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Abstract

We investigate properties of the Nakano superlattice (H,t,u), where t,u
are the Nakano hyperoperations x t y = {z : x ∨ z = y ∨ z = x ∨ y}, x u y =
{z : x ∧ z = y ∧ z = x ∧ y}. We study properties of the congruences on the
Nakano superlattice as well as the quotients which such congruences generate.
Some new hyperoperations are introduced on the quotients and related to the
quotients.
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1 Introduction

Mittas and Konstantinidou have introduced superlattices in [5]. A superlattice is
a partially ordered set (H,≤) equipped with two hyperoperations (i.e. operations
which to every pair of elements from H correspond a set of elements from H) which
satisfy appropriate properties; alternatively, a superlattice is defined in terms of two
hyperoperations which satisfy certain properties; these properties can be used to
introduce a partial order ≤ on H.

Jakubik [2] studies several aspects of the theory of superlattices and defines con-
gruences on superlattices (s-congruences) as a generalization of classical congruences
(l-congruences). He shows that, in general, the quotient of a superlattice with respect
to a s-congruence fails to be a superlattice; then he poses the following natural ques-
tion: what are necessary and sufficient conditions for the quotient of a superlattice to
also be a superlattice?

In this paper we specialize the above question in the context of the Nakano su-
perlattice. This is a special type of superlattice, defined in terms of a hyperoperation
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u first studied by Nakano [7] and its dual hyperoperation t (we call these Nakano
hyperoperations). The Nakano hyperoperations are defined on a lattice (H,≤) which
is assumed in the remainder of the paper to be modular. In Section 2 we explore some
properties of the Nakano superlattice (H,t,u) and its quotient H/R with respect to
a s-congruence R; if R is a s-congruence, then one can define certain hyperoperations
g, f on the quotient H/R. In Section 3 we find conditions which are necessary and
sufficient for (H/R, g, f ) to be a superlattice. In Section 4 we examine some order
relationships on H/R.

2 Fundamental Concepts

Consider a modular lattice (H,≤), with sup and inf operations denoted by ∨ and ∧
respectively. We define the Nakano hyperoperations t,u on H.

Definition 1 For all x, y ∈ H we define:

x t y
.= {z : z ∨ x = z ∨ y = x ∨ y}; x u y

.= {z : z ∧ x = z ∧ y = x ∧ y}.

Remark. To the best of our knowledge, the u hyperoperation was first introduced
by Nakano in [7], which is an investigation of hyperrings (multirings, in the author’s
terminology). Evidently, t is the dual hyperoperation of u. The t hyperoperation
has also been studied in [3, 6] and it plays a central role in the theory of Boolean
hyperrings and Boolean hyperlattices [4].

The hyperstructure (H,t,u) is a superlattice, i.e. t,u satisfy the conditions of
the following proposition (note that in this proposition ≤ is the order of the original
modular lattice). We will call (H,t,u) the Nakano superlattice, since it makes use of
the Nakano hyperoperations.

Proposition 2 (H,t,u,≤) satisfies the following for all x, y, z ∈ H.

S1 x ∈ (x t x), x ∈ (x u x).

S2 x t y = y t x , x u y = y u x.

S3 (x t y) t z = x t (y t z), (x u y) u z = x u (y u z).

S4 x ∈ (x t y) u x, x ∈ (x u y) t x.

S5 x ≤ y ⇒ y ∈ x t y, x ∈ x u y.

S6 If y ∈ x t y or x ∈ x u y, then x ≤ y.

Proof. S1, S2 are obvious. The proof of S3 appears in [7] and also in [1].
Regarding S4 let us prove that x ∈ (x t y) u x = {z : z = u u x, u ∈ x t y }. In

other words, we must show that exists some u ∈ x t y such that x ∈ u u x. But this
is easy. Taking u = x ∨ y one obtains immediately that x ∨ y ∈ x t y ; and since
(x∨ y)∧x = x∧x = (x∨ y)∧x, it follows that x ∈ (x∨ y)ux. One can prove dually
that x ∈ (x u y) t x and this completes the proof of S4.
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x ≤ y ⇒ x ∧ y = x, x ∨ y = y and these yield S5 immediately. Regarding S6:
y ∈ x t y ⇒ x ∨ y = y ∨ y = x ∨ y ⇒ x ≤ y; it can be proved dually that x ∈ x u y
⇒ x ≤ y. ¤

Proposition 3 (H,t,u) satisfies the following for all x, y, z ∈ H.

S6′ y ∈ x t y ⇔ x ∈ x u y.

S7′ x, y ∈ x t y ⇔ x = y.

S8′ y ∈ x t y, z ∈ y t z ⇒ z ∈ x t z.

Furthermore, we have: (S1 − S6) ⇔ (S1 − S4, S6′ − S8′).

Proof. The proof that (S1 − S6) ⇔ (S1 − S4, S6′ − S8′) appears in [5]. The first
part of the proposition then follows from Proposition 2. ¤

As shown in [5], Proposition 3 is true for any superlattice, not only the Nakano
one. In fact a superlattice can be defined in two alternative ways [5]: one may assume
the underlying order ≤ and require that the two hyperoperations satisfy properties
S1− S6; or one may assume that the hyperoperations satisfy S1− S4, S6′ − S8′ and
then define an order on H in terms of the hyperoperations, in which case the resulting
order satisfies S5, S6.

In the remainder of the paper we will use extensively the concepts of equivalence
and congruence. Let us first give the following well known definitions for the sake of
completeness.

Definition 4 An equivalence on H is a relationship R which satisfies the following
∀x, y, z ∈ H:

(i) xRx, (ii) xRy ⇒ yRx, (iii) xRy, yRz ⇒ xRz.

Definition 5 Let R be an equivalence on H. For all x ∈ H the class of x is denoted
by x and defined by x

.= {y : xRy}.

Definition 6 Let R be an equivalence on H. The quotient of H with respect to R
is denoted by H/R and defined by H/R

.= {x : x ∈ H}.

Notation. We use the following notation: for all A ⊆ H we write A
.= {x : x ∈ A}

Remark. It follows from the above notation that for any A, B ⊆ H such that A = B
we have:

(i) ∀x ∈ A ∃y ∈ B such that x = y, (ii) ∀y ∈ B ∃x ∈ A such that x = y.

Let us now turn to the concept of congruence. In classical lattice theory, congru-
ence is defined in terms of operations; since here we will make use of both operations
and hyperoperations, we will need two concepts of congruence. We use the term l-
congruence to describe what is commonly called “congruence” (with respect to the
operations ∨,∧) and the term s-congruence to describe the analogous property with
respect to the hyperoperations t,u.
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Definition 7 An equivalence R on H is called a l-congruence on a lattice (H,∨,∧)
iff for all x, y, z ∈ H we have

x = y ⇒
{

x ∨ z = y ∨ z
x ∧ z = y ∧ z

Definition 8 An equivalence R on H is called a s-congruence on a superlattice
(H,t,u) iff for all x, y, z ∈ H we have

x = y ⇒
{

x t z = y t z
x u z = y u z

.

In the remaining part of this work we will use the expression “s-congruence R
on H” instead of the more correct, but also longer, “s-congruence R on a Nakano
superlattice (H,t,u)”.

We now define two new hyperoperations g,f on the quotient H/R.

Definition 9 Given a s-congruence R on H we define hyperoperations g,f as fol-
lows: for all x, y ∈ H

xgy
.= x t y; xfy

.= x u y.

Remark. The above definition makes sense only if R is a s-congruence. Because, if
for some x, y ∈ H such that x = y we had some z ∈ H such that x t z 6= y t z, then
we would have the following contradiction: ygz = xgz = x t z 6= y t z = ygz.
Remark. If the hyperoperations g, f are well defined, then an s-congruence can be
equivalently defined as follows.

Definition 10 An equivalence R on H is called a s-congruence on H iff for all x, y, z ∈
H we have

x = y ⇒
{

xgz = ygz
xfz = yfz

.

It is worth noting that (H/R, g, f) is in general a proper hyperstructure, i.e.
the g, f hyperoperations yield non-singleton sets. This is seen from the following
proposition.

Proposition 11 Let (H,∨,∧) have either a maximum or a minimum element and
R be a s- congruence on H. If card(H/R) ≥ 2, then (H/R, g,f) is a proper hyper-
structure.

Proof. Assume H has maximum element denoted by 1. Then 1 t 1 = {z : z ≤ 1}
= H and 1 t 1 = {z : z ∈ H} = H/R. Hence card(1 t 1) ≥ 2 and so H/R is a
proper hyperstructure. The same can be proved dually if H has minimum element
denoted by 0. ¤

Proposition 12 Let R be a s-congruence on H, then (H/R, g, f) satisfies for all
x, y, z ∈ H the following:
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T1 x ∈ ( xgx), x ∈ ( xfx);

T2 xgy = ygx, xfy = yfx;

T3 (xgy)gz = xg(ygz), (xfy)fz = xf(yfz);

T4 x ∈ ( xgy)fx, x ∈ ( xfy)gx.

Proof. It appears in [2]. ¤
Remark. In other words, if R is a s-congruence, then (H/R, g,f) satisfies the
first four properties of a superlattice. A natural question is the following: what are
necessary and sufficient conditions for (H/R, g, f) to actually be a superlattice?
This question can be formulated more precisely in terms of the following properties
(T6′ − T8′).

T6′ y ∈ ( xgy) ⇔ x ∈ ( xfy).

T7′ x, y ∈ ( xgy) ⇒ x = y.

T8′ y ∈ ( xgy), z ∈ (ygz) ⇒ z ∈ ( xgz).

Question. What conditions must R satisfy so that (T6′ − T8′) hold?
If (T6′−T8′) hold, then (H/R, g, f) is a superlattice and we can define the order

relationship - as follows.

Definition 13 Let R be a s-congruence on H, such that (T1− T4, T6′ − T8′) hold.
We write x - y iff y ∈ xgy.

Furthermore, if we prove that (T1− T4, T6′ − T8′) hold, then we will know that
the following conditions also hold.

T5 x - y ⇒ y ∈ ( xgy), x ∈ ( xfy).

T6 (y ∈ ( xgy) or x ∈ ( xfy) )⇒ x - y.

3 Convex Congruences

We now explore the connection between convexity and conditions (T6′−T8′). Let us
first give two definitions of convexity on ordered sets.

Definition 14 Given A ⊆ H, we say that A is w-convex iff: ∀x, y ∈ A with x ≤ y
and ∀z such that x ≤ z ≤ y, we have z ∈ A.

Definition 15 Given A ⊆ H, we say that A is s-convex iff: ∀x, y ∈ A and ∀z such
that x ∧ y ≤ z ≤ x ∨ y, we have z ∈ A.

Remark. In other words, s-convexity is a stronger property than w-convexity: A is
s-convex if it is a w-convex sublattice of H.

Let us now define convexity of congruence relationships.
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Definition 16 Let R be an s-congruence on H. We say that R is w-convex iff
∀x ∈ H we have that x is w-convex.

Definition 17 Let R be an s-congruence on H. We say that R is s-convex iff ∀x ∈ H
we have that x is s-convex.

We will now show that: R is w-convex iff (H/R, g,f) is a superlattice. To this
end we will first prove the auxiliary Propositions 18 - 21.

Proposition 18 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we
have:

(i) x ∈ xgy ⇔ x = x ∨ y; (ii) y ∈ xfy ⇔ y = x ∧ y.

Proof. We only prove (i), since (ii) is proved dually.
Suppose that x ∈ xgy = x t y. This implies that exists some z such that z ∈ xty

and z = x. Since z ∈ x t y it follows: z ∨ x = z ∨ y = x ∨ y ⇒ z ∨ x = z ∨ x ∨ y =
x ∨ x ∨ y ⇒ x ∨ y ∈ z t x ⇒ x ∨ y ∈ z t x = x t x. Now x ∨ y ∈ x t x implies
that exists some w such that w ∈ x t x and w = x ∨ y. Since w ∈ x t x it follows:
x ∨ w = x ∨ x = x ⇒ w ≤ x. Hence we have w ≤ x ≤ x ∨ y; since w = x ∨ y, by
w-convexity of R it follows that x = x ∨ y.

Conversely, suppose x = x ∨ y; we also have x∨y ∈ xty and hence x ∨ y ∈ x t y
= xgy. It follows that x ∈ xgy. ¤

Proposition 19 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we
have:

x ∈ xgy ⇔ y ∈ xfy.

Proof. By Proposition 18 we have: x ∈ xgy ⇒ x = x ∨ y. Now, it is easy to check
that for all u,w ∈ H we have u∧w ∈ uuw. In particular, y = (x∨y)∧y ∈ (x∨y)uy ⇒
y ∈ (x ∨ y) u y = (x ∨ y)fy = xfy. So we have shown that x ∈ xgy ⇒ y ∈ xfy. It
can be shown dually that y ∈ xfy ⇒ x ∈ xgy. ¤

Proposition 20 Let R be a w-convex s-congruence on H. Then for all x, y ∈ H we
have:

(i) x, y ∈ xgy ⇒ x = y; (ii) x, y ∈ xfy ⇒ x = y.

Proof. We only prove (i), since (ii) is proved dually. From Proposition 18 we have

x ∈ xgy ⇒ x = x ∨ y
y ∈ xgy ⇒ y = x ∨ y

}
⇒ x = y.

This completes the proof. ¤

Proposition 21 Let R be a w-convex s-congruence on H. Then for all x, y, z ∈ H
we have:

(i) y ∈ xgy, z ∈ ygz ⇒ z ∈ xgz; (ii) x ∈ xfy, y ∈ yfz ⇒ x ∈ xfz.
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Proof. We only prove (i), since (ii) is proved dually. From Propositions 19 and 18
we have: (a) y ∈ xgy ⇒ x ∈ xfy ⇒ x = x ∧ y and (b) z ∈ ygz ⇒ z = y ∨ z. Now
y ∨ z = (x ∧ y) ∨ (y ∨ z) ∈ (x ∧ y) t (y ∨ z). Using this and (a) and (b) we have
z = y ∨ z ∈ (x ∧ y) t (y ∨ z) = x t z = xgz. ¤

When R is a s-congruence, Property T7′ implies Properties T6′, T8′, as can be
seen from the next proposition.

Proposition 22 Let R be a s-congruence on H. Then T7′ ⇒ T6′, T8′.

Proof. We will first prove the following: if T7′ holds (i.e. for all x, y ∈ H we
have: x, y ∈ xgy ⇒ x = y) then ∀x ∈ H we have that x is w-convex. To show this,
take any x ∈ H and any y, z ∈ H such that: (a) x ≤ z ≤ y and (b) x = y. We have:
z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z. Similarly, y = y ∨ z ∈ y t z ⇒ y ∈ y t z.
Hence (by T7′) y = z and so x is w-convex. Since w-convexity of R implies T6′ by
Proposition 19 and T8′ by Proposition 21, the proof is complete. ¤

We are now ready to prove that: R is w-convex iff (H/R, g,f) is a superlattice.

Proposition 23 Let R be a s-congruence on H. Then R is w-convex iff (H/R, g,
f) is a superlattice.

Proof. (i) Assume that R is w-convex. Then from Propositions 19, 20, 21 re-
spectively, it follows that properties T6′, T7′, T8′ hold. Furthermore, since R is an
s-congruence, (T1− T4) hold by Proposition 12. It follows that (H/R, g, f) satisfies
(T1 − T4, T6′ − T8′) and hence is a superlattice.

(ii) Assume (H/R, g, f) is a superlattice. Take any x, y, z ∈ H such that: (a)
x = y and (b) x ≤ z ≤ y. Now z = x ∨ z ∈ x t z ⇒ z ∈ x t z = y t z; similarly
y = z ∨ y ∈ z t y ⇒ y ∈ z t y = y t z. Since (H/R, g,f) is a superlattice, it follows
that T7′ holds; from T7′ and z ∈ y t z, y ∈ z t y it follows that y = z. Hence R is
w-convex. ¤

Before proceeding, let us provide some additional notation and prove an auxiliary
proposition.
Notation. For all A, B ⊆ H we define

A ∨ B
.= {x ∨ y : x ∈ A, y ∈ B}, A ∧ B

.= {x ∧ y : x ∈ A, y ∈ B}.

Proposition 24 Let R be an equivalence relation on H. If for some z ∈ H we have
that z is a sub-∨-semi-lattice of H, then z ∨ z = z.

Proof. Clearly z ⊆ z ∨ z. Now, say u ∈ z ∨ z; then exist x, y ∈ z such that
u = x∨ y. Since z is a sub-∨-semi-lattice, it follows that u = x∨ y ∈ z. So z ∨ z ⊆ z.
¤

Let us now continue the study of properties of s-congruences. We have seen that
when R is a s-congruence on H, then w-convexity of R is equivalent to (H/R, g, f)
being a superlattice. The next proposition shows that a number of other properties
are equivalent to the above two.

Proposition 25 Let R be a s-congruence on H. Then the following are equivalent.
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1. For all x ∈ H, x is a sub-∨-semi-lattice of H.

2. For all x ∈ H, x is a sublattice of H.

3. For all x ∈ H, x is w-convex.

4. For all x ∈ H, x is s-convex.

5. (H/R, g, f) is a superlattice.

Proof. We will show that (1) ⇒ (3) ⇒ (2) ⇒ (1); also that (2) ⇔ (4) and (3) ⇔
(5).

(1) ⇒ (3): Suppose that for all x ∈ H, x is a sub-∨-semi-lattice of H. Take
any A ∈ H/R and any x, y, z ∈ H such that: (a) x = y = A and (b) x ≤ z ≤ y.
From (a) we have: x t z = y t z. From (b) it follows that z = x ∨ z ∈ x t z ⇒
z ∈ x t z = y t z. Hence exists some u ∈ y t z such that: u = z. But u ∈ y t z ⇒
u ∨ y = u ∨ z = y ∨ z = y ⇒ u ∨ z = y = x. Also, u ∨ z ∈ u ∨ z = z ∨ z = z (since z
is a sub-∨-semi-lattice). Hence z = u ∨ z = x = A. So for all x ∈ H, x is w-convex.

(3) ⇒ (2): Suppose that for all x ∈ H, x is w-convex. Take any A ∈ H/R

and any x, y such that x = y = A. Then x t x =x t y. Now x ∨ y ∈ x t y ⇒
x ∨ y ∈ x t y = x t x. Hence exists some z such that: (a) z ∈ xtx and (b) z = x ∨ y.
We have z ∈ x t x ⇒ x ∨ z = x ∨ x = x ⇒ z ≤ x. So we have z ≤ x ≤ x ∨ y and
z = x ∨ y; by w-convexity of R it follows that x ∨ y ∈ x = A. We show dually that
x ∧ y ∈ A and so we have established that for all x ∈ H, x is a sublattice of H.

(2) ⇒ (1): This is obvious.
(4) ⇒ (2): This is obvious.
(2) ⇒ (4): Assume that for all x ∈ H we have that x is a sublattice. Then, we

have already established that, for all x ∈ H, x is also w-convex. Since for all x ∈ H,
x is a w-convex sublattice, it is also s-convex.

(3) ⇔ (5): This was proved in Proposition 23. ¤

4 A New Order Relationship

We have already noted that: if (H/R, g, f) is a superlattice (equivalently, if R is a
s-convex s-congruence on H) the order relationship - can be defined on H/R in terms
of either g or f. We now introduce two additional relationships: ¹ and v. Then we
show that -, ¹ and v are equivalent when (H/R, g, f) is a superlattice.

Definition 26 Let R be an equivalence on H. For all A, B ∈ H/R we write A ¹ B
iff: ∀x ∈ A,∀y ∈ B we have x ∧ y ∈ A and x ∨ y ∈ B.

Proposition 27 If R is a s-convex equivalence on H, then ¹ is an order relationship
on H/R.

Proof. We will show that for all A,B,C ∈ H/R we have: (i) A ¹ A, (ii) A ¹ B
and B ¹ A ⇒ A = B and (iii) A ¹ B and B ¹ C ⇒ A ¹ C .
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(i) Take any x, y ∈ A. Since A is s-convex, x ∨ y ∈ A and x ∧ y ∈ A.
(ii) Take any x ∈ A and any y ∈ B . Now A ¹ B ⇒ x ∨ y ∈ B; and B ¹ A ⇒

x ∨ y ∈ A. Since A,B are classes and A ∩ B 6= ∅, it follows that A = B.
(iii) Take any x ∈ A , any y ∈ B and any z ∈ C . Now x ∧ y ∈ A, x ∨ y ∈ B,

y ∧ z ∈ B, y ∨ z ∈ C. Since x ∧ y ∈ A, y ∧ z ∈ B and A ¹ B, it follows that
x∧ y ∧ z ∈ A. Also, by assumption x ∈ A. Since x∧ y ∧ z ≤ x∧ z ≤ x, by s-convexity
it follows that x ∧ z ∈ A. We can prove similarly that x ∨ z ∈ C. Hence A ¹ C . ¤

Proposition 28 Let R be an equivalence on H. If ¹ is an order relationship on
H/R, then for all A ∈ H/R we have that A is a sublattice.

Proof. Take any A ∈ H/R and any x, y ∈ A. Since A ¹ A, it follows that
x ∧ y, x ∨ y ∈ A. ¤

Definition 29 Let R be an equivalence on H. For all A, B ∈ H/R we write A v B
iff:

(i) ∀x ∈ A ∃y ∈ B such that x ≤ y; (ii) ∀y ∈ B ∃x ∈ A such that x ≤ y.

Proposition 30 Let R be an equivalence on H. For all A,B,C ∈ H/R we have:

(i) A v A; (ii) if A v B and B v C, then A v C.

Proof. (i) For all x ∈ A we have x ≤ x, so A v A.
(ii) Take any x ∈ A; then exists y ∈ B such that x ≤ y. For this y exists z ∈ C

such that y ≤ z. Hence for every x ∈ A exists some z ∈ C such that x ≤ z. We can
similarly prove that for all z ∈ C exists some x ∈ A such that x ≤ z. ¤

Proposition 31 Let R be a w-convex equivalence on H and A,B ∈ H/R. Then

(A 6= B and A v B) ⇒ @(x, y) ∈ A × B such that y < x.

Proof. Assume that exists some x ∈ A, y ∈ B such that y < x. There also exists
some y1 ∈ B such that x ≤ y1. Hence we have y < x ≤ y1 ⇒ x ∈ B (by convexity)
which implies that A ∩ B 6= ∅. But A, B were assumed to be distinct classes, so we
have reached a contradiction. ¤

We will now prove that: if (H/R, g, f) is a superlattice then -,¹,v are equiva-
lent. To this end we first need an auxiliary proposition.

Proposition 32 Let R be an equivalence on H. If R is s-convex, then for all A ∈
H/R we have: (i) A ∨ A = A, (ii) A ∧ A = A.

Proof. We will only prove (i), since (ii) is proved similarly. Clearly A ⊆ A ∨ A.
Now take any x ∈ A∨A, then there exist y, z ∈ A such that x = y∨ z. But, y∨ z ∈ A
by s-convexity of A. So A ∨ A ⊆ A. ¤

Proposition 33 Let R be a s-convex s-congruence on H. Then for all A,B,C ∈
H/R the following are equivalent: (i) A - B, (ii) A ¹ B, (iii) A v B.
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Proof. We will prove (i) ⇔ (ii), (ii) ⇔ (iii).
(i) ⇒ (ii). Assume that A - B. Take any x ∈ A, y ∈ B. Equivalently y ∈ xgy and
from Proposition 18 we have that y = x ∨ y, i.e. that x ∨ y ∈ y. Similarly we prove
that x ∧ y ∈ x. Hence x ¹ y, i.e. A ¹ B.
(ii) ⇒ (i). Assume that A ¹ B. Take any x ∈ A, y ∈ B. Then x ∧ y ∈ A = x ⇒
x ∧ y = x. This, by Proposition 18, implies x ∈ xfy and so x - y, i.e. A - B.
(ii) ⇒ (iii). Assume that A ¹ B. Take any x ∈ A, y ∈ B. Then x∧ y ∈ A; so for any
y ∈ B exists x1 = x ∧ y ∈ A such that x1 ≤ y. Similarly we can show that for any
x ∈ A exists y1 = x ∨ y ∈ B such that x ≤ y1. Hence A v B.
(iii) ⇒ (ii). Assume that A v B. Take any x ∈ A, y ∈ B. We will consider
three cases for the relationship between x and y and we will show that in very case
x ∧ y ∈ A, x ∨ y ∈ B.

(a) If x ≤ y, then x ∧ y = x ∈ A, x ∨ y = y ∈ B.

(b) Assume y < x. Since A v B, we must have A = B; because if A 6= B then,
by Proposition 31, we cannot have y < x. Furthermore A is a sublattice, so
x ∧ y ∈ A and x ∨ y ∈ A = B.

(c) Assume x||y. Since A v B, exists some x1 ∈ A such that x1 ≤ y. So x ∧ x1 ≤
x ∧ y ≤ x and x ∧ x1, x ∈ A; then by convexity x ∧ y ∈ A. Similarly it can be
shown that x ∨ y ∈ B.

So we have shown that for all x ∈ A, y ∈ B we have x∧ y ∈ A, x∨ y ∈ B, i.e. that
A ¹ B. ¤
Remark. Hence when R is a s-convex s-congruence, the v relationship is an order.

In the case of main interest to us, namely when (H/R, g,f) is a superlattice, the
three relationships -, ¹, v are equivalent and they can be denoted by a single symbol.
In such a case we will use the symbol ¹ to denote this order on the superlattice
(H/R, g, f). Let us now establish further properties of the ¹ order.

Proposition 34 Let R be an s-convex s-congruence on H. Then for all x, y ∈ H we
have:

x ≤ y ⇒ x ¹ y.

Proof. We have x ≤ y ⇒ x = x ∧ y ⇒ x = x ∧ y. But then x ¹ y by Proposition
18. ¤

Corollary 35 Let R be an s-convex s-congruence on H. Then for all x, y, z ∈ H we
have:

(i) x ≤ y ⇒ x ∨ z ¹ y ∨ z (ii) x ≤ y ⇒ x ∧ z ¹ y ∧ z.

Proof. This follows immediately from Proposition 34. ¤

Proposition 36 Let R be an s-convex s-congruence on H. Then R is a l-congruence
on H, i.e. for all x, y ∈ H we have:

(i) x = y ⇒ x ∨ z = y ∨ z, (ii) x = y ⇒ x ∧ z = y ∧ z.
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Proof. We only prove (i), since (ii) is proved similarly. x = y ⇒ x t z = y t z.
Since x ∨ z ∈ x t z, exists some u ∈ y t z such that x ∨ z = u. Since u ∈ y t z it
follows that u ≤ y ∨ z and then (by Proposition 34) x ∨ z = u ¹ y ∨ z. Similarly we
prove y ∨ z ¹ x ∨ z. Hence y ∨ z = x ∨ z. ¤
Remark. The converse is not true, i.e. an l-congruence (which is necessarily s-
convex) is not necessarily an s-congruence. This can be seen in the next example.

Example 37 Take the lattice of Figure 1 and let R = {A,B}, A = {0, x1}, B =
{x2, 1}. It is easy to check that R is a l-congruence, but it is not a s-congruence. For
instance 0ux1 = {0}, x1ux1 = {x1, x2, 1}, 0 u x1 = {0} = {A}, x1 u x1 = {x1, x2, 1}
= {A,B}; so 0 = x1, but 0 u x1 6= x1 u x1.

Example 38 In fact, the above example is also related to the following proposition.

Proposition 39 Let (H,∨,∧) be a chain and R be a s-congruence on H. If there is
some x ∈ H such that card(x) ≥ 2, then H/R = {H}.

Proof. Given x such that card(x) ≥ 2, choose some y 6= x such that x = y. Since
(H,∨,∧) is a chain, we will have either x < y or y < x. Without loss of generality,
take x < y. Then it is easy to check that x t x = x t y = y. Define A = {z : z ≤ x};
then it is easy to check that A = x t x. Now take any z ∈ A = x t x; then z ∈ x t x
= y, i.e. z ∈ z = y. Hence A ⊆ y. Defining B = {z : x ≤ z}, one can show similarly
that B ⊆ y. Hence H = A ∪ B ⊆ y ⊆ H and so the only class of H/R is y = H. ¤
Remark. Hence, if (H,∨,∧) is a chain, the only s-congruences on H are R1 = {H}
and R2 = {{x}}x∈H . The connection to Example 37 is now obvious.

Proposition 40 Let R be an s-convex s-congruence on H. Then for all x, y ∈ H we
have:

(i) x ¹ y ⇒ x ∨ z ¹ y ∨ z, (ii) x ¹ y ⇒ x ∧ z ¹ y ∧ z.

Proof. We only prove (i), since (ii) is proved similarly. Assuming x ¹ y, it
follows that exists some y1 ∈ y such that x ≤ y1. Then (from Corollary 35) we
have x ∨ z ¹ y1 ∨ z. But, from Corollary 36 we have y1 ∨ z = y ∨ z and the proof is
complete. ¤
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