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Abstract

Galileo Galilei asserted that everything on Earth falls downward with the
same acceleration g◦. Einstein proposed that light, a mass zero object, should be
included among Galileo’s “everything.” Thus, a light traveling vertically (down)
cannot be accelerated any further, so g for such light must be zero. By using
Einstein’s general relativistic equation of motion with the Schwarzschild metric,
we see that the accerelation of a test particle toward a gravitational source
depends on the component of the velocity of the test particle along that direction,
as expected.

The speed of light is expected to show an anisotropy due to an existing
gravitational source within our experimental accuracy. In a deuteron, a proton
and a neutron are orbiting around each other. The effective g would be less than
g◦, according to the above-stated Einstein-Schwarzschild effect on the Newtonian
theory of g.
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1. Prologue

Einstein’s theory of general relativity [1] is based on a general metric

(ds)2 = g00(cdt)2 − g11(dx1)2 − g22(dx2)2 − g33(dx3)2. (1-1)

If a test particle is moving along the direction of x1, then this metric gives(
dx1

dt

)2

=
g00

g11
c2 −

(
ds

dt

)2

≤ g00

g11
c2, (1-2)
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which implies that the speed of a test particle cannot exceed c
√

g00/g11, and this
maximum possible speed is reserved for light, which is defined by ds = 0.

Einstein [1] derived an equation of motion from this general metric as

d2xi

ds2
= −Γi

k`

dxk

ds

dx`

ds
, (1-3)

where Γi
k` is a component of the Christoffel symbol:

Γi
k` =

1
2
gim

(
∂gmk

∂x`
+

∂gm`

∂xk
− ∂gk`

∂xm

)
. (1-4)

In the nonrelativistic limit, where the spatial displacements dxα are small, we see
from eq. (1-1) that ds ' cdt by eq. (1-1). Therefore, the left-hand side of eq. (1-3)
is essentially the Newtonian acceleration, if we take i for a space coordinate. If we
interpret the right hand side of eq. (1-3) as the i-th component of a force per inertial
mass (of a test particle) times c2, eq. (1-3) reduces to Newton’s equation of motion for
a test particle under gravity, assuming Galileo’s equivalence principle. An important
point is that Einstein assumed [2] that eq. (1-3) was applicable to light (a mass zero
particle) as well as to any test particle.

2. Schwarzschild Metric

Schwrzschild showed [3] that Einstein’s wave equation for an empty space can be
satisfied by

(ds)2 = (1 − 2a)(cdt)2 − 1
1 − 2a

(dr)2 − r2((dθ)2 + (sin θdϕ)2), (2-1)

where
a =

GM

c2r
(2-2)

and M is the mass of a stationary spherical point gravitation source placed at a
distance r from the observation point. By using the Schwarzschild metric, eq. (2-1),
in Einstein’s equation of motion, eq. (1-6), we obtain

dt

ds
=

1
c(1 − 2a)

, (2-3)

and

c2(1 − 2a)
d2r

ds2
= −

(
1 − 1

(c(1 − 2a))2

(
dr

dt

)2
)

c2a

r

+r

((
dθ

dt

)2

+ sin2 θ

(
dφ

dt

)2
)

(2-4)

for the radial component [4]. The right-hand side of eq. (2-4) may be called the radial
component of the Einstein-Schwarzschild force per unit mass. The second line of eq.
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(2-4) gives the centrifugal correction terms, which equal zero when the test particle
is moving in the radial direction.

For a test particle on the surface of Earth, the gravitational effect given by a is
almost negligible compared to 1, in which case ds = cdt to a good approximation.
Thus, eq. (2-4) reduces to

d2z

dt2
= g, (2-5)

where the effective gravitational constant g is given by

g =

(
1 −

(
dz

cdt

)2
)

g◦, (2-6)

where

g◦ =
GME

r2
E

= 9.8 m/s2, (2-7)

taking ME and rE as the mass and radius of Earth, respectively. We took the vertical
distance z from the surface of Earth for r. Eq. (2-5) is the Newtonian gravitational
equation of motion with Galileo’s equivalence principle, except for the relativistic
correction term given in eq. (2-6).

3. Deuterium under Gravity

A deuteron is made of one proton and one neutron bound by the Yukawa force, and
has an angular momentum of magnitude h̄ in its ground state. The ground state
is mostly a 3S state, where two nucleonic intrinsic spins are aligned and no orbital
angular momentum exists. The nucleonic intrinsic spins do not contribute to the
anisotropy term of the gravitational force in the nucleons, because the spin is 1/2.
Due to the tensor component of the Yukawa force, however, the deuteron ground state
is a mixture of the 3S and 3D states. In the 3D state, the nucleons, with mass MP

each, are orbiting around the center of mass with a total angular momentum of 2h̄.
The speed V of each nucleon in this orbital motion is V =

√
6h̄/(MP R), where R is

the distance between the nucleons. If we take a horizontal axis as the quantization
axis, then the (dz/dt)2 in eq. (2-6), when averaged, is(

dz

dt

)2

= m2

(
h̄f(3D)
MP R

)2

, (3-1)

where m is the orbital magnetic quantum number of the deuteron along the z-axis,
and f(3D) is the fraction of the 3D state in the ground state of the deuteron. We see
that for the deuteron,

g(D) =

(
1 − m2

(
h̄f(3D)
cMP R

)2
)

g◦. (3-2)
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We assume that the structure of the deuteron is determined by the Yukawa force, or
is rigid against the gravitational deformation.

If we take f(3D) = 0.07 and R = 10−15 m, then the correction factor in eq. (3-2)
is

g(D) = (1 − m210−4)g◦, (3-3)

or the effective g for the m = ±1 states is less than that for the m = 0 state by the
factor 10−4g◦.

The deuteron usually exists as a heavy water, HDO or D2O. The oxygen nucleus is
bound with the proton or deuterons by a chemical bond, and they fall down together.
The gravitational constant for the compound D2O is

g(D2O) = (2m(D)g(D) + m(O)g◦)(2m(D) + m(O)) = (1 − 10−5)g◦, (3-4)

where m(D) and m(O) are the masses of the deuteron and the oxygen nuclei, respec-
tively. We assumed that the average of m2 is 2/3, and the gravitational constant of
the oxygen nucleus is g◦.

We propose to measure the gravitational acceleration, g, of D2O [5].

4. Anisotropy in the Speed of Light

The Einstein-Schwarzschild equation of motion (2-4) is applicable to light as well as
to any test particle. It shows that light, which is moving with an ultimate speed given
by eq. (1-2), cannot be accelerated any further. Thus the speed of light propagating
in the radial direction is

dr

dt
|ds=0= c(1 − 2a). (4-1)

On the other hand, if the light is propagating in the tangential direction, eq. (1-2)
gives

rdθ

dt
|ds=0= c

√
1 − 2a ' c(1 − a), (4-2)

which is different from eq. (4-1).
When we take the mass of Earth for M and the radius of Earth for r in eq. (2-2)

we obtain
aE = g◦rE/c2 = 0.7 × 10−10. (4-3a)

When we take the mass of the sun for M and the distance from Earth to the sun for
r in eq. (2-2) we obtain

as = 0.99 × 10−8. (4-3b)

We are in a circular orbit around the center of the Milky Way galaxy moving at VM '
250 km/s. Thus, the value of a due to the center of the Milky Way galaxy is

aM = (VM/c)2 ' 0.5 × 10−6, (4-3c)

if the orbital motion is circular under the Newtonian gravitational force, neglecting
the relativistic effect in eq. (2-4).
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Schamir and Fox [6] set up a Michelson interferometer to measure the anisotropy
due to the sun with an accuracy of 3 × 10−11, but could not detect any anisotropy.
They used fused quartz tubes as spacers. Brillet and Hall [7] placed a rigid cavity on
a rotating plate, but could not detect any anisotropy. Although light can penetrate
through these transparant materials, their index of refraction, n, is about 1.5, or the
wavelength of light is dictated by the atomic structure, according to the Maxwell the-
ory. The atoms are bound together by chemical bonds, and the deformation of these
solid materials under gravity is negligible. The anisotropy due to the gravitational
factor a, which is of the order of 10−8, is concealed by the chemical bond effect shown
by n−1. For the air at a pressure of one atmosphere, we know that n−1 = 2×10−4.
Therefore, to detect the general relativistic anisotropy with a cavity we have to reduce
the pressure inside the cavity to at least 10−3 torr.

We suggested [4] that the Hills-Hall experiment [8] should be tried again by plac-
ing the Fabry-Perot cavity in the East-West direction under a pressure less than 10−3

torr. Such an experiment is now under way at the University of Colorado.
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