Proposition 6. With the notations from Proposition 4., the algebra $A = K \cdot 1 \oplus B$ is associative if and only if the following condition holds :

$$(a, c, b)^{*} + (b, a, c)^{*} = (a, b, c)^{*}, \forall a, b, c \in B,$$
(5)

-

where $(a, b, c)^* = (a * b) * c - a * (b * c)$.

Proof. Let $a, b, c \in B$, then we have:

$$c(ab) = c \left[-\frac{2S(a,b)}{3} \cdot 1 + \frac{1}{3} \left(\left(\omega^2 \cdot 1 \right) a * b \cdot \left(\omega \cdot 1 \right) b * a \right) \right] =$$

$$= -\frac{2S(a,b)}{3} c + \frac{\omega^2 \cdot 1}{3} c(a * b) + \frac{\omega \cdot 1}{3} c(b * a) = -\frac{2S(a,b)}{3} c +$$

$$+ \frac{\omega^2 \cdot 1}{3} \left[-\frac{2S(c,a * b)}{3} \cdot 1 + \frac{\omega^2 \cdot 1}{3} c * (b * a) - \frac{\omega \cdot 1}{3} (b * a) * c \right] -$$

$$\begin{aligned} &-\frac{\omega \cdot 1}{3} \left[-\frac{2S\left(c,b*a\right)}{3} + \frac{\omega^{2} \cdot 1}{3}c*\left(b*a\right) - \frac{\omega \cdot 1}{3}\left(b*a\right)*c \right] \\ &\left(ca\right)b = \left[-\frac{2S\left(c,a\right)}{3} \cdot 1 + \frac{1}{3}\left(\left(\omega^{2}-1\right)c*a - \left(\omega-1\right)a*c\right)\right]b = \\ &= -\frac{2S\left(c,a\right)}{3}b + \frac{\omega^{2} \cdot 1}{3}\left(c*a\right)b - \frac{\omega \cdot 1}{3}\left(a*c\right)b = -\frac{2S\left(c,a\right)}{3}b + \\ &+ \frac{\omega^{2} \cdot 1}{3}\left[-\frac{2S\left(c*a,b\right)}{3} \cdot 1 + \frac{\omega^{2} \cdot 1}{3}\left(c*a\right)*b - \frac{\omega \cdot 1}{3}b*\left(c*a\right)\right] - \\ &- \frac{\omega \cdot 1}{3}\left[-\frac{2S\left(a*c,b\right)}{3} \cdot 1 + \frac{\omega^{2} \cdot 1}{3}\left(a*c\right)*b - \frac{\omega \cdot 1}{3}b*\left(a*c\right)\right] . \end{aligned}$$

In the following, we use the relations: (a * b) * c + (c * b) * a = 2S(a, c) b = 2S(c, a) b $(a * c) * b + (b * c) * a = 2S(a, b) c, (\omega^2 - 1)^2 = -3\omega^2, (\omega^2 - 1) (\omega - 1) = 3,$ $(\omega - 1)^2 = -3\omega.$ Then:

$$\begin{split} c\,(ab) &- (ca) \, b = -\frac{2S\,(a,b)}{3} \, c - \frac{2\,(\omega^2 - 1)}{9} \, S\,(c,a*b) + \frac{(\omega^2 - 1)^2}{9} \, c*(a*b) - \\ &- \frac{(\omega^2 - 1)\,(\omega - 1)}{9} \, (a*b)*c + \frac{2\,(\omega - 1)}{9} \, S\,(c,b*a) - \frac{(\omega^2 - 1)\,(\omega - 1)}{9} \, c*(b*a) + \\ &+ \frac{(\omega - 1)^2}{3} \, (b*a)*c + \frac{2S\,(c,a)}{3} \, b + \frac{2\,(\omega^2 - 1)}{9} \, S(c*a,b) - \\ &- \frac{(\omega^2 - 1)^2}{9} \, (c*a)*b + \frac{(\omega^2 - 1)\,(\omega - 1)}{9} \, b*(c*a) - \frac{2\,(\omega - 1)}{9} \, S\,(a*c,b) + \\ &+ \frac{(\omega^2 - 1)\,(\omega - 1)}{9} \, (a*c)*b - \frac{(\omega - 1)^2}{9} \, b*(a*c) = \\ &= -\frac{1}{3} \, (a*c)*b - \frac{1}{3} \, (b*c)*a - \frac{2\,(\omega^2 - 1)}{9} \, S\,(c,a*b) - \end{split}$$

Associativity condition for some alternative algebras

$$\begin{split} &-\frac{\omega^2}{3}c*(a*b)-\frac{1}{3}(a*b)*c+\frac{2(\omega-1)}{9}S(c,b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)-\frac{1}{3}c*(b*a)+\frac{1}{3}(a*c)*b+\frac{1}{3}(a*b)*c+\frac{1}{3}(c*a)-\frac{2(\omega-1)}{9}S(a*c,b)+\frac{1}{3}(a*c)*b+\frac{\omega}{3}b*(c*a)-\frac{2(\omega-1)}{9}S(a*c,b)+\frac{1}{3}(a*c)*b+\frac{\omega}{3}b*(a*c). \text{ Since }S \text{ is associative over }B, we have: S(c,a*b)=S(c*a,b) \neq (a*c). \text{ Since }S \text{ is associative over }B, we have: S(c,a*b)=S(c*a,b) \neq (a*c). \text{ Since }S \text{ is associative over }B, we have: C(ab)-(ca)b=-\frac{1}{3}[(b*c)*a-b*(c*a)]-\frac{1}{3}[(c*b)*a-c*(b*a)]-\frac{1}{3}[(b*a)*c-b*(a*c)]+\frac{1}{3}[(c*b)*a-c*(b*a)]-\frac{1}{3}c*(a*b)+\frac{\omega^2}{3}(c*a)*b=\\ &=-\frac{1}{3}(b,c,a)^*-\frac{\omega}{3}(b,a,c)^*+\frac{1}{3}(c,b,a)^*+\frac{1}{3}(c,b,a)^*+\frac{1}{3}(b,a,c)^*.\\ \text{ Here, we used for the flexible algebra, A that $(a,b,c)=-(c,b,a).\Box \end{split}$$$

Case 2.

We consider the field K such that $\omega \notin K$; therefore $q \notin K$. Let $F = K(\omega) = K(q)$ and A be an alternative algebra of degree three over the field K, equipped with an involution J of second kind. Then J is an automorphism

$$J: A \to A, \ J(xy) = J(y) \ J(x), \ J(\alpha x) = \alpha^{J} J(x), \ J(k) = k, \ \forall k \in K, \ \alpha \in F.$$

Since $K \subset F$ is an extension of second degree, the associated Galois group has the degree two, and $\alpha \to \alpha^J$ is a K-morphism over F of second degree, which differs of

M. Stefanescu and C. Flaut

identity, since $\omega^J = \omega^2$ and $q^J = -q$. Let

$$\bar{A}_0 = \{x \in A \mid T(x) = 0 \text{ and } J(x) = -x\}.$$

First we recall a result given by Elduque and Myung: **Proposition 7.** [2] Let $a, b \in \overline{A}_0$, such that

$$a * b = \omega ab - \omega^2 ba - \frac{2\omega + 1}{3}T(ab) \cdot 1.$$

Then $(\bar{A}_0, *)$ is a K-algebra, $S \mid_{\bar{A}_0}$ is a nondegenerate quadratic form over K and S permits composition over $(\bar{A}_0, *)$. \Box

Proposition 8. With the same assumptions and notations as above, the following equalities hold:

i) $A = \overline{A} \oplus q \overline{A} \simeq F \otimes_K \overline{A}$. ii) $A_0 = F \otimes_K \overline{A}_0$. \Box

Remark 9. i) By Proposition 7 we have that $S/_{\bar{A}}$ and $S/_{\bar{A}_0}$ are quadratic forms over K. Since the F-algebra $(A_0, *)$ satisfies the conditions i-iii in Proposition 3, $(\bar{A}_0, *)$ satisfies the same conditions, \bar{A}_0 being a K-subalgebra of A_0 . Then we have:

1) $(a * b) * a = a * (b * a) = S(a) b, \forall a, b \in (\bar{A}_0, *).$

2) S permits composition and is associative over $(\bar{A}_0, *)$.

3) $(\bar{A}_0, *)$ does not have the unity element.

We prove a property of the alternative algebras in both cases 1 and 2.

Propozition 10. Let (A, *) be a nonunitary algebra over the field K, which has a bilinear nondegenerate form S satisfying the condition (3).

If the elements $\{x, x * x\}$ are linearly dependent for each $x \in A$, then

$$x \ast x = \alpha \left(x \right) x,$$

and $\alpha: A \to K$ defined by this relations is a K-algebra morphism .

Proof. If in the relation (3) we take a = b = x, we get:

(x * x) * x = S(x) x. It results $(\alpha(x) x) * x = S(x) x$ so $\alpha^2(x) x = S(x) x$, and we have

$$\alpha^2 \left(x \right) = S \left(x \right) \tag{6}$$

Let $x, y \in A$ be arbitrary elements. Then:

 $(x+y)*(x+y) = \alpha (x+y) (x+y)$, therefore

 $x * x + x * y + y * x + y * y = \alpha (x + y) x + \alpha (x + y) y$, hence

 $\alpha(x) x + \alpha(y) y + x * y + y * x = \alpha(x + y) x + \alpha(x + y) y$, and we obtain:

$$(\alpha (x+y) - \alpha (x)) x + (\alpha (x+y) - \alpha (y)) y = x * y + y * x, \forall x, y \in A.$$

$$(7)$$

Since

Associativity condition for some alternative algebras

$$S(x,y) = \frac{1}{2} \left(S(x+y) - S(x) - S(y) \right) = \frac{1}{2} \left(\alpha^2 (x+y) - \alpha^2 (x) - \alpha^2 (y) \right),$$

we have:

$$\alpha^{2} (x+y) = \alpha^{2} (x) + \alpha^{2} (y) + 2S (x,y), \forall x, y \in A.$$
(8)

Applying S(., x) to the relation (7), we obtain:

 $\left(\alpha\left(x+y\right)-\alpha\left(x\right)\right)S\left(x,x\right)+\left(\alpha\left(x+y\right)-\alpha\left(y\right)\right)S\left(x,y\right)=$

= S(x * y, x) + S(y * x, x). The conditions from the hypothesis involve that S(.,.) is associative and permits composition, no matter whether ω is in K or not (we use the Proposition 3 and the Remark 9 i)). So

 $\begin{array}{l} S\left(x\ast y,x\right)=S\left(x,x\ast y\right)=S\left(x\ast x,y\right)=\alpha\left(x\right)S\left(x,y\right), \text{ and }\\ S\left(y\ast x,x\right)=S\left(y,x\ast x\right)=\alpha\left(x\right)S\left(x,y\right).\\ \text{We have, for all } x,y\in A: \end{array}$

$$(\alpha(x+y)-\alpha(x))\alpha^2(x) + (\alpha(x+y)-\alpha(y))S(x,y) = 2\alpha(x)S(x,y).$$
(9)

We note that $\alpha (x + y) = z, \alpha (x) = a, \alpha (y) = b$. Then (8) and (9) become respectively:

$$z^{2} = a^{2} + b^{2} + 2S(x, y), \qquad (10)$$

$$(z-a) a2 = (b+2a-z) S(x,y).$$
(11)

We suppose that $\alpha(x) \neq 0$. If b + 2a - z = 0, then $\alpha(y) + 2\alpha(x) = \alpha(x + y)$, for all $x, y \in A, x \neq 0$. If we take y = 0, we obtain $2\alpha(x) = \alpha(x)$, so $\alpha(x) = 0$, false. Then $b + 2a - z \neq 0$.

By the relation (11) , we have $S\left(x,y\right)=\frac{\left(z-a\right)a^{2}}{b+2a-z}$ and replace it in the relation

(10). We get
$$z^2 = a^2 + b^2 + 2 \frac{(z-a)a^2}{b+2a-z}$$
, so $(b+2a-z)z^2 = (a^2+b^2)(b+2a-z)+2a^2(z-a)$ and we have

$$-z^{3} + (b+2a) z^{2} + (b^{2} - a^{2}) z - b (a+b)^{2} = 0.$$

The polynomial $P(Z)=-Z^3+(b+2a)Z^2+(b^2-a^2)Z-b(a+b)^2$ has the decomposition in irreducible factors: $P(Z)=-(Z-a-b)^2(Z+b)$. It results that $z_1=a+b$ and $z_2=-b$ are the different roots of the polynomial P. If z=a+b, we have $\alpha(x+y)=\alpha(x)+\alpha(y)$. If z=-b, we obtain $\alpha(x+y)=-\alpha(y)$ and, for y=0, it result $\alpha(x)=0$, which is a contradiction. Therefore

$$\alpha \left(x+y\right) =\alpha \left(x\right) +\alpha \left(y\right) ,\forall x,y\in A,$$

with $\alpha(x) \neq 0$. If $\alpha(x) = 0$, by relation (9), we have (z - b) S(x, y) = 0, for all $y \in A$ and $x \in A$ with $\alpha(x) = 0$. If z = b, then

$$\alpha (x + y) = \alpha (y) = \alpha (y) + \alpha (x).$$

If $S(x, y) = 0, \forall y \in A$, we obtain x = 0 and $\alpha(0) = 0$, therefore

$$\alpha \left(x+y \right) = \alpha \left(x \right) + \alpha \left(y \right), \forall x, y \in A.$$

$$(12)$$

By the relation (7), for y = ax, with $a \in K$, we have

 $\alpha \left((a+1)x \right) x - \alpha \left(x \right) x + a\alpha \left((a+1)x \right) x - a\alpha \left(ax \right) x = 2a\alpha \left(x \right) x, \text{ hence}$

 $\alpha(ax) x + \alpha(x) x - \alpha(x) x + a\alpha(ax) x + a\alpha(x) x - a\alpha(ax) x = 2a\alpha(x) x$, and we get

$$\alpha\left(ax\right) = a\alpha\left(x\right).\tag{13}$$

Since S(.,.) permits composition, it results that S(x * y, x * y) = S(x, x) S(y, y), hence S(x * y) = S(x, x) S(y, y). Therefore

$$\alpha \left(x * y \right) = \alpha \left(x \right) \alpha \left(y \right). \tag{14}$$

By relations (12), (13), (14) it results that α is a K-morphism .

With the notations in the Proposition 10, we note that S is nondegenerate over \overline{A} if and only if S is nondegenerate over A. Moreover, we have:

Proposition 11. [2] Let $A, A_0, \overline{A}, \overline{A}_0$ be the algebras defined above. Then there exists $a \in \overline{A}_0$ such that $\{a, a * a\}$ is linearly independent and A is finite-dimensional and separable if and only if S is nondegenerate.

Proposition 12. [2] Let (B, *) be an algebra over the field K, $q \notin K$. If B has a quadratic form S over K satisfying the relation (3), for all $a, b \in B$, and there exists $x_0 \in B$ such that $\{x_0, x_0 * x_0\}$ is a linearly independent system, then there exists an alternative algebra A of degree three over F = K(q) equipped with an involution J of second kind such that (B, *) is isomorphic with the algebra $(\overline{A}_0, *)$ defined above. \Box

Proposition 13. [2] The algebras $(B_1, *), (B_2, *)$ in Proposition 12 are isomorphic if and only if the alternative algebras of degree three with the corresponding involution are isomorphic.

Now we can state the main results of the paper.

Proposition 14. The algebra A in Proposition 12 is associative if and only if $(a, c, b)^* + (b, a, c)^* = (a, b, c)^*, \forall a, b, c \in B.$

Proof. If the relation in the hypothesis is true for all $a, b, c \in B$, it results that the this proposition is true and for all $x, y, z \in F \otimes_K B$. Then we use the Proposition 6 and A is an associative F-algebra. Indeed, let

 $x, y, z \in F \otimes_K B, x = \alpha \otimes a, y = \beta \otimes b, z = \gamma \otimes c, \alpha, \beta, \gamma \in F, a, b, c \in B$. Then in $F \otimes_K B$, we have

 $(x, y, z)^* = ((\alpha \otimes a) * (\beta \otimes b)) * (\gamma \otimes c) - (\alpha \otimes a) * ((\beta \otimes b) * (\gamma \otimes c)) =$

Associativity condition for some alternative algebras

$$= \alpha \beta \gamma \otimes (a * b) * c - \alpha \beta \gamma \otimes a * (b * c) = \alpha \beta \gamma \otimes (a, b, c)^*$$
.

Proposition 15. Let K be a field, $\omega \notin K$ and $F = K(\omega)$. If A is a finite dimensional algebra of degree three equipped with an involution J of second kind, $\bar{A}_0 = \{x \in A \mid T(x) = 0, J(x) = -x\}$ then the multiplication:

$$a * b = \omega ab - \omega^2 ba - \frac{2\omega + 1}{3}T(ab) \cdot 1, \forall a, b \in \overline{A}_0 can be defined.$$

If A is separable, then the quadratic form S is nondegenerate and $(\bar{A}_0, *)$ becomes a composition K-algebra. If dim A = 9, then we may define the multiplication ∇ on \bar{A}_0 such that (\bar{A}_0, ∇) is an octonionic K-algebra. If $(a, c, b)^* + (b, a, c)^* = (a, b, c)^*, \forall a, b, c \in \bar{A}_0$, then A is associative.

Proof. By Proposition 7, we have that \bar{A}_0 is a K-algebra and $S/_{\bar{A}_0}$ is a quadratic form over K permitting composition. By Proposition 11, we have that $(\bar{A}_0, *)$ is flexible, and the associated bilinear form to S is associative. If S is nondegenerate, then $(\bar{A}_0, *)$ is a non-unitary composition algebra and there exists $u \in \bar{A}_0$, such that $S(u) \neq 0$. Then we define:

$$a\nabla b = (u * a) * (b * u),$$

with $a, b \in \overline{A}_0$ and we get that (\overline{A}_0, ∇) is a unitary composition algebra, with the unity e = u * u, therefore it is a Hurwitz algebra. If dim A = 9, then, by Proposition 8, we have that $\dim A = \dim \overline{A} = \dim A_0 + 1 = \dim \overline{A}_0 + 1$, therefore dim $\overline{A}_0 = 8$ and \overline{A}_0 is an octonion algebra. \Box

References

- Elduque, A., Myung, H.C., Flexible composition algebras and Okubo algebras, Comm. Algebra, 19, 4 (1991) 1197-1227.
- [2] Elduque, A., Myung, H.C., On flexible composition algebras, Comm. Algebra, 21, 7 (1993) 2481-2505.
- [3] Faulkner, J.R., Finding octonion algebras in associative algebras, Proc. Amer. Math. Soc., 104, 4 (1988) 1027-1030.
- [4] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra VI, Springer-Verlag, 1995.
- [5] McCrimmon, K., Generically algebraic algebras, Trans. Amer. Math. Soc., 127 (1967) 527-551.
- [6] Okubo, S., Introduction to Octonion and other Non-Associative Algebras in Physics, Cambridge University Press, Cambridge, 1995.

- [7] Okubo, S., Myung, H. C., Some new classes of division algebras, J. of Algebra, 67 (1980) 479-490.
- [8] Okubo, S., Osborne, J.M., Algebras with nondegenerate associative symmetric bilinear forms permitting composition, I, Comm. Algebra, 9, 12 (1981) 1233-1261.
- [9] Okubo, S., Osborne, J.M., Algebras with nondegenerate associative symmetric bilinear forms permitting composition, II, Comm. Algebra, 9, 20 (1981) 2015-2073.
- [10] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.

Authors' address:

Mirela Stefanescu and Cristina Flaut Departament of Mathematics, Ovidius University, Bd. Mamaia 124, 8700-Constantza, Romania E-mail: mirelast@univ-ovidius.ro, cflaut@univ-ovidius.ro, cristina_flaut@yahoo.com