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Abstract

The first section discusses the existence of canonic nonlinear connections
in first order jet spaces J* (T, M) endowed with a Lagrange structure and are
derived the Euler-Lagrange equations for the Kronecker case §(t, z, y)(l )(]) =

)5
heB(t, 2)®gi;(t,z,y). In Section 2, emerging from the Cartan linear N-connection,
are presented the general Einstein equations with sources, which are further
specified for the ARL (almost Riemann Lagrangian) jet case, and for the Rie-
mannian jet linearized weak gravitational metric case as well. Are derived as
well the deflection-generated associated electromagnetic tensors, and are stated
the corresponding Maxwell equations with sources for the general geometrized
jet case. Section 3 describes the paths and the Lorentz curves of the generalized
Lagrangian model, emphasizing the ARL case.
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1 Lagrangians and nonlinear connections on J!(T, M)

Consider ¢ = (E=JYT, M), w,T x M), the first order jet bundle of mappings ¢ : T —
M, where T' and M are C* real differentiable manifolds with dim7 = m, dimM =n
respectively. The local coordinates in E will be denoted by

(tav xiv yA)(a,i,A)EI* = (y“)MEIa

where we consider the sets of indices
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I=0,Ul, Ip=1IyUly,, h,=m+n+1,m+n+mn
In,=1,m, In,=m-+1m+n, I, =1, xIp, xI,.
Throughout the paper, the indices will implicitly take values as follows:
o,B,...€1n; 4,4,... €1ln,; AB,... €L Ap,... €1
When appropriate, for any index A = m +n +n(i — m — 1) + «, we shall identify
A= (1) and y* = 2() = gfa
Primarily, E can be endowed with a Lagrangian (also called [11] the extended
Lagrangian of electrodynamics), having the form

L(t7 Z, y) = gAB(t7 Z, y)yAyB + UA(t7 x):yA + (I)(t7 1‘), (1)

with gap nondegenerate tensor field, Ua(¢,x) a 1-form on E and ®(¢,z) a scalar
function on 7" x M.

The associated Euler-Lagrange equations produce a spray which under certain
restrictive conditions, provides further a non-linear connection N = {N f} wEln, AT,
on E which produces a splitting [12, 7]

TE = HE & VE, (2)

where VE = Ker m,. As well, N determines the local adapted basis of X(E)

B = {5047 5i75A}(a,i,A)€I* = {5H}H€I7 (3)
where we denote briefly 0, = 8%’ 0; = a?ci and
o= 0 — NAGa, 0= 0~ NAGa, 64= 04 = ()
« « o 5 % () i 5 6yA'
The dual basis of B in (3) writes then
B* = {5(17 6ia 6A}(a,i,A)EI* = {6M}u617
where
6% = dt®, & =dat, 64 =6y = dy? + NAdt> + NAda'. (5)

An open problem is related to the existence of Lagrangian-produced non-linear con-
nections in the general Kronecker case ([10]).

To this goal, we state the following result.

Theorem 1. The Euler-Lagrange equations for the Kronecker case

JAB = g( )() = hag(t7 x)gij(tvxvy)a (6)

i\(J
a/\p

where hag and g;; non-degenerate tensor fields, are
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E' (L) = h*? {yfw +yhgity () “0(16) 95y + 3Ysy y(a)y (& >gi’“6§g)(k)9mj} +

+39%* (hﬁ”y(?)y(i)y(a)azmgmj — 0 neylyG)yle) - s 8(5)%) -

—|—ho‘f6y<é¢)y(g)

) j l )

el = oy On 2] 4 5hy ) [35] g™ 001,
J . i J :

—heBy() g0, g + 1ny(B)y () ga2 o g

— 3190y (5)y () - 9o - g0 g1 — %giky(i’)a[kU(g)+

+

%gik (U(l;) |§5| + (9QU(‘I§) — 8kcI>) JrTi(L) =0, Vie Ih2,
(7)
with
TiL) = L ho 1 gy )y () kg hs. — hoonoe gy sy () y(5) gik s+
+igikh6€y(£’)6lhég (Zho‘ﬁgk]y(%) + hﬁvy(g)y(’?)a(g)glm + U(’;)) — (8)
_%glkhaﬁakh(xﬁ7

where we denote Tlig] = Tioj — Tji and T{ijy = Tioj + Tj i Proof. By tedious
straightforward computation, by applying the Hilbert-Palatini variational principle,
and the relations

OhP o) et
dw 7ha6h666wh667 Ohge = 7h0‘6hﬁ5,

O N a8, s, W Onhse =2

b

B
af
where we have denoted |h| = det(hag), -1, one obtains the Euler-Lagrange equa-
tions (7) attached to the Lagrangian density £ = L+/|h|. O

Particular cases.

I. In case that U depends only on the jet-coordinates, e.g., for the Caratheodory
type Lagrangian ([8]), where Uy = Jix)p(y) is a gradient, for the autonomous La-
grangian case with m = 1 and h;; = 1, one gets easily the results on T'M obtained
in [8].

II. In the case that h,g is a metric tensor on 7" and
gaB =G ¢) = (0955t 2, v),
the theorem leads to the particular results including mainly the calculation of the jet
spray in terms of L for h— reducible Lagrangians which were derived in [12].

III. The AFL (almost Finsler Lagrange) jet subcase, in which g;;(¢,z,y) is
0—homogeneous in y, leads in the m = 1 autonomous case to the AFL case con-
sidered in [8].
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The three subsequent cases are important subcases of the AFL jet case.

IV. In the ARL (almost Riemann Lagrange) jet case, where

JAB = 9(3)( ) = h8(t)gi;(t, ), 9)

i
]

if hag is a metric tensor on T', the theorem produces the spray and the nonlinear

connection from [12], [10]. Namely, the Lagrangian L in (1) produces the canonical

i

nonlinear connection N = (N é N j(“)) of coefficients

i i . ; 1 .
(), Nj(a) = iy + 29" (@0agn + hasUpy)). (10)

NG

v
af

)i

where we denoted the hg-curl of U by U( )i = Jh U(k]). The Lagrangian L is in this
s

case a Kronecker h®? — h—regular Lagrangian and produces by
- 1.9
9gAB = §3ABL> (11)

the vertical metric tensor field gapg.
V. More particular, in the ARLS (almost Riemann Lagrange separated) jet case
in which g;; is a metric tensor field on M, i.e.,
gan =G ) = D (0)gi5 (), (12)
if hog is a metric tensor on 7', the theorem leads to the spray and non-linear connection
from [11]. The two nondegenerate metric tensors g and h and the potentials Uy,

determine the nonlinear connection N = (N, ﬁ(") N j(a)) of coefficients

40

N;(f‘) _ NG = |5l () + Ly hagUx);- (13)

k
’ J 4 B

.
ap
VI. The ALML (almost locally Minkowski Lagrange) jet case, where in a subatlas

A of F one has
gaB =9 () = hB(t, x)gi5(y), (14)

(5
necessarily requires that T'x M be A—locally affine. This extends the case J'(R, M) =
TM considered in [8].

2 Einstein equations on J'(T, M). Special cases.

Assuming fixed on E a non-linear connection N = {NZ N/}, we may consider a
linear connection V = {Lflu} apuvel in B, whose coefficients relative to the adapted
basis (3) are provided by

MVs5,0,) =L, YA\ p,v €I (15)

=L,
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these determine 33 = 27 distinct subsets, according to the three sets of indices. The
torsion 7 and the curvature R of V have the adapted components defined by the
relations

NT(8,,64)) = T,

pvo

5)\(7?’(61/,5#)59) = RpA,u.l/, vA?,u‘vva € I
The subsets of nontrivial coefficients of V can be reduced subsequently by consid-
ering the following particular classes of connections:

1. As first particular case, we consider the set of connections I'(N) (called ” N-
connections”) whose covariant derivative preserves the sections S(HE) and S(VE).
Their coefficients form 3 - 22 + 3 = 15 generally nonvanishing subsets related to the
three index classes, due to the relations

Ly, =0, V(A\p) € (Inx L) U (I, x I). (16)

Note that if E carries a metric structure, the Levi-Civita (metric and torsionless)
connection is not generally a member of I'(V) [7]. It can be easily shown that the
associated torsion and curvature of a connection V € I'(N) satisfy

Ts- =0, Vwel,,B,Cel,,

(17)
RPXMV:O7 VI’L?V€I7 (>\7p) E (Ih XIU)U(I’U XIh)7
and hence the torsion subsets reduce from 32 to 25 and the curvature ones from 3*
to 5-32.

2. As further subcase, we consider the special N-connections T',(N), whose covari-
ant derivatives preserve the distributions Span(da)aer,, and Span(éi)ier,,. They
have just 9 sets of generally nonvanishing coefficients and besides (16), they satisfy
as well

L;);u =0, Vv ()‘7/1') € (Ih1 X Ihz) U (Ihz X Ihl)’ (18)

As consequence, we have e.g.,

Rp)\,uv:()v vﬂaVEIa(/\ap)E(Ihl XIh2)U(Ih2 XIhl)'
and the number of torsion and curvature sets of I', (V) reduce to 12 and 18 respectively
[12], [10].

3. Among the connections I',(N) we evidentiate the so-called ”I'-linear h-normal
connections” I',,(N) [10], which depend on the four essential sets of components

V= {ng Lé'yv j‘ku L;A}v (19)
and have the other 5 sets provided by

a — &) _sepi i a =) _ el
L, =L =800k — 6|2, L =L% =380 |4,

W) (5)k ¢

(.
A — () _ 7 a a
LBC:L( )0—55%0’ L%, =0, L§,=0.

i

3
i
[e3
J
B
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Here the number of torsion and curvature sets reduces to 9 and respectively to 7.

In the general case when hog(t) and g;;(t,z,y) in the Lagrangian L in (1) are
non-degenerate, we endow E with a semi-Riemannian metric

G = hap(t)dt™ @ dt’ + gi;(t, 2, y)da’ @ da’ + Gap(t,z,y)0y" @ 6y®,  (20)

h g 9

B

with gap = g (1) = hB(t)g:;(t, z,y). Then within I',,(N) we evidentiate the Cartan
connection ([12], [10]) which is metrical and satisfies the conditions

i Yik i i _

This exhibits generally (for m > 1) just 8 torsion sets and 7 curvature sets, and 5
torsion sets provided that g is y-independent. Its essential four sets of coefficients
(19) specify in this case to

[e3%

i 1 ik , i |
, Ly, =39 0~ 9kj> ij_‘jk

Ly, =
B B )
o (21)
Lia=Lig) = 2970 (1) 9m = 0(,)9ik).
Its essential torsion coefficients are given by [10]
(&) _ o &) s i1
T’Y (;) = 8(;3)N7 6aLj7 =+ 6jLOé’Y
) _g, N sy
TGy = 0N — 0L,
i . _ 22
T (o) 5, - o]L! #2)

() (&) )
Ts's = —Lips Tja=1Lja

A _ A A _ A A _ A
Tﬁ v 5[’YNB]7 Tﬁ j 6[jNﬁ}7 T; i 6[jNi]7

(3)

and explicitly provided for the ARL case in [12, Theorem 4.4]. The nontrivial non-
holonomy coefficients w,i‘,j are provided by the relations

[0, 60] zw;‘l,(SA ETlﬁ,éA, Yu,v € I,

[5u7(SB] = w;?B(SA = 6BN/14(5A, V,u ey,

and explicitly provided for the ARL case in [10, Theorem 2.3]. As well, the nontrivial
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curvature N-tensor fields are
R = 95l + L, Ly

_— . 5 1 )
Rjzkm = 6[kL}m] + Lj[mL?Bk] + L;’ATTék

i _ i i i A
Ryi, =0 Lh ) + L5 LL ) + L, T4, W€ I, (23)
) — ) % ) B
Ryl a=0aLi, — Lt +LipTE Vuel,

RjiCD = 6[DL§‘C] + L?[CLZD]’

and )
o _ i ip B
R({;) v = 5£Rj » + iR, "
(&) ;
R, =0 e

(&) _cpi
R ya = O0R ua e 1

where we denoted by |a, |i and |A the covariant derivations given by Vs, , for
i € In,, In, and I, respectively.

The nontrivial associated Ricci N-tensor fields are

Rog =R}, . Rio=RE,, Rij =R, Ria=—Rl,,

iak? 11k
Ry _Rk R“—Rk RJv_Rk (24)
()8 = Thph)y @I T i) THEG) T GG
and the scalars of curvature
Ry =h*®R.s, R, =g"Rij, R,=§"PRap. (25)
Then, denoting R = Rj, + R4 + R,, the Einstein equations with sources write
_ 1 —
Bop = 2Rhop = rTap 0=Toi  0=Taa.
Rij — 3Rgij = vT;; Rio = kTio, Raa = KTpq (26)

A= KT, kT
Rap — $Rgap = kTas, Ria=rTia, Rai = wTas,

where 7 = 7,,0" ® 6¥ € T (E) is the energy-momentum tensor field and  is the
cosmological constant. They satisfy the conservation laws

EM

vip

= kT V,U,GI:I}“UI]—LZUIU,

)
v

where E,, = R, + %RG uv  is the Einstein N-tensor field and the indices are raised
by means of the metric G in (20) on E.

Regarding the energy-momentum tensor field 7 = {T},, }, we distinguish several
remarkable cases [2] which extend the ones discussed in [16]:
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I. The case of electromagnetic field source, when
p_ 1 pm
T = Fupbf — ZGWF For.
Here the electromagnetic 2-form
F = Fa,0y" A Sy*, (27)
has the nontrivial components
Fap =Fip=73 (h gy (b )
Ja =F, _ 1 1 _ 1 (k)hory
a5 =R =aduyy =2y =2 W) (28)
F =F, i\ = %§
v =P = 89 er )
Essentially, F' is produced by the deflection tensor fields
At =4Vs,C, pel, Ael,,

generated by the Liouville field C = y“d4. Note that the raising/lowering of the
indices was performed using the metric G, producing the associated N-tensor field

F=FFs, o6, F$ =h*PFap, FY = g¥Fa;, F{ = g“PFap. (29)

The energy-momentum tensor fields have in this case the essential coeflicients given
by

Top = FaaFppg*? — LhagF. Toi = Foo Fpig®?
Tij = FaiF'p;g*" — ;9i;F Toa = FoaFpag®”
Tap = FacFppg®P — $9apF. Tia = FoiFpag®?

where F, = FACFBDgABgCD

Moreover, we have the following

Theorem 2. The 2-form F is subject to the two sets of the Maxwell extended
equations with sources

Faomy = 3ldepir + dymTH; + deye T — (T + Lio Ty

1 _ J Jj _mC .
Fiys) = 2ldei(s) T deamTgiey T dercTse = 0T+ LicT v,
SFesie =38 (Lityey +dye) T

SE ) =9 SFoee =0
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gBCFBa\C = —4mJ,
9P Fpijc = —4nJ;
9P Fapic + 97 Fay)j + h*P Fag s = 4mJ 4,
where J = J, 0" € X*(E) is the adapted electric current, and where we denoted by S
the cyclic summation of the corresponding indices below.
II. In the case of a perfect fluid with the extended velocity vector field
VY =VH§, € X(E), the energy-momentum N-tensor field is given by
,Zuu = (P+ ,D)VMVV +pG,um

where p is the mass-energy density, p is the pressure and, in the 4-dimensional Lorentz-
metric case V satisfies the condition V*V; = —1. In particular, for p = 0, is obtained
the case of cosmologic dust (presureless fluid).

III. In the case of source given by the Klein-Gordon field ®, we have
1 s
%u = CI)|M(I)|V — §(G pq)‘ﬂ.‘bm + mQ‘I)Q)GW,

where m is the mass, and the field ® satisfies the condition G ®,,, = m*® [16].
IV. In the case of the radiation field, we get

7., = ®’K,K,,

where the N-vector field K = K#"§, € X(E) obeys in the Lorentz metric case the
condition G, K*K" = 0.

Particular cases.

I. In the ARLS case, the vertical metric N— tensor field g is produced by the
Lagrangian via (11), and the nontrivial coefficients of the Cartan connection are [11]

L%‘V:|§‘7|, ;'k:’;k"
They have the non-trivial torsion N —fields

(nL ) s ('m ) h gmk

Top' = ~Roaprds T " = B+ =5 Uy

7\ = _hass™ (18 g 40U

o T Hasm (5)s T TR (E)ih

where R ; and R;'- ; are the nontrivial curvature tensors of hg and g;; respectively;
the Einstein equations contain the classical ones on (T' x M, h + g),

Rr+R
Rop — = 5"2hap = kTap

Rp+R
Rij — =5

gij = KTij

Rn+Ry 1o
— b gy = KT )
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II. In the ARLS case with m = 1, n = 4 and hy; = 1, one recaptures as particular
case, the pseudo-Riemannian weak gravitational model endowed with the metric

9ij(x) = ni5 +eij(x), (30)

where the weakness of the gravitational field g;; is expressed by its decomposition into
the flat Minkowski metric n;; = diag(—1,1,1,1) and a small perturbation ¢;;(x), a
symmetric tensor field with |e;;(x)| << 1. We note that the perturbation ¢;;(x) has to
satisfy certain supplementary gauge conditions ([3]). In the linearized approach, the
indices are raised via n;j, e.g., €”® = n"*n*/¢;;. This point of view permits to develop
the linearized version of a given generalized model of General Relativity, in which the
symmetric tensor field corresponds to a weak pseudo-Riemannian gravitational field
[3]. In the linearized case, one has ’;k‘ = ¢l = n"|s; jk| and the Einstein equations
get the typical form corresponding to weak gravitational waves

1
Rij — §R7’Lij = (Dé‘ij + 8%6 — 6fjsaf}) — nin = HTij,

1
2
where ¢ = n¥ €ij, Ri; is the Ricci tensor of g;;, R is the scalar curvature and "0
denotes the d’Alambertian

O =85 + 0% + 05y + 033 = =03, + 02, + 02, + 02,

3 Paths and Lorentz equations
Let ¢: J = [a,b] C R — E be a smooth curve, whose image lies in a chart U C E,

c(s) = (t%(s),2'(s),y" () = ("(5)), Yt € J,

and let V be a linear N —connection on E.
m
Definitions. a) The field V = (sd% defined on ¢ will be called covariant velocity
field of the curve ¢. The components of V are explicitely given by

(o o (;ya . [ )
{V'}er = (t ,x,dgzyA—l—Ng‘tﬁ—FN]ij) ,
(evyi,A)e L
where we denote by dot the s-derivation. We have also denoted by F = F*¢,,, where

H no %
Fh = VdVS :t % + Lyl/LpVDva

the covariant force on ¢, which provides the motion of the test-body along c.

b) We shall say that ¢ is a stationary curve with respect to V iff F = 0 along the
curve.

c¢) The curve c is called h—curve, if m,(V) = 0, and v—curve, if 7,(V) = 0, where
by 7, and 7, we denoted respectively the h— and v—projectors of the canonic splitting
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induced by N. If a h — /v—curve satisfies also the extra condition F = 0, then it is
called h — /u—path, respectively.

Analytically, these curves are described by the following
Theorem 3. Let c: JJ C R — E be a curve. Then the following hold true:
a) ¢ is a h—curve iff

a

oy

VA=0 & - =0 & "+ N2+ Ni3d = 0. (31)
b) ¢ is a v—-curve iff
VE=0,Vuel @(SZ/—M—OV €lp, Uly, &
=V, v h ds = U, Vi h1 ha (32)

< c(s) = (to, o, y(s)),s € J.

¢) c is an h—path ("stationary h—curve or “horizontal geodesic”) iff besides (31)
it satisfies

% y
s + L,’L/LPV VP =0, Vu € I,. (33)

Note that the implicit sum in the right term involves just horizontal index types.
d) c is a v—path ("stationary v—-curve or "vertical geodesic”) iff besides (32) it
satisfies
sp4
ds

The implicit sum in the right term involves just vertical index types.

+ LAVEVe =0, VA€ I,. (34)

We consider the electromagnetic tensor fields in (28) and (29), the metric G in
(20), a fixed nonlinear connection N, and the Cartan connection attached to G having
the coefficients (21). Then the Lorentz equations attached to G, N and V have the

generic shape
AYAZ A\VAZS
Gup—— =F,V* &
P ds Av ds
where V = V¥, is the covariant velocity along the considered extended path of the
moving test-particle. In detail, the Lorentz equations have the form

= F v (35)

t +LG1PVC + LogidVE + LY 1P+

iy 5. iy (36)
+L, @717 + LG 4008 + Loy ad ik = FRVP
B Lo tPVE + L@ Ve + L 170+ (37
+L% @917 + Lip 4°4% + Liy 27 3% = FRvP
VA4 NAfe  4NAG + LA V004
(38)

+LE, VO + L VPVE = FRVB,
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where V4 = g4 + N[;“iﬂ + NAit, A € I,. As well, one may consider the Lorentz
h-paths, characterized by the relations

A
VA—0, Ael, < %zO,Aer.

We note that, since the right side of (36)-(38) are identically vanishing, these curves
coincide with the usual h-paths of (E, N, V).

As for the Lorentz v-paths, these have fixed base-point, i.e.,
VE=0,pel, < (t,x)=(to,x0) €T x M,
and hence the associated equations rewrite
FgVvB =0, FRVvP =0
{ FVB = VA 4+ L3, VPVe.
For the ARLS case with the nonlinear connection (10) induced by the Lagrangian (1),

the electromagnetic tensors are

. o 1 ..
FR=Fiy, =0, Fy=g"Faj=—79"Ua;, Fi =0,

B

the nonvanshing Cartan connection coefficients are

_ i i a 1 G) _ siys A _ ) _ 58y
Lgy =18 Liw =il Ly =Ly, =0 lals Low=Lg), = 0015,
and the Lorentz equations (36)-(38) reduce to
>+ 5[t =0
F 4 ;k 2k = —%gijUAjVA
VA =0.

Note that in this case (g dependent on x only), the Berwald connection [12] has the
same coefficients as the Cartan connection, and hence the associated Lorentz curves,
h- and v-paths are described by the same equations. The Lorentz h-paths obey the
extra equations

g+ NP+ NAiT =0,

which write explicitely

g(a) =

B y(i (Uk| y(e) + Zngh’aﬁU( )J) @ =0.

k
B

The Lorentz v-paths for the Cartan connection satisfy just the extra condition —pA =
2V4, having as solutions the curves (to,zo,y”* = kf'e /2 + k3'), s € R, with
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k12 € R™", semilines within the fibers of E, the linear geodesics of the flat fiber
- in accordance with the particular case J'(R, M) = TM studied in [8].

In this typical particular case, (for m = 1 and s = t! = t), we can use the
Finsler-Lagrange tangent space notations from [7]. Shifting the indices left by one

unit (I, = 1,n, I, = n + 1,2n), we have y4 = y(i) " yi and set locally hiy = 1.
For the Lagrangian (1) we consider its particular form

L(z,y) = mc*yij(a:)yiyj + %Ui(x)yi + O(z), (39)

where v;; is a pseudo-Riemannian metric and U = U;dz’ is a 1-form on M. The
fundamental tensor derived from L via (11) is then

9@y (s y) = gig (@) = mei ().

The non-linear connection induced by L has the components

N{ = O,Nj(i) = || y* —i—gikU(,f)ﬁ i=1,n, A=n+1,2n,

with U(k) = 2 Ag. In this case, the Cartan (21) and Berwald canonic connections
1

have just null and Christoffel (re-indexed) components. Choosing for V the Car-
tan connection, the Lorentz generalized equations (37) confine to the known ones
of Lagrange spaces [7] and coincide with the equations of the Lagrangian spray
G = %’y;kyjyk + 555277 Ajj.yy". They have the equivalent form [6, p. 171]

2m2c

dz?
ds’

4+ 2G (2,y) =0, y' = (40)
where ”; k” expresses the canonic covariant derivative on (M, v;;). We note that in the
absence of the electromagnetic force F), ,, the equations (35) become the equations of
stationary curves of the connection V. In the particular case m = 1,s = t', hy; = 1,
we also note that in the absence of U, for V the Cartan connection, the equations
(35) become the equations of geodesics of the manifold M. We remark that in the case
m = 1, h1; = 1, the equations above lead to the characterizations of the corresponding
curves in [8], and the equations of h — paths become the Lorentz equations.

4 Conclusions.

We have discussed the existence of canonic nonlinear connections in first order jet
spaces J'(T, M) endowed with a Lagrange structure and have derived the explicit
Euler-Lagrange equations for the general Kronecker case (¢, x, y)(é (%) = heP(t,z) ®
9ij(t,z,y). Then, for the Cartan linear N-connection, are presented the general Ein-
stein equations with sources, further specified for both the ARL (almost Riemann
Lagrangian) jet case, and for the Riemannian jet linearized weak gravitational metric
case. As well, are derived the deflection-generated associated electromagnetic tensors,



38

Vladimir Balan

and are stated the corresponding Maxwell equations with sources for the general ge-
ometrized jet case. The paths and the Lorentz curves of the Lagrangian model are
analytically characterized, emphasizing the ARL special case.
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