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Abstract

The Finsler bundles associated with two vector bundles over the same base
and the corresponding various Finsler connections are defined in the paper.
The constructions of Matsumoto are obtained as particular cases. In the case
of a single vector bundle, linear cases considered by A. Bejancu and D. Opriş
are obtained. For a Lagrange metric on a subbundle of a tangent bundle, a
construction of V. Oproiu and N. Papaghiuc is obtained.
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Let ξ′ = (E′, π1,M) and ξ′′ = (E′′, π2, M) be two vector bundles over the same
base M which have the fibres IRk1 and IRk2 , respectively. Let L(ξ′) = (L(E′), M ,
GL(k1, IR)) and L(ξ′′) = (L(E′′),M,GL(k2, IR)) be the principal frames bundles asso-
ciated with the above vector bundles, and let π′ and π′′ be their canonical projections.
Let

Lξ′(ξ′′) = (LE′(E′′) = π∗
1L(E′′), E′, GL(k2, IR)),

and
Lξ′′(ξ′) = (LE′′(E′) = π∗

2L(E′), E′′, GL(k1, IR)),

be the induced principal bundles, and let p1and p2 be their canonical projections.
Thus, the total spaces are:

LE′(E′′) = {(e′, z′′) ∈ E′ × L(E′′) | π1(e′) = π′′(z′′)}

LE′′(E′) = {(e′′, z′) ∈ E′′ × L(E′) | π2(e′′) = π′(z′)}.

We denote by q1 : LE′(E′′) → L(E′′) and q2 : LE′′(E′) → L(E′) the canonical
projection on the second factors.
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Let ϕ : E′ → E′′ be a vector bundle morphism. Then a differentiable map of
differentiable manifolds:

Φ : LE′(E′′) → L(E′′) × IRk2 , Φ(e′, z′′) =
(
z′′, (z′′)−1(ϕ(e′))

)
.

is induced.
It is easy to prove that the map Φ is an injective immersion, or a surjective

submersion, or a diffeomorphism, if ϕ respectively is. For example:

1. If ξ′ is a subbundle of ξ′′ and ϕ is the inclusion morphism, then Φ is an injective
immersion. If there exists a splitting of the inclusion: C : ξ′′ → ξ′, C ◦ϕ = idE′ ,
then it is easy to see that the map Φ1 : L(E′′) × IRk2 → LE′(E′′), Φ1(z′′, v) =
(C ◦ z′′(v), z′′) is a left inverse of Φ.

2. If ξ′ = ξ, let ϕ = idE′ , then Φ : LE′(E′) → L(E′) × IRk1 is a diffeomorphism.
This case was studied in [5]. An important particular case, studied by Mat-
sumoto, is obtained when the principal bundle is the Finsler principal bundle
F = LτM(τM). The diffeomorphism Φ defines, for every vector v̄ ∈ IRk1 , a
vector field Y (v̄) ∈ X (LE′(E′)), called an induced-fundamental vector field. We
denote also as ε : LE′(E′) → IRk1 the map obtaind from Φ, projecting on the
second factor.

Returning to the general case, we define now some distributions on the manifolds
LE′(E′′) and LE′′(E′). Since the constructions are symmetric, we define the vertical
distribution for the bundle Lξ′(ξ′′).

- The vertical distribution ker p1∗
not= LV ξ′(ξ′′) has LV E′(E′′) as total space. If no

confusion arise, we denote by FV the vertical distribution and Lξ′(ξ′′) as F .

- The quasi-vertical distribution ker(π1 ◦ p1)∗
not= Lqξ′(ξ′′) which has as total space

LqE′(E′′). It is easy to see that LV E′(E′′) ⊂ LqE′(E′′). If no confusion arise,
we denote by Fq the quasi-vertical distribution.

- The vertical induced distribution ker q1∗
not= Liξ′(ξ′′) which has as total space LiE′(E′′).

If no confusion arise, we denote by F i the vertical induced distribution.

Observation 1 If Xu ∈ TuF , then Xu = 0 iff p1∗(Xu) = 0 and q1∗(Xu) = 0, since
p1 and q1 are the canonical projections of the fibered product F .

Observation 2 If ξ′ = ξ′′ = ξ,then an induced-fundamental vector field Y (v̄) is
tangent to the vertical induced distribution and these vector fields generate the vector
fields tangent to this distribution.

Proposition 1 For every u ∈ F we have Fq
u = FV

u ⊕F i
u.

The group GL(k2, IR) acts on LE′(E′′), as the total space of a principal bundle,
by the natural action:

((e′, z′′), g) → (e′, z′′g), (∀)(e′, z′′) ∈ LE′(E′′), g ∈ IRk2

Proposition 2 Considering the natural right action of GL(k2, IR) on LE′(E′′), the
distributions FV

u , F i
u and Fq

u are invariated by this action.
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1 Usual connections in Finsler bundles

A connection Γ on the principal bundle Lξ′(ξ′′) can be defined, as usual:

by the horizontal distribution H on LE′(E′′), invariated by the natural right action
of GL(k2, IR) and complementary to the vertical distribution, or

by a 1-differential form ω on LE′(E′′), which takes the values in gl(k2, IR), and
having the property:

ω(Ã) = A, ω ◦ Rg = ad(g−1)ω, (1)

(∀)A ∈ gl(k2, IR), g ∈ GL(k2, IR), and where Ã is the fundamental vertical field
associated with A.

Notice that H is connected to ω by H = kerω.
Consider now the following adapted coordinates to the bundles structures, taken

on the following manifolds

on M : (xi), i = 1,m;

on E′: (xi, yα), on E′′: (xi, tu), α = 1, k1, u = 1, k2 ;

on L(E′): (xi, (wα
β )), on L(E′′): (xi, (zu

v ));

on LE′(E′′): (xi, yα, (zu
v )), on LE′′(E′): (xi, tu, (wα

β )).

Let {Eu
v }u,v=1,k2 be a base in the Lie algebra gl(k2, IR). Using this base, the

connection form ω is written in the form:

ω =
k2∑

u,v=1

ωu
v Ev

u.

Considering the above adapted coordinates, we have the following local expression for
the forms ωu

v :
ωu

v = ωu
vidxi + ωu

vαdyα + ωus
vt dzt

s.

Taking into account the second relation (1), it follows that

Γs
ti = zt

uωu
vi(z

−1)v
t , Cs

tα = zt
uωu

vα(z−1)v
t

are local functions which depend only on the coordinates (xi) and (yα), thus

ωu
v = (z−1)u

s (dgs
v + zt

v(Γs
ti(x

i, yα)dxi + Cs
tα(xi, yα)dyα)). (2)

Proposition 3 The systems of local fields{
∂

∂xi
− Γs

tiz
t
r

∂

∂zs
r

,
∂

∂yα
− Cs

tαzt
r

∂

∂zs
r

}
i = 1,m

α = 1, k1

are local bases for the horizontal fields.
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It follows that a horizontal vector field Z has the following local expression, using
adapted coordinates:

Z = Zi ∂

∂xi
+ Zα ∂

∂yα
+ Zt

s

∂

∂zt
s

It follows also that an horizontal field Z projects (locally) on the horizontal distribu-
tion by

hZ = Zi

(
∂

∂xi
− Γs

tiz
t
r

∂

∂zs
r

)
+ Zα

(
∂

∂yα
− Cs

tαzt
r

∂

∂zs
r

)
and on the vertical distribution by

vZ =
(
ZiΓs

tiz
t
r + ZαCs

tαzt
r + Zt

s

) ∂

∂zt
s

.

For an arbitrary vector field W ∈ X (E′) it can be defined the horizontal lift
Wh ∈ X (LE′(E′′)), which is an horizontal field, defined by the isomorphism of the
fibres of the bundles τ(E′) and LE′(E′′) (the horizontal bundle associated to the
connection). Using the above local bases, the local expression of this lift is, for

W = W i ∂

∂xi
+ Wα ∂

∂yα
,

given by the formula:

Wh = W i

(
∂

∂xi
− Γs

tiz
t
r

∂

∂zs
r

)
+ Wα

(
∂

∂yα
− Cs

tαzt
r

∂

∂zs
r

)
.

2 Special connections on Finsler bundles

Definition 1 An horizontal connection on L(ξ′(ξ′′)) is a distribution Γh = Γhξ′(ξ′′)
on F = LE′(E′′) which satisfies the condition

1)Fu = Γh
u ⊕Fq

u , 2)Rg∗Γh
u = Γh

ug

for every u ∈ F , where Fq = LqE′(E′′) is the quasi-vertical distribution, and Rg is
the right action of g ∈ GL(k2, IR).

Observation 3 From Proposition 1 it follows that (∀)u ∈ F we have

Fu = Γh
u ⊕F i

u ⊕FV
u . (3)

Using Proposition 2, it follows that the distribution F i is invariated by the action of
GL(k2, IR), thus the distribution Γh ⊕F i defines a connection on the Finsler bundle
Fξ′(ξ′′).

Definition 2 A vertical connection on Lξ′(ξ′′) is a distribution ΓV = ΓV ξ′(ξ′′) on
F = LE′(E′′) which satisfies the condition

1)Fq
u = ΓV

u ⊕FV
u , 2)Rg∗ΓV

u = ΓV
ug

for every u ∈ F , where FV = LV E′(E′′) is the total space of the vertical distribution.
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For example, according to Propositions 1 and 2, the induced vertical distribution
F i defines a vertical connection on F .

Observation 4 As in Observation 3, if ΓV is a vertical connection and Γh is an
horizontal connection, then Γh ⊕ ΓV is a connection on the Finsler bundle F .

Lemma 1 Let π1 : E1 → M and π2 : E2 → M be two surjective submersions,
E = E1 ×M E2 = {(e1, e2) ∈ E1 × E2 | π1(e1) = π2(e2)} be the fibered product of π1

and π2, and p1 : E → E1, p2 : E → E2 be the canonical projections.
Then

p1∗(ker p2∗) = ker π1∗ .

Returning to the setting before the above Lemma, we have:

Proposition 4 The differential p1∗ of the canonical projection p1 : LE′(E′′) → E′

sends:

the vertical induced distribution Γi onto the vertical distribution of E′, and

the distribution Γh, which corresponds to an horizontal connection on LE′(E′′), onto
the horizontal distribution of a non-linear connection on the vector bundle ξ′.

Definition 3 A Finsler connection associated with E′ and E′′ is a pair (Γ, N), where
Γ is a connection in the Finsler bundle LE′(E′′), and N is a non-linear connection on
the vector bundle E′.

If E′ = E′′, we say that a such connection is a Finsler connection on E′.

Theorem 1 There is an one-to-one correspondence between Finsler connections (Γ, N),
associated with the vector bundles E′ and E′′, and the set of pairs (Γh, ΓV ), where Γh

is an horizontal connection and ΓV is a vertical connection on F = LE′(E′′).

The converse association is performed using Observation 4 and Proposition 4.

3 Induced Finsler connection on subbundles

Let ξ = (E, π,M) be a vector subbundle of the vector bundle ξ′ = (E′, π1,M), and
i : E → E′ be the inclusion morphism of ξ in ξ′. Consider now the i-morphism of the
tangent bundles i∗ : TE → TE′. It induce the morphism, denoted in the same way:

i∗ : TE → i∗(TE′) (4)

which is an injective morphism of vector bundles on the base E. It enables us to
consider τE as a vector subbundle of i∗(τE′). Notice that the fibres of the vector
subbundle V ξ (of τE) are carried by i∗ in the fibres of the vector subbundle i∗(V ξ′)
(of τE′). It is induced an injective morphism

i′∗ : V E → i∗(V E′). (5)
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The well-known canonical isomorphisms

r : V E → π∗E, r′ : V E′ → π∗
1E′

enable us to write the morphism (5) as

i′∗ : π∗E → i∗(π∗
1E′),

modulo the corresponding identifications.
But i∗(π∗

1E′) = (π1 ◦ i)∗E′ = π∗E′, thus the morphism (5) can be written, modulo
canonical isomorphisms, as

i′∗ : π∗E → π∗E′ (6)

having the form (e′1, e
′
2) → (e′1, e

′
2).

Definition 4 We say that a splitting of the injective morphism (5) or, equivalently,
(6), is a Finsler splitting of the vector subbundle ξ of ξ′.

Examples

1. Consider a metric tensor on the vector bundle V ξ′ (i.e. a (0, 2) tensor which
is symmetric and (strict) positive defined). It induces on the vector bundle
i∗(V ξ′) also a metric tensor, thus the subbundle V ξ⊥ of i∗(V ξ′), orthogonal
to the subbundle V ξ can be considered. It induces a Finsler splitting of the
inclusion i : ξ → ξ′.

2. A particular case of the above example is given as follows. Consider a subman-
ifold M of the manifold M ′, given by the imbedding ϕ : M → M ′, and take
i = ϕ∗ : TM → ϕ∗(TM)′, ξ= τM and ξ′ = ϕ∗(τM ′). Then a Finsler or, more
general, a Lagrange metric on M ′ carries a metric tensor on the vector bundle
V τM ∼= π∗τM (where π : τM → M is the canonical projection), which is the
so-called Finsler bundle of M . Thus (V τM)⊥ is the orthogonal bundle of V τM
in the vector bundle

i∗(V (ϕ∗(τM ′))) ∼= i∗(π∗
0(ϕ∗(τM ′))) ∼= (ϕ ◦ π0 ◦ i)∗(τM ′) = (ϕ ◦ π1)∗(τM ′)

where π0 : ϕ∗(TM ′) → M is the canonical projection of the vector bundle
ϕ∗(τM ′).

This construction is used in the study of the Finsler subbundles in [1, 2, 4, 6].

Theorem 2 Let ξ = (E, π,M) be a vector subbundle of the vector bundle ξ′ =
(E′, π′,M), i : ξ → ξ be the inclusion morphism and (Γ′, N ′) be a Finsler connection
on the Finsler bundle Lξ′(ξ′) of ξ′.

Then every Finsler splitting of the inclusion i induces a Finsler connection on the
Finsler Bundle Lξ(ξ) of ξ.

Corollary 1 Let M be a submanifold of the manifold M and (Γ′, N ′) be a Finsler
connection on τM ′.

Then every Finsler splitting of the inclusion of τM in i∗τM induces a Finsler
connection (Γ, N) on τM , where i : M → M ′ is the inclusion.
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In the case of a Finsler or Lagrange metric on M ′, a Finsler splitting can be defined
on the submanifold M , as in the Example 2) from above. It can be shown that in
this case the Finsler connection induced on M is the same as that induced in [1, 2],
in the linear case.

In the case when (M,L) is Lagrange space on the manifold M , ξ′ = τM and ξ is
a vector subbundle of τM , the induced Finsler connection on ξ from [6] is obtained.
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