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Abstract

The first section discusses the existence of canonic nonlinear connections
in first order jet spaces J1(T, M) endowed with a Lagrange structure and are
derived the Euler-Lagrange equations for the Kronecker case g̃(t, x, y)

(i
α)

(
j
β

) =

hαβ(t, x)⊗gij(t, x, y). In Section 2, emerging from the Cartan linear N -connection,
are presented the general Einstein equations with sources, which are further
specified for the ARL (almost Riemann Lagrangian) jet case, and for the Rie-
mannian jet linearized weak gravitational metric case as well. Are derived as
well the deflection-generated associated electromagnetic tensors, and are stated
the corresponding Maxwell equations with sources for the general geometrized
jet case. Section 3 describes the paths and the Lorentz curves of the generalized
Lagrangian model, emphasizing the ARL case.
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1 Lagrangians and nonlinear connections on J1(T,M)

Consider ξ = (E =J1(T,M), π, T×M), the first order jet bundle of mappings ϕ : T →
M , where T and M are C∞ real differentiable manifolds with dimT = m, dimM = n
respectively. The local coordinates in E will be denoted by

(tα, xi, yA)(α,i,A)∈I∗ ≡ (yµ)µ∈I ,

where we consider the sets of indices
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I = Ih ∪ Iv, Ih = Ih1 ∪ Ih2 , Iv = m + n + 1,m + n + mn

Ih1 = 1,m, Ih2 = m + 1,m + n, I∗ = Ih1 × Ih2 × Iv.

Throughout the paper, the indices will implicitly take values as follows:

α, β, . . . ∈ Ih1 ; i, j, . . . ∈ Ih2 ; A,B, . . . ∈ Iv; λ, µ, . . . ∈ I.

When appropriate, for any index A = m + n + n(i − m − 1) + α, we shall identify
A ≡

(
i
α

)
and yA ≡ x(i

α) = ∂xi

∂tα .

Primarily, E can be endowed with a Lagrangian (also called [11] the extended
Lagrangian of electrodynamics), having the form

L(t, x, y) = g̃AB(t, x, y)yAyB + UA(t, x)yA + Φ(t, x), (1)

with g̃AB nondegenerate tensor field, UA(t, x) a 1-form on E and Φ(t, x) a scalar
function on T × M .

The associated Euler-Lagrange equations produce a spray which under certain
restrictive conditions, provides further a non-linear connection N = {NA

µ }µ∈Ih,A∈Iv

on E which produces a splitting [12, 7]

TE = HE ⊕ V E, (2)

where V E = Ker π∗. As well, N determines the local adapted basis of X (E)

B = {δα, δi, δA}(α,i,A)∈I∗ ≡ {δµ}µ∈I , (3)

where we denote briefly ∂α = ∂
∂tα , ∂i = ∂

∂xi and

δα = ∂α − NA
α δA, δi = ∂i − NA

i δA, δA = ∂̇A =
∂

∂yA
. (4)

The dual basis of B in (3) writes then

B∗ = {δα, δi, δA}(α,i,A)∈I∗ ≡ {δµ}µ∈I ,

where
δα = dtα, δi = dxi, δA ≡ δyA = dyA + NA

α dtα + NA
i dxi. (5)

An open problem is related to the existence of Lagrangian-produced non-linear con-
nections in the general Kronecker case ([10]).

To this goal, we state the following result.
Theorem 1. The Euler-Lagrange equations for the Kronecker case

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t, x)gij(t, x, y), (6)

where hαβ and gij non-degenerate tensor fields, are
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Ei(L) = hαβ

[
yi

αβ + yl
αγgiky(j

β) · ∂(
{k
γ

)gjl} + 1
2yl

δγ · y(j
α)y(m

β )gik∂2

(l
δ)(k

γ)
gmj

]
+

+1
2gik

(
hβγy(m

β )y(j
γ)y(l

α)∂2
l(k

α)gmj − hβδhγεyi
βy(j

γ)y(l
α) · ∂lhδε · ∂(k

α)gij

)
+

+hαβy(j
α)y(k

β)
∣∣∣ i
jk

∣∣∣ − gkjy
(j

γ)hαβ
∣∣∣ γ
αβ

∣∣∣ + 1
2hβγy(l

β) ∣∣ δ
αδ

∣∣ gik∂(k
α)glj−

−hαβy(j
β)gik∂αgkj + 1

2hβγy(l
β)y(j

γ)gik∂2
α(k

α)gjl−

−1
2hβδhγεy(l

β)y(j
γ) · ∂αhδε · gik∂(k

α)glj − 1
2giky(l

α)∂[kU(
l]
α

)+

+1
2gik

(
U(k

α) | εαε| + ∂αU(k
α) − ∂kΦ

)
+ T i(L) = 0, ∀i ∈ Ih2 ,

(7)
with

T i(L) = 1
2hαδhβεglmy(l

α)y(m
β )gik∂khδε − hαδhβεgkjy

(l
α)y(j

β)gik∂lhδε+

+1
4gikhδεy(l

α)∂lhδε

(
2hαβgkjy

(j
β) + hβγy(l

β)y(m
γ )∂(k

α)glm + U(k
α)

)
−

−L
4 gikhαβ∂khαβ ,

(8)

where we denote τ[i...j] = τi...j − τj...i and τ{i...j} = τi...j + τj...i. Proof. By tedious
straightforward computation, by applying the Hilbert-Palatini variational principle,
and the relations

∂hαβ

∂w = −hαδhβε∂whδε,
∂hαβ

∂hδε
= −hαδhβε,

∂
√

|h|
∂w =

√
|h|
2 hαβ∂whαβ , hδε∂αhδε = 2

∣∣∣ β
αβ

∣∣∣ ,

where we have denoted |h| = det(hαβ)αβ=1,m, one obtains the Euler-Lagrange equa-
tions (7) attached to the Lagrangian density L = L

√
|h|. 2

Particular cases.
I. In case that U(k

α) depends only on the jet-coordinates, e.g., for the Caratheodory
type Lagrangian ([8]), where U(k

α) = ∂(k
α)ϕ(y) is a gradient, for the autonomous La-

grangian case with m = 1 and h11 = 1, one gets easily the results on TM obtained
in [8].

II. In the case that hαβ is a metric tensor on T and

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t)gij(t, x, y),

the theorem leads to the particular results including mainly the calculation of the jet
spray in terms of L for h− reducible Lagrangians which were derived in [12].

III. The AFL (almost Finsler Lagrange) jet subcase, in which gij(t, x, y) is
0−homogeneous in y, leads in the m = 1 autonomous case to the AFL case con-
sidered in [8].
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The three subsequent cases are important subcases of the AFL jet case.

IV. In the ARL (almost Riemann Lagrange) jet case, where

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t)gij(t, x), (9)

if hαβ is a metric tensor on T , the theorem produces the spray and the nonlinear
connection from [12], [10]. Namely, the Lagrangian L in (1) produces the canonical

nonlinear connection N = (N(i
α)

β , N
(i

α)
j ) of coefficients

N
(i

α)
β = −

∣∣∣ γ
αβ

∣∣∣ y(i
γ), N

(i
α)

j =
∣∣ i
jk

∣∣ y(k
α) +

1
4
gik(2∂αgjk + hαβU(k

β)j), (10)

where we denoted the h2-curl of U by U(k
β)j = δ[jU(

k]
β

). The Lagrangian L is in this

case a Kronecker hαβ − h−regular Lagrangian and produces by

g̃AB =
1
2
∂̇2

ABL, (11)

the vertical metric tensor field g̃AB .
V. More particular, in the ARLS (almost Riemann Lagrange separated) jet case

in which gij is a metric tensor field on M , i.e.,

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t)gij(x), (12)

if hαβ is a metric tensor on T , the theorem leads to the spray and non-linear connection
from [11]. The two nondegenerate metric tensors g and h and the potentials UA,

determine the nonlinear connection N = (N(i
α)

β , N
(i

α)
j ) of coefficients

N
(i

α)
β = −

∣∣∣ γ
αβ

∣∣∣ y(i
γ), N

(i
α)

j =
∣∣ i
jk

∣∣ y(k
α) +

1
4
gik · hαβU(k

β)j . (13)

VI. The ALML (almost locally Minkowski Lagrange) jet case, where in a subatlas
A of E one has

g̃AB ≡ g̃(i
α)(j

β) = hαβ(t, x)gij(y), (14)

necessarily requires that T×M be A−locally affine. This extends the case J1( R ,M) ≡
TM considered in [8].

2 Einstein equations on J1(T,M). Special cases.

Assuming fixed on E a non-linear connection N = {NA
α , NA

i }, we may consider a
linear connection ∇ = {Lλ

µν}λ,µ,ν∈I in E, whose coefficients relative to the adapted
basis (3) are provided by

δλ(∇δν δµ) = Lλ
µν , ∀λ, µ, ν ∈ I; (15)
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these determine 33 = 27 distinct subsets, according to the three sets of indices. The
torsion T and the curvature R of ∇ have the adapted components defined by the
relations

δλ(T (δν , δµ)) = Tλ
µν , δλ(R(δν , δµ)δρ) = R λ

ρ µν , ∀ λ, µ, ν, ρ ∈ I.

The subsets of nontrivial coefficients of ∇ can be reduced subsequently by consid-
ering the following particular classes of connections:

1. As first particular case, we consider the set of connections Γ(N) (called ”N -
connections”) whose covariant derivative preserves the sections S(HE) and S(V E).
Their coefficients form 3 · 22 + 3 = 15 generally nonvanishing subsets related to the
three index classes, due to the relations

Lλ
µν = 0, ∀ (λ, µ) ∈ (Ih × Iv) ∪ (Iv × Ih). (16)

Note that if E carries a metric structure, the Levi-Civita (metric and torsionless)
connection is not generally a member of Γ(N) [7]. It can be easily shown that the
associated torsion and curvature of a connection ∇ ∈ Γ(N) satisfy

Tω
BC = 0, ∀ ω ∈ Ih, B,C ∈ Iv,

R λ
ρ µν = 0, ∀ µ, ν ∈ I, (λ, ρ) ∈ (Ih × Iv) ∪ (Iv × Ih),

(17)

and hence the torsion subsets reduce from 33 to 25 and the curvature ones from 34

to 5 · 32.
2. As further subcase, we consider the special N-connections Γ∗(N), whose covari-

ant derivatives preserve the distributions Span(δα)α∈Ih1
and Span(δi)i∈Ih2

. They
have just 9 sets of generally nonvanishing coefficients and besides (16), they satisfy
as well

Lλ
µν = 0, ∀ (λ, µ) ∈ (Ih1 × Ih2) ∪ (Ih2 × Ih1), (18)

As consequence, we have e.g.,

R λ
ρ µν = 0, ∀ µ, ν ∈ I, (λ, ρ) ∈ (Ih1 × Ih2) ∪ (Ih2 × Ih1).

and the number of torsion and curvature sets of Γ∗(N) reduce to 12 and 18 respectively
[12], [10].

3. Among the connections Γ∗(N) we evidentiate the so-called ”Γ-linear h-normal
connections” Γn(N) [10], which depend on the four essential sets of components

∇ ≡ {Lα
βγ , Li

jγ , Li
jk, Li

jA}, (19)

and have the other 5 sets provided by

LA
Bγ ≡ L

(i
α)

(j
β)γ

= δβ
αLi

jγ − δi
j

∣∣ β
αγ

∣∣ , LA
Bk ≡ L

(i
α)

(j
β)k

= δβ
α

∣∣∣ i
jk

∣∣∣ ,

LA
BC ≡ L

(i
α)

(j
β)C

= δβ
αLi

jC , Lα
βj = 0, Lα

βC = 0.
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Here the number of torsion and curvature sets reduces to 9 and respectively to 7.

In the general case when hαβ(t) and gij(t, x, y) in the Lagrangian L in (1) are
non-degenerate, we endow E with a semi-Riemannian metric

G = hαβ(t)dtα ⊗ dtβ︸ ︷︷ ︸
h

+ gij(t, x, y)dxi ⊗ dxj︸ ︷︷ ︸
g

+ g̃AB(t, x, y)δyA ⊗ δyB︸ ︷︷ ︸
g̃

, (20)

with g̃AB ≡ g̃(i
α)(j

β) = hαβ(t)gij(t, x, y). Then within Γn(N) we evidentiate the Cartan

connection ([12], [10]) which is metrical and satisfies the conditions

Li
jγ =

gik

2
∂γgjk, Li

[jk] = 0, Li

[j
(

k]
α

) = 0.

This exhibits generally (for m > 1) just 8 torsion sets and 7 curvature sets, and 5
torsion sets provided that g is y-independent. Its essential four sets of coefficients
(19) specify in this case to

Lα
βγ =

∣∣∣α
βγ

∣∣∣ , Li
jγ = 1

2gikδγgkj , Li
jk =

∣∣∣ i
jk

∣∣∣ ,

Li
jA ≡ Li

j(k
γ) = 1

2gil(δ({k
γ

)gjl} − δ(l
γ)gjk).

(21)

Its essential torsion coefficients are given by [10]



T
(i

α)
γ (j

β) = ∂(j
β)N

(i
α)

γ − δβ
αLi

jγ + δi
jL

β
αγ

T
(i

α)
k (j

β) = ∂(j
β)N

(i
α)

k − δβ
αLi

jk

T
(i

α)
(j

β) (k
γ)

= δβ
i Li

j(k
γ)

− δγ
i Li

k(j
β)

T i
β j = −Li

jβ , T i
jA = Li

jA

T A
β γ = δ[γNA

β], T A
β j = δ[jN

A
β], T A

i j = δ[jN
A
i] ,

(22)

and explicitly provided for the ARL case in [12, Theorem 4.4]. The nontrivial non-
holonomy coefficients ωλ

µν are provided by the relations

[δµ, δν ] = ωA
µνδA ≡ TA

µνδA, ∀µ, ν ∈ Ih,

[δµ, δB ] = ωA
µBδA ≡ ∂BNA

µ δA, ∀µ ∈ Ih,

and explicitly provided for the ARL case in [10, Theorem 2.3]. As well, the nontrivial
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curvature N -tensor fields are

R α
β γδ = ∂[δL

α
βγ] + Lε

β[γLα
εδ]

R i
j km = δ[kLi

jm] + Lβ
j[mLi

βk] + Li
jATA

mk

R i
j γµ = δ[µLi

jγ] + Lε
j[γLi

εµ] + Li
jATA

γµ, ∀µ ∈ Ih

R i
j µA = ∂ALi

jµ − Li
jA|µ + Li

jBTB
µA, ∀µ ∈ Ih

R i
j CD = ∂[DLi

jC] + Lk
j[CLi

kD],

(23)

and 

R
(i

α)
(j

β) γδ
= δβ

αR i
j γδ + δi

jR
β

α γδ

R
(i

α)
(j

β) µk
= δβ

αR i
j µk, ∀µ ∈ Ih

R
(i

α)
(j

β) µA
= δβ

αR i
j µA,∀µ ∈ I,

where we denoted by |α, |i and |A the covariant derivations given by ∇δµ , for
µ ∈ Ih1 , Ih2 and Iv respectively.

The nontrivial associated Ricci N -tensor fields are

Rαβ = Rγ
αβγ , Riα = Rk

iαk, Rij = Rk
ijk, RiA = −Rj

ijA,

R(i
α)β = Rk

iβ(k
α), R(i

α)j = Rk
ij(k

α), R(i
α)(j

β) = Rk
i(j

β)(k
α)

,
(24)

and the scalars of curvature

Rh = hαβRαβ , Rg = gijRij , Rv = g̃ABRAB. (25)

Then, denoting R = Rh + Rg + Rv, the Einstein equations with sources write
Rαβ − 1

2Rhαβ = κTαβ

Rij − 1
2Rgij = κTij

RAB − 1
2RgAB = κTAB ,

 0 = Tαi, 0 = TαA,
Riα = κTiα, RAα = κTAα

RiA = κTiA, RAi = κTAi,
(26)

where T = Tµνδµ ⊗ δν ∈ T 0
2 (E) is the energy-momentum tensor field and κ is the

cosmological constant. They satisfy the conservation laws

Eµ
ν|µ = κT µ

ν|µ, ∀µ ∈ I = Ih1 ∪ Ih2 ∪ Iv,

where Eµν = Rµν + 1
2RGµν is the Einstein N -tensor field and the indices are raised

by means of the metric G in (20) on E.

Regarding the energy-momentum tensor field T = {Tµν}, we distinguish several
remarkable cases [2] which extend the ones discussed in [16]:
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I. The case of electromagnetic field source, when

Tµν = FµρF
ρ
µ − 1

4
GµνF ρπFρπ.

Here the electromagnetic 2-form

F = FAµδyA ∧ δyµ, (27)

has the nontrivial components

FAβ ≡ F(i
α)β = 1

2

(
hαγgiky(k

[γ)
)
|β]

FAj ≡ F(i
α)j = 1

2 d(
[i
α

)
j]

= 1
2 y([i

α

)
|j] = 1

2

(
y(k

γ)hαγgk[i

)
|j]

,

FAB ≡ F(i
α)(j

β) = 1
2 g̃([i

α

)
C

yC

|
(

j]
β

).

(28)

Essentially, F is produced by the deflection tensor fields

dA
µ = δA∇δµC, µ ∈ I, A ∈ Iv,

generated by the Liouville field C = yAδA. Note that the raising/lowering of the
indices was performed using the metric G, producing the associated N -tensor field

F̃ = F µ
A δµ ⊗ δA, Fα

A = hαβFAβ , F i
A = gijFAj , FC

A = gCDFAD. (29)

The energy-momentum tensor fields have in this case the essential coefficients given
by 

Tαβ = FAαFBβ g̃AB − 1
4hαβF∗

Tij = FAiFBj g̃
AB − 1

4gijF∗

TAB = FACFBD g̃CD − 1
4gABF∗


Tαi = FCαFDig̃

CD

TαA = FCαFDAg̃CD

TiA = FCiFDAg̃CD

where F∗ = FACFBD g̃AB g̃CD.
Moreover, we have the following
Theorem 2. The 2-form F is subject to the two sets of the Maxwell extended

equations with sources

F(i
α)k|γ = 1

2 [d(i
α)β|k + d(i

α)mTm
βk + d(i

α)CTC
βk − (T j

γi|k + Lj
kCTC

γi)y(j
α)]

F(i
α)(k

β)|γ = 1
2 [d(i

α)β|(k
γ) + d(i

α)mTm
β(k

γ)
+ d(i

α)CTC
βk − (∂(k

γ)T
j
γi + Lj

kCTC
γ(i

β))y(j
α)]

S
ijk

F(i
α)j|k = −1

2 S
ijk

(Lm
iCy(m

α ) + d(i
α)C)TC

jk

S
ijk

F
(i
α){j|

(
k}
γ

) = 0, S
ijk

F(i
α)(j

β)|(k
γ) = 0;
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gBCFBα|C = −4πJα

gBCFBi|C = −4πJi

gBCFAB|C + gijFAi|j + hαβFAα|β = 4πJA,

where J = Jµδµ ∈ X ∗(E) is the adapted electric current, and where we denoted by S
the cyclic summation of the corresponding indices below.

II. In the case of a perfect fluid with the extended velocity vector field
V = Vµδµ ∈ X (E), the energy-momentum N -tensor field is given by

Tµν = (P + ρ)VµVν + pGµν ,

where ρ is the mass-energy density, p is the pressure and, in the 4-dimensional Lorentz-
metric case V satisfies the condition ViVi = −1. In particular, for p = 0, is obtained
the case of cosmologic dust (presureless fluid).

III. In the case of source given by the Klein-Gordon field Φ, we have

Tµν = Φ|µΦ|ν − 1
2
(GπρΦ|πΦ|ρ + m2Φ2)Gµν ,

where m is the mass, and the field Φ satisfies the condition GµνΦ|µ|ν = m2Φ [16].
IV. In the case of the radiation field, we get

Tµν = Φ2KµKν ,

where the N -vector field K = Kµδµ ∈ X (E) obeys in the Lorentz metric case the
condition GµνKµKν = 0.

Particular cases.
I. In the ARLS case, the vertical metric N− tensor field g̃ is produced by the

Lagrangian via (11), and the nontrivial coefficients of the Cartan connection are [11]

Lα
βγ =

∣∣α
βγ

∣∣ , Li
jk =

∣∣ i
jk

∣∣ .

They have the non-trivial torsion N−fields

T
(m

γ )
αβ = −Rδ

γαβxm
δ , T

(m
γ )

ij = Rm
ijγ + hγβgmk

4 U(k
β){i|j},

T
(m

γ )
αj = −hγβgmk

4 [Lβ
αδU(k

δ)j + ∂αU(k
β)j ],

where Rα
βγδ and Ri

jkl are the nontrivial curvature tensors of hαβ and gij respectively;
the Einstein equations contain the classical ones on (T × M,h + g),

Rαβ − Rh+Rg

2 hαβ = κTαβ

Rij − Rh+Rg

2 gij = κTij

−Rh+Rg

2 hαβgij = κT(i
α)(j

β).
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II. In the ARLS case with m = 1, n = 4 and h11 = 1, one recaptures as particular
case, the pseudo-Riemannian weak gravitational model endowed with the metric

gij(x) = ηij + εij(x), (30)

where the weakness of the gravitational field gij is expressed by its decomposition into
the flat Minkowski metric nij = diag(−1, 1, 1, 1) and a small perturbation εij(x), a
symmetric tensor field with |εij(x)| << 1. We note that the perturbation εij(x) has to
satisfy certain supplementary gauge conditions ([3]). In the linearized approach, the
indices are raised via nij , e.g., εrs = nrinsjεij . This point of view permits to develop
the linearized version of a given generalized model of General Relativity, in which the
symmetric tensor field corresponds to a weak pseudo-Riemannian gravitational field
[3]. In the linearized case, one has

∣∣∣ i
jk

∣∣∣ ∼= εi
jk ≡ nis|s; jk| and the Einstein equations

get the typical form corresponding to weak gravitational waves

Rij −
1
2
Rnij ≡ 1

2
(2εij + ∂2

ijε − ∂2
{jsε

s
i}) − nijR = κTij ,

where ε = nijεij , Rij is the Ricci tensor of gij , R is the scalar curvature and ”2”
denotes the d’Alambertian

2 = −∂2
00 + ∂2

11 + ∂2
22 + ∂2

33 ≡ −∂2
tt + ∂2

xx + ∂2
yy + ∂2

zz.

3 Paths and Lorentz equations

Let c : J = [a, b] ⊂ R → E be a smooth curve, whose image lies in a chart Ũ ⊂ E,

c(s) = (tα(s), xi(s), yA(s)) ≡ (yµ(s)),∀t ∈ J,

and let ∇ be a linear N−connection on E.
Definitions. a) The field V = δyµ

ds
defined on c will be called covariant velocity

field of the curve c. The components of V are explicitely given by

{Vµ}µ∈I ≡
(

ṫα, ẋi,
δya

ds
= ẏA + NA

β ṫβ + NA
j ẋj

)
(α,i,A)∈I∗

,

where we denote by dot the s-derivation. We have also denoted by F = Fµδµ, where

Fµ =
∇Vµ

ds

not=
δVµ

ds
+ Lµ

νρVνVρ,

the covariant force on c, which provides the motion of the test-body along c.
b) We shall say that c is a stationary curve with respect to ∇ iff F = 0 along the

curve.
c) The curve c is called h−curve, if πv(V) = 0, and v−curve, if πh(V) = 0, where

by πh and πv we denoted respectively the h− and v−projectors of the canonic splitting
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induced by N . If a h − /v−curve satisfies also the extra condition F = 0, then it is
called h − /v−path, respectively.

Analytically, these curves are described by the following

Theorem 3. Let c : J ⊂ R → E be a curve. Then the following hold true:

a) c is a h−curve iff

VA = 0 ⇔ δya

ds
= 0 ⇔ ẏa + NA

α ṫα + NA
j ẋj = 0. (31)

b) c is a v−curve iff

Vµ = 0, ∀µ ∈ Ih ⇔ δyµ

ds
= 0,∀µ ∈ Ih1 ∪ Ih2 ⇔

⇔ c(s) = (t0, x0, y(s)), s ∈ J.

(32)

c) c is an h−path (”stationary h−curve or ”horizontal geodesic”) iff besides (31)
it satisfies

dVµ

ds
+ Lµ

νρVνVρ = 0, ∀µ ∈ Ih. (33)

Note that the implicit sum in the right term involves just horizontal index types.
d) c is a v−path (”stationary v−curve or ”vertical geodesic”) iff besides (32) it

satisfies
δVA

ds
+ LA

BCVBVC = 0, ∀A ∈ Iv. (34)

The implicit sum in the right term involves just vertical index types.

We consider the electromagnetic tensor fields in (28) and (29), the metric G in
(20), a fixed nonlinear connection N , and the Cartan connection attached to G having
the coefficients (21). Then the Lorentz equations attached to G, N and ∇ have the
generic shape

Gνρ
∇Vρ

ds
= F̃AνVA ⇔ ∇Vµ

ds
= F µ

A VA, (35)

where V = Vµδµ is the covariant velocity along the considered extended path of the
moving test-particle. In detail, the Lorentz equations have the form

ẗα +Lα
βC ṫβVC + Lα

jC ẋjVC + Lα
βγ ṫβ ṫγ+

+Lα
jγ ẋj ṫγ + Lα

βk ṫβẋk + Lα
jkẋj ẋk = Fα

BVB
(36)

ẍi +Li
βC ṫβVC + Li

jC ẋjVC + Li
βγ ṫβ ṫγ+

+Li
jγ ẋj ṫγ + Li

βk ṫβẋk + Li
jkẋj ẋk = F i

BVB
(37)

V̇A + NA
α ṫα +NA

i ẋi + LA
CβVC ṫβ+

+LA
CjVC ẋj + LA

BCVBVC = FA
B VB ,

(38)
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where VA = ẏA + NA
β ṫβ + NA

i ẋi, A ∈ Iv. As well, one may consider the Lorentz
h-paths, characterized by the relations

VA = 0, A ∈ Iv ⇔ δyA

ds
= 0, A ∈ Iv.

We note that, since the right side of (36)-(38) are identically vanishing, these curves
coincide with the usual h-paths of (E,N,∇).

As for the Lorentz v-paths, these have fixed base-point, i.e.,

Vµ = 0, µ ∈ Ih ⇔ (t, x) = (t0, x0) ∈ T × M,

and hence the associated equations rewrite{
Fα

BVB = 0, F i
BVB = 0

FA
B VB = V̇A + LA

BCVBVC .

For the ARLS case with the nonlinear connection (10) induced by the Lagrangian (1),
the electromagnetic tensors are

Fα
A ≡ Fα

(i
β)γ

= 0, F i
A = gijF̃Aj = −1

4
gijUAj , FB

A = 0,

the nonvanshing Cartan connection coefficients are

Lα
βγ =

∣∣α
βγ

∣∣ , Li
jk =

∣∣ i
jk

∣∣ , LA
Bγ ≡ L

(i
α)

(j
β)γ

= −δi
j

∣∣ β
αγ

∣∣ , LA
Bk ≡ L

(i
α)

(j
β)k

= −δβ
α

∣∣ i
jk

∣∣ ,

and the Lorentz equations (36)-(38) reduce to
ẗα +

∣∣∣α
βγ

∣∣∣ ṫβ ṫγ = 0

ẍi +
∣∣∣ i
jk

∣∣∣ ẋj ẋk = −1
4gijUAjVA

V̇A = 0.

Note that in this case (g dependent on x only), the Berwald connection [12] has the
same coefficients as the Cartan connection, and hence the associated Lorentz curves,
h- and v-paths are described by the same equations. The Lorentz h-paths obey the
extra equations

ẏA + NA
β ṫβ + NA

j ẋj = 0,

which write explicitely

ẏ(i
α) −

∣∣∣ γ
αβ

∣∣∣ y(i
γ)ṫβ +

(∣∣ i
jk

∣∣ y(k
α) +

1
4
gikhαβU(k

β)j

)
ẋj = 0.

The Lorentz v-paths for the Cartan connection satisfy just the extra condition −VA =
2V̇A, having as solutions the curves (t0, x0, y

A = kA
1 e−s/2 + kA

2 ), s ∈ R , with
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k1,2 ∈ Rmn, semilines within the fibers of E, the linear geodesics of the flat fiber
- in accordance with the particular case J1( R ,M) ≡ TM studied in [8].

In this typical particular case, (for m = 1 and s = t1 = t), we can use the
Finsler-Lagrange tangent space notations from [7]. Shifting the indices left by one
unit (Ih2 = 1, n, Iv = n + 1, 2n), we have yA ≡ y(i

1) not= yi, and set locally h11 = 1.
For the Lagrangian (1) we consider its particular form

L(x, y) = mcγij(x)yiyj +
2e

m
Ui(x)yi + Φ(x), (39)

where γij is a pseudo-Riemannian metric and U = Uidxi is a 1-form on M . The
fundamental tensor derived from L via (11) is then

g̃(i
1)(j

1)(t, x, y) = gij(x) = mc γij(x).

The non-linear connection induced by L has the components

NA
1 = 0, N

(i
1)

j =
∣∣ i
jk

∣∣ yk + gikU(k
1)j , i = 1, n, A = n + 1, 2n,

with U(k
1) = e

mAk. In this case, the Cartan (21) and Berwald canonic connections
have just null and Christoffel (re-indexed) components. Choosing for ∇ the Car-
tan connection, the Lorentz generalized equations (37) confine to the known ones
of Lagrange spaces [7] and coincide with the equations of the Lagrangian spray
Gi = 1

2γi
jkyjyk + e

2m2cγijA[j;k]y
k. They have the equivalent form [6, p. 171]

ẍi + 2Gi(x, y) = 0, yi =
dxi

ds
, (40)

where ”; k” expresses the canonic covariant derivative on (M,γij). We note that in the
absence of the electromagnetic force FµA

, the equations (35) become the equations of
stationary curves of the connection ∇. In the particular case m = 1, s = t1, h11 = 1,
we also note that in the absence of U , for ∇ the Cartan connection, the equations
(35) become the equations of geodesics of the manifold M . We remark that in the case
m = 1, h11 = 1, the equations above lead to the characterizations of the corresponding
curves in [8], and the equations of h − paths become the Lorentz equations.

4 Conclusions.

We have discussed the existence of canonic nonlinear connections in first order jet
spaces J1(T,M) endowed with a Lagrange structure and have derived the explicit
Euler-Lagrange equations for the general Kronecker case g̃(t, x, y)(i

α)(j
β) = hαβ(t, x)⊗

gij(t, x, y). Then, for the Cartan linear N -connection, are presented the general Ein-
stein equations with sources, further specified for both the ARL (almost Riemann
Lagrangian) jet case, and for the Riemannian jet linearized weak gravitational metric
case. As well, are derived the deflection-generated associated electromagnetic tensors,
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and are stated the corresponding Maxwell equations with sources for the general ge-
ometrized jet case. The paths and the Lorentz curves of the Lagrangian model are
analytically characterized, emphasizing the ARL special case.
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