Zeta regularization and Noncommutative Geometry

Akira Asada

Abstract

Arguments from noncommutative geometry are useful to the study of infinite dimensional geometry. For example, applying such arguments together with ζ regularization, we can define Grassmann algebra with $\infty-p$-forms. In this paper, we apply noncommutative geometric arguments and ζ-regularization to the calculus of ($\infty-p$)-forms. We show exactness of exterior differentiable ($\infty-p$)-forms and try to justify physists' answer of infinite dimensional Gaussian integral by using Ray-Singer determinant.

AMS Subject Classification: 58B99, 58J42, 81S40, 17 B 65.
Key words: Spectral ζ-function, Regularized dimension, $(\infty-p)$-forms.

1 Introduction

Noncommutative geometry is a powerful tool not only for physics but also for infinite dimensional geometry (cf. [1],[3], [10], [11],[15]). For example, a mapping space $\operatorname{Map}(X, M)$ can be viewed as a Sobolev manifold modeled by $H=W^{k}(X)$. Here $W^{k}(X)$ is a Sobolev space over X. If X is a compact spin manifold, with suitable modification to $\operatorname{Map}(X, M)$, we may regard $W^{k}(X)$ to be the Sobolev space of spinor fields on X. In this case, the Dirac operator D of X induces a polarization $\epsilon=P_{+}-P_{-}$ of H. Here $P_{ \pm}$are the positive and negative peoper spaces of $D D$, respectively. The principle of noncommutative geometry asserts $\{H, \epsilon\}$ gave geometric information of X. For example, if G is a linear Lie group, $\operatorname{Map}(X, G)$ is contained in the restricted general linear group $G L_{p}=\left\{T \in G L(H) \mid[\epsilon, T] \in I_{p}\right\}, p>d / 2$, where $G L(H)$ is the group of all inversible bounded linear opertors of H, I_{p} is the p-th Schatten ideal, and d is the dimension of X. The topological structure of a $G L_{p}$-bundle $\left\{g_{U V}\right\}$ is completely determined by the noncommutative connection $\left\{\kappa_{U}\right\}$,

$$
\kappa_{U}: U \mapsto I_{p}, \quad\left(\epsilon+\kappa_{U}\right) g_{U V}=g_{U V}\left(\epsilon+\kappa_{V}\right),
$$

[^0]([1]). To get more precise information than topology, we use the pair $\{H, G\}$, where G is a nondegenerate Schatten class operator such that its ζ-function $\zeta(G, s)$ is holomorphic at $s=0([2],[3])$. Considering such pairing is closely related to Connes' spectral triple ([9]). Our approach is narrow than Connes' approach but more concrete. If $H=W^{k}(X)$, we take G to be the Green operator of a nondegenerate selfadjoint elliptic (pseudo) differential operator on X. For simple, we assume positivity of G in this paper. In abstract setting, we introduce Sobolev norm $\|x\|_{k}$ by $\left\|G^{-k} x\right\|$. The Sobolev space by the norm $\|x\|_{k}$ is denoted by W^{k}. The complete orthonormal basis $\left\{e_{n}\right\}$ of H is taken by proper vectors of $G ; G e_{n}=\mu_{n} e_{n}$. Here we arrange $\left\{\mu_{n}\right\}$ to be $\mu_{1} \geq \mu_{2} \geq \ldots>0$. Then the complete orthonormal basis of W^{k} is given by $\left\{e_{n, k}\right\}$, $e_{n, k}=\mu_{n}^{-k} e_{n}$. The coordinate of $x \in W^{k}$ is fixed to be $\left(x_{1}, x_{2}, \ldots\right), x=\sum x_{n} e_{n, k}$.

We say $\nu=\zeta(G, 0)$ to be the regularized dimension of H (and W^{k}). Other invariants of the pair $\{H, G\}$ are the position d of the first pole of $\zeta(G, s)$ and $\operatorname{det} G=$ $\exp \left(\zeta^{\prime}(G, 0)\right)$. By using these invariants, we have defined $(\infty-p)$-forms on W^{k} and investigated their calculus including exactness of exterior differentiable ($\infty-p$)-forms ([2],[3]). In this paper, we reinvestigate these definitions and results. Regularization of integrals of ∞-forms by using fractional calculus (cf.[13]) and ζ-regularization has been defined in [4]. Corresponding regularization procedure of exterior differential of $(\infty-p)$-forms is introduced and related to the regularization of differential operators on H ([3],[6]). Then as an example of regularized integral of ∞-forms, an attempt of mathematical justification of the formula

$$
\int \mathrm{e}^{-2 \pi(x, D x)} \mathcal{D} x=\frac{1}{\sqrt{\operatorname{det} D}}
$$

where $\operatorname{det} D$ is the Ray-Singer determinant of D (cf. [8], [14],[16]), is given. We also try to compute regularized volume of "sphere" in H. The answer is not yet obtained. But our calculation sugests the regularized volume might be $\frac{2 \pi^{\nu / 2}}{\Gamma\left(\frac{\nu}{2}\right)}$ as expected.

2 Grassmann algebra with ($\infty-p$)-forms

We introduce the Sobolev duality between W^{k} and W^{-k} by

$$
\begin{equation*}
\langle x, \xi\rangle=\left\langle G^{-k} x, G^{k} \xi\right\rangle, \quad x \in W^{k}, \xi \in W^{-k} \tag{1}
\end{equation*}
$$

By definition, W^{k} is contained in W^{l} if $k>l$. We set

$$
\begin{equation*}
W^{k+0}=\bigcup_{l>k} W^{l}, \quad W^{k-0}=\bigcap_{l<k} W^{l} . \tag{2}
\end{equation*}
$$

If $k=0$, we denote $H^{ \pm}$instead of $W^{ \pm 0}$. In W^{k-0}, we set

$$
\begin{equation*}
e_{\infty, k}=\sum_{n=1}^{\infty} \mu_{n}^{d / 2} e_{n}, k \tag{3}
\end{equation*}
$$

e_{∞}, k depends on the choice of $\left\{e_{n}\right\}$. But we do not specify $\left\{e_{n}\right\}$ for simple.
Definition. We set

$$
\begin{equation*}
W^{k-0}(0)=\left\{\sum x_{n} e_{n, k} \in W^{k-0} \mid \lim _{n \rightarrow \infty} \mu_{n}^{-d / 2} x_{n}=0\right\} \tag{4}
\end{equation*}
$$

and define the space W^{k-0} (finite) by

$$
\begin{equation*}
W^{k-0}(\text { finite })=W^{k-0}(0) \oplus \mathbb{R} e_{\infty, k}, \quad \text { or } W^{k-0}(0) \oplus \mathbb{C} e_{\infty, k} \tag{5}
\end{equation*}
$$

according to W^{k} is a real vactor space or a complex vector space.
We consider $W^{k-0}(0)$ to be a subspace of W^{k-0}. But $W^{k-0}($ finite $)$ is considered to be a product space of $W^{k-0}(0)$ and \mathbb{R} or \mathbb{C} as a topological space.

Since $W^{k-0}(0)$ is dense in W^{k-0}, the dual space of $W^{k-0}(0)$ is W^{-k+0}. We define the dual element $e_{\infty, k}^{\dagger}$ of $e_{\infty, k}$ by

$$
\begin{equation*}
\left\langle e_{\infty, k}^{\dagger}, x\right\rangle=\lim _{s \rightarrow+0} \frac{s}{c}\left\langle\sum \mu_{n}^{d / 2+s} e_{n,-k}, x\right\rangle, \quad x \in W^{k-0} \tag{6}
\end{equation*}
$$

where $c=\operatorname{Res}_{s=0} \zeta(G, s)$. But since $e_{\infty, k}$ and $e_{\infty, k}^{\dagger}$ are not symmetric each other, we introduce \mathbf{e}_{k} by

$$
\begin{equation*}
\left\langle\mathbf{e}_{k}, x\right\rangle=\lim _{s \rightarrow+0} \sqrt{\frac{s}{c}}\left\langle\sum \mu_{n}^{(d+s) / 2} e_{n, k}, x\right\rangle, \quad x \in W^{k-0} \tag{7}
\end{equation*}
$$

Since $c=\lim _{s \rightarrow d+0}(s-d) \zeta(G, s), c$ is positive, so \mathbf{e}_{k} is well defined although W^{k} is a real vector space.. By definition, we may write

$$
\mathbf{e}_{k}=G^{2 k} \mathbf{e}_{-k}, \quad \text { or } \quad \mathbf{e}_{k}=* \mathbf{e}_{-k},
$$

where $*$ is the Hodge operator ([2]). By definition, we also have

$$
\left\langle\mathbf{e}_{k}, \mathbf{e}-k\right\rangle=1, \quad\left\langle\mathbf{e}_{k}, e_{n,-k}\right\rangle=\left\langle e_{n, k}, \mathbf{e}_{-k}\right\rangle=0 .
$$

Hence we may set

$$
\begin{equation*}
\left(W^{-k+0} \oplus \mathbb{K} \mathbf{e}_{-k}\right)^{\dagger}=W^{k-0} \oplus \mathbb{K} \mathbf{e}_{k}, \tag{8}
\end{equation*}
$$

where \mathbb{K} is either of \mathbb{R} or \mathbb{C}.
Since $\operatorname{Map}(X, M)$ is a Sobolev manifold modeled by $W^{k}(X)$, where k is larger than $\operatorname{dim} X / 2$, differential forms of $\operatorname{Map}(X, M)$ take the values in $\operatorname{Gr}\left(W^{-k}(X)\right.$, the Grassmann algebra over $W^{-k}(X)$. So we treat $G r\left(W^{-k+0}\right)$ and denote the generators of this algebra corresponding to $e_{n,-k}$ by $d x_{n}$. We also introduce $d^{\infty} x$ as the element corresponding to \mathbf{e}_{k} and regard it as the infinite product $d x_{1} \wedge d x_{2} \wedge \ldots$. We denote

Gr if forget multiplicative structure of $G r$ and regard only as a module. We give the left $\operatorname{Gr}\left(W^{-k+0}\right)$-module structure to $\operatorname{Gr}\left(W^{k-0}\right) \otimes d^{\infty} x$ by

$$
\begin{align*}
& \left(d x_{i_{1}} \wedge \ldots \wedge d x_{i_{p}}\right) \wedge\left(d \xi_{j_{1}} \wedge \ldots \wedge d \xi_{j_{q}}\right) \otimes d^{\infty} x=0 \\
& \left\{i_{1}, \ldots, i_{p}\right\} \not \subset\left\{j_{1}, \ldots, j_{q}\right\} \tag{9}\\
& \left(d x_{i_{1}} \wedge \ldots \wedge d x_{i_{p}}\right) \wedge \\
& \wedge\left(\left(d \xi_{i_{1}} \wedge \ldots \wedge d \xi_{i_{p}}\right) \wedge\left(d \xi_{j_{1}} \wedge \ldots \wedge d \xi_{j_{q}}\right)\right) \otimes d^{\infty} x \\
& =(-1)^{\left(i_{1}-1\right)+\cdots+\left(i_{p}-p\right)}\left(d \xi_{j_{1}} \wedge \ldots \wedge d \xi_{j_{q}}\right) \otimes d^{\infty} x, \\
& \left\{i_{1}, \ldots, i_{p}\right\} \cap\left\{j_{1}, \ldots, j_{q}\right\}=\emptyset . \tag{10}
\end{align*}
$$

In the rest, we denote

$$
\begin{equation*}
d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x=\left(d x_{i_{1}} \wedge \ldots \wedge d x_{i_{p}}\right) \otimes d^{\infty} x \tag{11}
\end{equation*}
$$

We thought $d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x$ to be

$$
d x_{1} \wedge \ldots \wedge d x_{i_{1}-1} \wedge d x_{i_{1}+1} \wedge \ldots \wedge d x_{i_{p}-1} \wedge d x_{i_{p}+1} \wedge \ldots
$$

In $\operatorname{Gr}\left(W^{k-0}\right) \otimes d^{\infty} x$, elements written as $\sum_{I} f_{I} d^{\infty-I} x, I=\left\{i_{1}, \ldots, i_{p}\right\}$ are said to be ($\infty-p$)-forms and denoted by $\phi^{\infty-p}$, etc.. Then we define wedge product of p-form or $(\infty-p)$-form and ($\infty-q$)-form by (9), (10) and

$$
\begin{array}{ll}
\phi^{\infty-p} \wedge \psi^{\infty-q}=0 \\
\phi^{p} \wedge \psi^{\infty-q}=(-1)^{p(\nu-q)} \psi^{\infty-q} \wedge \phi^{p}, & -1=\mathrm{e}^{\pi i} \\
\psi^{\infty-q} \wedge \phi^{p}=(-1)^{(\nu-q) p} \phi^{p} \wedge \psi^{\infty-q}, & -1=\mathrm{e}^{-\pi i} \tag{14}
\end{array}
$$

when W^{k} is a complex vector space. Here ν is arbitrary and need not assume integrity. While if W^{k} is a real vector space, we need to assume integrity of ν (cf. [5]).

Definition. The algebra $G r\left(W^{-k+0}\right) \oplus \operatorname{Gr}\left(W^{k-0}\right) \otimes d^{\infty} x$ with the wedge product defined by the rules (9), (10) and (12) - (14) is said to be the Grassmann algebra with ∞-forms and denoted by $G r^{\infty}\left(W^{-k+0}\right)$.

Note. Commutaion relations (13) and (14) are same those of generators of noncommutative torus (or matrices algebra) when ν is not a rational number (or a rational number) (cf. [12]). We ask are there any relation between Grassman algebra with ∞-forms (or Clliford algebra with ∞-spinors, which is defined by the same way ([5])) and noncommutative torus (or matrices algebra) (cf. [7]).

3 Exterior differential of ($\infty-p$)-forms

Similar to the finite degree forms exterior differential of an $(\infty-p)$-form $\sum f_{I} d^{\infty-I} x$ is defined by

$$
\begin{equation*}
d\left(\sum_{I} f_{I} d^{\infty-I} x\right)=\sum_{I} d f_{I} \wedge d^{\infty-I} x, \quad d f=\sum_{n=1}^{\infty} \frac{\partial f}{\partial x_{n}} d x_{n} \tag{15}
\end{equation*}
$$

But since

$$
\begin{aligned}
& d\left(\sum_{i_{1}, \ldots, i_{p+1}} f_{i_{1}, \ldots, i_{p+1}} d^{\infty-\left\{i_{1}, \ldots, i_{p+1}\right\}} x\right) \\
= & \sum_{i_{1}, \ldots, i_{p}}\left(\sum_{k=0}^{p+1} \sum_{i_{k}<j<i_{k+1}}(-1)^{j-k} \frac{\partial f_{i_{1}, \ldots, i_{k}, j, i_{k+1}, \ldots, i_{p}}}{\partial x_{j}}\right) d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x
\end{aligned}
$$

where $i_{0}<j<i_{1}$ and $i_{p}<j<i_{p+1}$ mean $j<i_{1}$ and $i_{p}<j$, respectively, $d \phi^{\infty-p}$ diverges in general. We say $\phi^{\infty-p}$ is exterior differentiable if $d \phi^{\infty-p}$ converges.

Note. $\phi^{\infty-p}$ is expressed as alternative function $f(x)=f\left(x, x_{1}, \ldots, x_{p}\right): W^{k} \rightarrow$ W^{k}. Denoting Fréchet differential of f by $\hat{d} f, d f$ is given by

$$
d f\left(x, x_{1}, \ldots, x_{p-1}\right)=(-1)^{p-1} \operatorname{tr} \hat{d} f\left(x, x_{1}, \ldots, x_{p-1}, x\right)
$$

So to define $d f$, we need to assume $\hat{d} f$ to be a trace class operator. This is a coordiante free definition of exterior differentiable form ([3]).

Theorem 1. An exterior differentiable $(\infty-p)$-form is exact.
Proof. Since Theorem is true if $p=0$, first we prove Theorem for ($\infty-1$)-form $\phi=\sum f_{n} d^{\infty-\{n\}} x$. First we note that if ϕ is exterior differentiable, then there exists a constant $M>0$ such that

$$
\begin{equation*}
\left|\sum_{n=1}^{N}(-1)^{n-1} \frac{\partial f_{n}}{\partial x_{n}}\right| \leq M \tag{16}
\end{equation*}
$$

for all N. The equation $\phi=d \psi, \psi=\sum_{n} g_{n, n+1} d^{\infty-\{n, n+1\}} x$ is equivalent to the system

$$
\begin{equation*}
\frac{\partial g_{1,2}}{\partial x_{2}}=f_{1}, \quad(-1)^{n-2}\left(\frac{\partial g_{n-1, n}}{\partial x_{n-1}}-\frac{\partial g_{n, n+1}}{\partial x_{n+1}}\right)=f_{n}, \quad n \geq 2 \tag{17}
\end{equation*}
$$

A solution of this system is given by

$$
g_{1,2}=\int_{0}^{x_{1}} f_{1} d t, \quad g_{n, n+1}=\int_{0}^{x_{n+1}}\left((-1)^{n-1} f_{n}+\frac{\partial g_{n-1, n}}{\partial x_{n+1}}\right) d t
$$

Since

$$
g_{2,3}=\int_{0}^{x_{2}}\left(-f_{2}+\frac{\partial}{\partial x_{1}} \int_{0}^{x_{2}} f_{1} d \tau\right) d t=\int_{0}^{x_{3}}\left(-f_{2}+\int_{0}^{x_{2}} \frac{\partial f_{1}}{\partial x_{1}} d \tau\right) d t
$$

we get

$$
\frac{\partial g_{2,3}}{\partial x_{2}}=\int_{0}^{x_{3}}\left(-\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{1}}{\partial x_{1}}\right) d t
$$

We assume

$$
\begin{equation*}
\frac{\partial g_{n-1, n}}{\partial x_{n-1}}=\int_{0}^{x_{n}}\left(\sum_{i=1}^{n-1}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}}\right) d t \tag{18}
\end{equation*}
$$

Then, since

$$
\frac{\partial g_{n, n+1}}{\partial x_{n+1}}=(-1)^{n-1} f_{n}+\frac{\partial g_{n-1, n}}{\partial x_{n-1}}=(-1)^{n-1} f_{n}+\int_{0}^{x_{n}}\left(\sum_{i=1}^{n-1}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}}\right) d t
$$

we obtain

$$
\begin{aligned}
& \frac{\partial g_{n+1, n+2}}{\partial x_{n+2}}=(-1)^{n} f_{n+1}+\frac{\partial g_{n, n+1}}{\partial x_{n}}= \\
= & (-1)^{n} f_{n+1}+\frac{\partial}{\partial x_{n}} \int_{0}^{x_{n+1}}\left((-1)^{n+1} f_{n}+\int_{0}^{x_{n}} \sum_{i=1}^{n-1}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}} d \tau\right) d t \\
= & (-1)^{n} f_{n+1}+\int_{0}^{x_{n+1}}\left(\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}}\right) d t .
\end{aligned}
$$

Hence we get $\frac{\partial g_{n, n+1}}{\partial x_{n}}=\int_{0}^{x_{n+1}}\left(\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial f_{i}}{\partial x_{i}}\right) d t$. Therefore (18) is hold for any $n \geq 1$.

If ϕ is exterior differentiable, we have

$$
\begin{equation*}
\left|\frac{\partial g_{n, N+1}}{\partial x_{n}}\right| \leq\left|x_{n+1}\right| M \tag{19}
\end{equation*}
$$

by (16). Since $\sum\left|x_{n}\right|^{2}<\infty, \sum g_{n, n+1} d^{\infty-\{n, n+1\}} x$ converges by (19). Hence THeorrem holds if $p=1$.

Let $p \geq 2$ and $J=\left\{j_{1}, \ldots, j_{p}\right\}, j_{1}<\cdots<j_{p}$ be a set of natural numbers. We give the lexicographic linear order to the set J. Let J^{\prime} be the set $\left\{j_{1}, \ldots, j_{p-1}\right\}$ and write an $\infty-p$-form ϕ as follows:

$$
\begin{equation*}
\phi=\sum_{J^{\prime}} \sum_{i>j_{p-1}} f_{\left\{J^{\prime}, i\right\}} d^{\infty-\left\{J^{\prime}, i\right\}} x \tag{20}
\end{equation*}
$$

Then formally $d \phi$ is given by

$$
\begin{aligned}
d \phi= & \sum_{J^{\prime}}\left(\sum_{k \in J^{\prime}} \frac{\partial f_{\left\{J^{\prime}, j\right\}}}{\partial x_{k}} d x_{k} \wedge d^{\infty-\left\{J^{\prime}, j\right\}} x\right)+ \\
& +\sum_{j>j_{p-1}}(-1)^{j+p} \frac{\partial f_{\left\{J^{\prime}, j\right\}}}{\partial x_{j}} d^{\infty-\left\{J^{\prime}, j\right\}} x
\end{aligned}
$$

Hence if ϕ is exterior differentiable, there exist constants $M_{J^{\prime}}>0$ such that

$$
\begin{equation*}
\left|\sum_{j \leq N}(-1)^{j} \frac{\partial f_{\left\{J^{\prime}, j\right\}}}{\partial x_{j}}\right|<M_{J^{\prime}} \tag{21}
\end{equation*}
$$

for all $N>j_{p-1}$. The following sum also converges.

$$
\begin{equation*}
\sum_{J^{\prime}} \sum(-1)^{j} \frac{\partial f_{\left\{J^{\prime}, j\right\}}}{\partial x_{j}} \tag{22}
\end{equation*}
$$

Let ψ be an $(\infty-p-1)$-form such that $d \psi=\phi$ and

$$
\psi=\sum_{J^{\prime}} \sum_{i>j_{p}-1} g_{\left\{J^{\prime}, i, i+1\right\}} d^{\infty-\left\{J^{\prime}, i, i+1\right\}} x
$$

Then, since

$$
\begin{aligned}
d \psi= & \sum_{J^{\prime}}\left(\left(\sum _ { k < j _ { p - 1 } , k \notin J ^ { \prime } } \left(\pm \frac{\partial g_{\left\{J^{\prime}, k, j_{p-1}+1\right\}}}{\partial x_{k}}+\right.\right.\right. \\
& \left.\left.+(-1)^{j_{p-1}-p+1} \frac{\partial g_{\left\{J^{\prime}, j_{p-1}+1, j_{p-1}+2\right\}}}{\partial x_{j_{p-1}+2}}\right) d^{\infty-\left\{J^{\prime}, j_{p-1}+1\right\}} x\right)+ \\
& \left.+\sum_{j>j_{p-1}+1}(-1)^{j+p}\left(\frac{\partial g_{\left\{J^{\prime}, j+1, j+2\right\}}}{\partial x_{j+2}}-\frac{\partial g_{\left\{J^{\prime}, j, j+1\right\}}}{\partial x_{j+2}}\right)\right) d^{\infty-\left\{J^{\prime}, j+1\right\}} x
\end{aligned}
$$

it must be

$$
\begin{align*}
f_{\left\{J^{\prime}, j_{p-1}+1\right\}}= & \left(\sum_{k<j_{p-1}, k \notin J^{\prime}} \pm \frac{\partial g_{\left\{J^{\prime}, k, j_{p-1}+1\right\}}}{\partial x_{k}}\right)+ \\
& +(-1)^{j_{p-1}-p+1} \frac{\partial g_{\left\{J^{\prime}, j_{p-1}+1, j_{p-2}+2\right\}}}{\partial x_{j_{p-1}+2}} \tag{23}\\
f_{\left\{J^{\prime}, j\right\}}= & (-1)^{j+p}\left(\frac{\partial g_{\left\{J^{\prime}, j+1, j+2\right\}}}{\partial x_{j+2}}-\frac{\partial g_{\left\{J^{\prime}, j, j+1\right\}}}{\partial x_{j}}\right), \tag{24}
\end{align*}
$$

where $j>j_{p-1}+1$, in (24). Since the right hand side of (23) is a finite sum, we set

$$
f_{\left\{J^{\prime}, j_{p-1}+1\right\}}=f_{\left\{J^{\prime}, j_{p-1}+1\right\}}-\sum_{k<j_{p-1}, k \notin J^{\prime}} \pm \frac{\partial g_{\left\{J^{\prime}, k_{p-1}+1\right\}}}{\partial x_{k}}
$$

Similar to the case $p=1, g_{\left\{J^{\prime}, j, j+1\right\}}, j>j_{p-1}+1$ are determined by

$$
\begin{aligned}
g_{\left\{J^{\prime}, j_{p-1}+1, j_{p-2}+2\right\}} & =\int_{0}^{x_{j_{p-1}+1}} f_{\left\{J^{\prime}, j_{p-1}+1\right\}} d t \\
g_{\left\{J^{\prime}, j, j+1\right\}} & =\int_{0}^{x_{j}+1}(-1)^{j+p}\left(f_{\left\{J^{\prime},, j\right\}}-\frac{\partial g_{\left\{J^{\prime}, j-1, j\right\}}}{\partial x_{j}}\right) d t, j>j_{p-1}+1 .
\end{aligned}
$$

Then by (21) and convegence of (22), ψ converges if ϕ is exterior differentiable. Hence we have Theorem.

Note. Theorem 1 shows $d^{2} \neq 0$ on the space of $(\infty-p)$-forms. For example, let ψ be $\sum\left(1-1 / 2^{n}\right) x_{n} x_{n+1} d^{\infty-\{n, n+1\}} x$, then

$$
d \psi=\sum(-1)^{n} \frac{x_{n}}{2^{n}} d^{\infty-\{n\}} x, \quad d^{2} \psi=-d^{\infty} x \neq 0
$$

Since we have $d(f \phi)=d f \wedge \phi+f d \phi$, where f is a smooth function, we obtain

$$
d^{2}(f \phi)=d^{2} f \wedge \phi-d f \wedge d \phi+d f \wedge d \phi+f d^{2} \phi=f d^{2} \phi
$$

Hence by induction, we get

$$
\begin{align*}
d^{2 n}(f \phi) & =f d^{2 n} \phi \tag{25}\\
d^{2 n+1}(f \phi) & =d f \wedge d^{2 n} \phi+f d^{2 n+1} \phi \tag{26}
\end{align*}
$$

If $\phi=d \psi$, then ψ is exterior differentiable. Hence $\psi=d v$ for some v. That is $\phi=d^{2} v$. By (25), by using smooth partition of unity, v exists globally. Hence if an $\infty-p$-form ϕ is exterior differentiable, then ϕ is globally exact.

4 Regularized exterior differential

We have defined the action G^{s} to the spaces W^{k}, etc. ([6]). We also define

$$
\begin{equation*}
G^{s G^{t}}: G^{s G^{t}} e_{n}=\mu_{n}^{s \mu_{n}^{t}} e_{n} \tag{27}
\end{equation*}
$$

$G^{s G^{t}}$ acts on the space of infinite differential forms if s and t large. Explicitely, we ahve

$$
\begin{equation*}
G^{s G^{t}} d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x=\mu_{i_{1}}^{s \mu_{i_{1}}^{t}} \cdots \mu_{i_{p}}^{s \mu_{i_{p}}^{t}} \prod_{j=1}^{\infty} \mu_{j}^{s \mu_{j}^{t}} d^{\infty-\left\{i_{1}, \ldots, i_{p}\right.} x \tag{28}
\end{equation*}
$$

Since Ray-Singer detrminant $\operatorname{det} G$ is the analytic continuation of $\prod_{n=1}^{\infty} \mu_{n}^{\mu_{n}^{t}}$ to $t=0$, we have by (28)

$$
\begin{equation*}
\left.G^{s G^{t}} d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x\right|_{t=0}=\mu_{i_{1}}^{s} \cdots \mu_{i_{p}}^{s}(\operatorname{det} G)^{-s} d^{\infty-\left\{i_{1}, \ldots, i_{p}\right\}} x \tag{29}
\end{equation*}
$$

Here $\left.\right|_{t=0}$ means analytic continuation to $t=0$. For simple, hereafter we use the notation

$$
\begin{equation*}
G^{s, *} \phi=\left.\sum_{I} f_{I} G^{s G^{t}} d^{\infty-I} x\right|_{t=0}, \quad \phi=\sum_{I} f_{I} d^{\infty-I} x . \tag{30}
\end{equation*}
$$

Definition. We define the regularized exterior differential : $d: \phi$ by

$$
\begin{equation*}
: d: \phi=\left.d\left(G^{s, *} \phi\right)\right|_{s=0} \tag{31}
\end{equation*}
$$

Note 1. We may ignore the factor $(\operatorname{det} G)^{s}$ in the definition of $G^{s, *} \phi$, because we are working on a flat space. If we work on a curved space, this factor might have meanings.

Note 2. We may define regularized exterior differential for finite degree forms. But in this case, we have : $d: \alpha=d \alpha$.

Example. Let ω be $\sum(-1)^{n-1} d^{\infty-\{n\}} x$. Then $d \omega$ diverges. But, since

$$
G^{s, *}(\omega)=\sum_{n=1}^{\infty}(-1)^{n-1} \mu_{n}^{s}(\operatorname{det} G)^{-s} x_{n} d^{\infty-\{n\}} x
$$

we have

$$
: d: \omega=\left.\zeta(G, s)(\operatorname{det} G)^{s} d^{\infty} x\right|_{s=0}=\nu d^{\infty} x
$$

Similarly, we obtain

$$
\begin{equation*}
: d:\left(r^{a} \omega\right)=(a+\nu) d^{\infty} x, \quad r=\sqrt{\sum x_{n}^{2}} . \tag{32}
\end{equation*}
$$

Especially, : $d:\left(r^{-\nu} \omega\right)$ is equal to 0 as expected.
For simple, we denote $G^{s, *} \omega=\omega(s) . \omega(s)$ is exterior differentiable if $s>d$. Formally, we have

$$
\omega(s)=d \psi(s), \quad \psi(s)=\sum(-1)^{n}\left(\sum_{i=1}^{n} \mu_{i}^{s}\right) x_{n} x_{n+1} d^{\infty-\{n, n+1\}} x
$$

$\psi(s)$ converges if $s>d / 2$. Therefore $\omega(s), d \geq s>d / 2$, is not exterior differentiable, but exact. In other word, the space of exact $(\infty-p)$-forms is wider than the space of exterior differentiable $(\infty-p)$-forms.

By definition, we have $G^{s, *}\left(G^{t, *} \phi\right)=G^{s+t, *} \phi$, we have

$$
: d:(: d: \phi)=\left.d^{2} G^{s+t, *} \phi\right|_{s=0, t=0}
$$

Hence to define : $d^{m}: \phi$ by $\left.d^{m} G^{s, *} \phi\right|_{s=0}$, we have

$$
\begin{equation*}
: d^{m}:=(: d:)^{m} \tag{33}
\end{equation*}
$$

In [3], we defined formal adjoint δ of d by

$$
\begin{equation*}
\delta u^{p}=(-1)^{p} *^{-1} d * u^{p}, \quad \delta \phi^{\infty-p}=(-1)^{p} *^{\nu-p} d * \phi^{\infty-p}, \tag{34}
\end{equation*}
$$

where $*$ is the Hodge operator defined in [2]. By (34), we define regularized formal adjoint of d by

$$
\begin{equation*}
: \delta: u^{p}=(-1)^{p}: d: * u^{p}, \quad: \delta: \phi^{\infty-p}=(-1)^{p} *^{\nu-p}: d: * \phi^{\infty-p} . \tag{35}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
: \triangle:=: d:: \delta:+: \delta:: d: \tag{36}
\end{equation*}
$$

where : \triangle : is the regularized Laplacian defined in [6].
Note. Theorem 1 shows we can not expect to get de Rham theory by using $(\infty-p)$-forms. Precisely, denoting the spaces of $(\infty-p)$-forms, exterior differentiable
($\infty-p$)-forms and closed $(\infty-p)$-forms on U, an open set of $W^{k-0}($ finite $)$, by $\mathcal{C}^{\infty-p}(U), \mathcal{E}^{\infty-p}(U)$ and $\mathcal{B}^{\infty-p}(U)$, respectively, we have

$$
\begin{array}{r}
\mathcal{C}^{\infty-p}(U) \supset d \mathcal{E}^{\infty-(p+1)}(U) \supset \mathcal{E}^{\infty-p}(U) \supset \mathcal{B}^{\infty-p}(U) \\
d \mathcal{E}^{\infty-(p+1)}(U) \cong \mathcal{E}^{\infty-(p+1)}(U) / \mathcal{B}^{\infty-(p+1)}(U) \tag{38}
\end{array}
$$

We also denote $\mathcal{E}_{k}^{\infty-p}(U), 1 \leq k \leq p$, the space of ($\infty-p$)-forms on U such that d^{k} is defined. Then we have

$$
\begin{array}{r}
\mathcal{E}^{\infty-p}(U)=\mathcal{E}_{1}^{\infty-p}(U)=d \mathcal{E}_{2}^{\infty-(p+1)}(U) \\
d \mathcal{E}^{\infty-(p+1)}(U) / \mathcal{E}^{\infty-p}(U)=d \mathcal{E}_{1}^{\infty-(p+1)}(U) / \mathcal{E}_{2}^{\infty-(p+1)}(U)
\end{array}
$$

In general, since $\mathcal{B}^{\infty-p}(U) \subset \mathcal{E}_{k}^{\infty-p}(U)$ for all k, we get

$$
d \mathcal{E}_{k}^{\infty-(p+1)}(U) / d \mathcal{E}_{k+1}^{\infty-(p+1)}(U)=\mathcal{E}_{k}^{\infty-(p+1)} / \mathcal{E}_{k+1}^{\infty-(p+1)}(U)
$$

On the other hand, we have $\mathcal{E}_{k}^{\infty-q}(U)=d \mathcal{E}_{k-1}^{\infty-(q+1)}(U), k \geq 2$. Hence to denote $d \mathcal{E}^{\infty-(p+1)}(U) / \mathcal{E}^{\infty-p}(U)$ by $\mathrm{F}^{\infty-p}(U)$, we obtain the descent formula

$$
\begin{equation*}
\mathrm{F}^{\infty-p}(U) \cong \mathcal{E}_{k}^{\infty-(p+k)} / \mathcal{E}_{k+1}^{\infty-(p+k)}(U) \tag{39}
\end{equation*}
$$

We also introduce the kernel space $\mathcal{B}_{k}^{\infty-p}(U)$ of d^{k}. Then by the map $\phi \rightarrow d^{k} \phi$, we have

$$
\begin{equation*}
\mathcal{B}_{m-k}^{\infty-p+k}(U) \cong \mathcal{B}_{m}^{\infty-p}(U) / \mathcal{B}_{k}^{\infty-p}(U) \tag{40}
\end{equation*}
$$

(39) and (40) may have relation to de Rham complexes with $d^{N}=0$ (cf.[7]).

By using regularized exterior differential : $d:$, we define the spaces $\mathcal{E}_{\text {reg }}^{\infty-p}(U)$, $\mathcal{B}_{r e g}^{\infty-p}(U)$ and $\mathcal{B}_{k, \text { reg }}^{\infty-p}(U)$, similarly. By definitions, $\mathcal{E}_{\text {reg }}^{\infty-p}(U)$ contains $\mathcal{B}_{\text {reg }}^{\infty-p}(U)$ and

$$
\begin{align*}
& : d:: \mathcal{E}_{r e g}^{\infty-(p+1)}(U) \cong \mathcal{E}_{r e g}^{\infty-(p+1)}(U) / \mathcal{B}_{r e g}^{\infty-(p+1)}(U) \tag{41}\\
& \quad: d^{k}:: \mathcal{B}_{m-k, r e g}^{\infty-p+k}(U) \cong \mathcal{B}_{m, r e g}^{\infty-p}(U) / \mathcal{B}_{k, \text { reg }}^{\infty-p}(U) \tag{42}
\end{align*}
$$

But the relation between : $d: \mathcal{E}_{\text {reg }}^{\infty-(p+1)}(U)$ and $\mathcal{E}_{\text {reg }}^{\infty-p}(U)$ is not known.

5 Regularized integral of $(\infty-p)$-forms

To define regularization of infinite dimensional integral on a qube domain

$$
Q(\mathbf{a})=\left\{\sum x_{n} e_{n, k} \mid 0 \leq x_{n} \leq a_{n}\right\}, \quad \mathbf{a}=\left(a_{1}, a_{2}, \ldots\right)
$$

contained in W^{k-0} (finite), we use fractional integral

$$
\int_{0}^{a} f(x) d^{c} x=\frac{1}{\Gamma(c)} \int_{0}^{a}(a-x)^{c-1} f(x) d x
$$

(cf. [4], [13]), and introduce the following operation.

$$
\begin{align*}
I_{Q(\mathbf{a})}^{\mathbf{c}}(f)= & \lim _{n \rightarrow \infty} \Gamma\left(1+c_{1}\right) \int_{0}^{a_{n}}\left(\Gamma\left(1+c_{2}\right) \int_{0}^{a_{n-1}} \cdots\right. \\
& \left.\cdots\left(\Gamma\left(1+c_{1}\right) \int_{0}^{a_{1}} f d^{c_{1}} x\right) \cdots d^{c_{n-1}} x\right) d^{c_{n}} x \tag{43}
\end{align*}
$$

where $\mathbf{c}=\left(c_{1}, c_{2}, \ldots\right)$. We denote $\zeta\left(G, s G^{t}\right)$ instead of \mathbf{c} if $c_{1}=\mu_{1}^{s \mu_{1}^{t}}, c_{2}=\mu_{2}^{s \mu_{2}^{t}}$, and so on. Then in [4], the regularized integral $\int_{Q(\mathbf{a})} f d^{\infty}: x:$ was defined by

$$
\begin{equation*}
\int_{Q(\mathbf{a})} f d^{\infty}: x:=\left.\left(\left.I_{Q(\mathbf{a})}^{\zeta\left(G, s^{G^{t}}\right)}(f)\right|_{t=0}\right)\right|_{s=0} \tag{44}
\end{equation*}
$$

Here f is a function on $Q(\mathbf{a})$ with suitable regularity. For example, we have

$$
\begin{equation*}
\int_{Q(\mathbf{a})} 1 d^{\infty}: x:=: \prod a_{n}: \tag{45}
\end{equation*}
$$

where : $\prod a_{n}$: is the regualrized infinite product defined in [4].
Note. For simple, we set

$$
\begin{equation*}
: I:_{Q(\mathbf{a})}^{\zeta(G, s)}(f)=\left.I_{Q(\mathbf{a})}^{\zeta\left(G, s^{G^{t}}\right)}(f)\right|_{t=0} \tag{46}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\int_{Q(\mathbf{a})} f d^{\infty}: x:=: I:\left._{Q(\mathbf{a})}^{\zeta(G, s)}(f)\right|_{s=0} \tag{47}
\end{equation*}
$$

This was the definition of $\int_{Q(\mathbf{a})} f d^{\infty}: x:$ in [4].
We apply this regularization procedure to justify physicists' calculation of the pathintegral

$$
\begin{equation*}
\int_{H} \mathrm{e}^{-2 \pi i(x, D x)} \mathcal{D} x=\frac{1}{\sqrt{\operatorname{det} D}} \tag{48}
\end{equation*}
$$

Here D is the positive nondegenerate selfadjoint elliptic operator whose Green operator is G. The proper values of D are $\mu_{1}^{-1}, \mu_{2}^{-1}, \ldots$. Since $\lim _{n \rightarrow \infty} \mu_{n}=0$, we assume $1>\mu_{1} \geq \mu_{2} \geq \ldots>0$, for simple. Then we have

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \zeta(G, s)=0 \tag{49}
\end{equation*}
$$

Since $\mathrm{e}^{-2 \pi(x, D x)}=\prod \mathrm{e}^{-\mu_{n}^{-1} 2 \pi x_{n}^{2}}$, to compute $: I:_{Q(\mathbf{a})}^{\zeta(G, s)}(f)$, we need to compute

$$
\begin{aligned}
& \frac{\Gamma\left(1+\mu_{n}^{s}\right)}{\Gamma\left(\mu_{n}^{s}\right)} \int_{0}^{a_{n}}\left(a_{n}-x_{n}\right)^{\mu_{n}^{s}-1} \mathrm{e}^{-\mu_{n}^{-1} 2 \pi x_{n}^{2}} d x_{n} \\
= & \mu_{n}^{s}\left(\sqrt{\mu_{n}}\right)^{\mu_{n}^{s}} \int_{0}^{b_{n}}\left(b_{n}-\xi\right)^{\mu_{n}^{s}-1} \mathrm{e}^{-2 \pi \xi^{2}} d \xi, \quad b_{n}=\sqrt{\mu_{n}^{s}} a_{n} .
\end{aligned}
$$

Since

$$
\lim _{s \rightarrow \infty} \mu_{n}^{s} \int_{0}^{b_{n}}\left(b_{n}-\xi\right)^{\mu_{n}^{s}-1} \mathrm{e}^{-2 \pi \xi^{2}} d \xi=\mathrm{e}^{-2 \pi b_{n}^{2}}
$$

$\lim _{s \rightarrow \infty}: I:_{Q(\mathbf{a})}^{\zeta(G, s)}\left(\mathrm{e}^{-(x, D x)}\right)$ exists, if $\sum a_{n} e_{n} \in H^{-}$.
Let $\operatorname{det} D$ be the Ray-Singer determinant $\mathrm{e}^{-\zeta^{\prime}(D, 0)}$ of D. Then, since $-\zeta^{\prime}(D, s)=$ $-\zeta^{\prime}(G, s)$, we have

$$
\begin{equation*}
\left.\prod_{n=1}^{\infty}\left(\sqrt{\mu_{n}}\right)^{\mu_{n}^{s}}\right|_{s=0}=\frac{1}{\sqrt{\operatorname{det} D}} \tag{50}
\end{equation*}
$$

Hence to derive (48), it is sufficient to show

$$
\begin{equation*}
\left.\lim _{b_{n} \rightarrow \infty} \prod_{n-1}^{\infty} \mu_{n}^{s}\left(2 \int_{0}^{b_{n}}\left(b_{n}-x_{n}\right)^{\mu_{n}^{s}-1} \mathrm{e}^{-2 \pi x_{n}^{2}} d x_{n}\right)\right|_{s=0}=1 \tag{51}
\end{equation*}
$$

b_{n} 's may tend to ∞ independently. But for simple, we set $b_{n}=r \mu_{n}^{c}$. Then, since

$$
\lim _{r \rightarrow \infty} \lim _{s \rightarrow 0} \mu_{n}^{s} 2 \int_{0}^{b_{n}}\left(b_{n}-x\right)^{\mu_{n}^{s}-1} \mathrm{e}^{-2 \pi x_{n}^{2}} d x=1
$$

to get (51), we need to take $c>0$. This shows to derive (48) according to the regularization procedure proposed in [4], path integral should be taken on $W^{-d / 2-c}$, $c>0$ is arbitrary.

Since $2 \int_{0}^{\infty} \exp \left(-2 \pi x_{n}^{2}\right) d x=1$ and $\lim _{s \rightarrow 0} \mu_{n}^{s}\left(b_{n}-x\right)^{\mu_{n}^{s}-1}=1$, to show (51), we need to evaluate $1-\mu_{n}^{s}\left(b_{n}-x\right)^{\mu_{n}^{s}-1}$. We note that

$$
\log \left(\left(b_{n}-x\right)^{\mu_{n}^{s}-1}\right)=\left(\mu_{n}^{s}-1\right) \log \left(b_{n}-x\right), \quad \mu_{n}^{s}-1=\sum_{m=1}^{\infty} \frac{\left(\log \mu_{n}\right)^{m}}{m!} s^{m}
$$

Hence $\left(b_{n}-x\right)^{\mu_{n}^{s}-1}-1$ is a power series $\sum_{m \geq 1} c_{m}\left(s \log \mu_{n}\right)^{m}$, where c_{m} is a polynomial of $\log \left(b_{n}-x\right)$. If $b_{n}=r \mu_{n}^{c}$, then changing $\bar{\xi}=x / \mu_{n}^{c}$, we may set

$$
c_{m}\left(\log \left(b_{n}-x\right)\right)=\mu_{n}^{c} c_{m}\left(\log (r-\xi)+c \log \mu_{n}\right)
$$

Precisely saying, our regularization procedure is consisted by the following two schemes

$$
1=\left.\mu_{n}^{s}\right|_{s=0}, \quad \mu_{n}^{s}=\left.\mu_{n}^{s \mu_{n}^{t}}\right|_{t=0}
$$

Acording to these schemes, we replace $\prod\left(c_{n}\right)$ by $\prod \mu_{n}^{s}\left(c_{n}\right)$ and rewrite

$$
\prod_{n=1}^{\infty} \mu_{n}^{s} c_{n}=\prod_{n=1}^{\infty}\left(\mu_{n}^{s}-\left(\mu_{n}^{s}-\mu_{n}^{s} c_{n}\right)\right)
$$

To show the convergence of this infinite product, it is sufficient to show the convergence of $\sum \mu_{n}^{s}\left(1-c_{n}\right)$. Then, since $\zeta^{(k)}(G, s)=\sum\left(\log \mu_{n}\right)^{k} \mu_{n}^{s}$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mu_{n}^{s}\left(b_{n}-x_{n}\right)^{\mu_{n}^{s}-1}=\sum_{m=1}^{\infty} \sum_{k=1}^{m} c_{m, k}\left(\log r\left(s^{k} \zeta^{(m)}(s+c)\right)\right)+O\left(\frac{1}{\sqrt{r}}\right) \tag{52}
\end{equation*}
$$

if $x_{n}<\sqrt{r}$. Since

$$
\int_{s} q r t r^{r}(r-x)^{c-1} \mathrm{e}^{-2 \pi x^{2}} d x<\frac{1}{c} r^{c+1} \mathrm{e}^{-r},
$$

these estimates on $x_{n}, n=1,2, \ldots$ are sufficient to derive (50). Hence we can apply analytic continuation of $\zeta(G, s)$ and may conclude (51).

Note. Regularized integral can be dfined for $(\infty-p)$-forms. For example, let S^{∞} be the sphere (or ellipsoid) in W^{k-0} (finite) given by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\mu_{n}^{-d / 2} x_{n}\right)^{2}=1, \quad \sum x_{n} e_{n, k} \in W^{k-0}(\text { finite }) \tag{53}
\end{equation*}
$$

We consider regularized integral of $\omega=\sum(-1)^{n-1} x_{n} d^{\infty-\{n\}} x$ on S^{∞}. For this purpose, we set

$$
r_{N}(x)=\sqrt{\sum_{n>N}\left(\mu_{n}^{-d / 2} x_{n}\right)^{2}}, \quad N=1,2, \ldots
$$

Then we have

$$
\omega=x_{1} d^{\infty-\{1\}} x+\sum_{n \geq 2} \frac{\mu_{n}^{-d}}{\mu_{1}^{-d} x_{1}} d^{\infty-\{1\}} x=\frac{\mu_{1}^{d}}{x_{1}} d^{\infty-\{1\}} x
$$

on S^{∞}. Because $\sum \mu_{n}^{-d} x_{n} d x_{n}=0$ on S^{∞}.
If $\left(x_{1}, x_{2}, \ldots\right) \in S^{\infty}$, then they satisfy

$$
\begin{aligned}
& -\mu_{1}^{d / 2} \sqrt{1-r_{1}(x)^{2}} \leq x_{1} \leq \mu_{1}^{d / 2} \sqrt{1-r_{1}(x)^{2}} \\
& -\mu_{2}^{d / 2} \sqrt{1-r_{2}(x)^{2}} \leq x_{2} \leq \mu_{2}^{d / 2} \sqrt{1-r_{2}(x)^{2}}, \ldots .
\end{aligned}
$$

Hence calculation of regularized integral of ω on S^{∞} is reduced tothe calculation of

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \prod_{n \leq N} \Gamma\left(1+\mu_{n}^{s}\right) \int_{0}^{\mu_{N}^{d / 2} r_{N}(x)} \cdots \int_{0}^{\mu_{1}^{d / 2} r_{1}(x)} \frac{2 \mu_{1}^{d}}{x_{1}} d^{\mu_{1}^{s}} x_{1} \cdots 2 d^{\mu_{N}^{s}} x_{N} \tag{54}
\end{equation*}
$$

Since we get

$$
\begin{aligned}
& \int_{0}^{\mu_{n}^{d / 2} r_{n}(x)} r_{n-1}(x)^{c} d^{a} x \\
= & \int_{0}^{\mu_{n}^{d / 2 r_{n}(x)}} r_{n}(x)^{c}\left(\sum(-1)^{n} \frac{c(c-1) \cdots(c-m+1) \mu_{n}^{-d m} x_{m}^{2}}{m!r_{m}(x)^{m}}\right) d^{a} x \\
= & \sum(-1)^{m} \frac{c(c-1) \cdots(c-m+1)(2 m)!}{m!\Gamma(2 m+a+1)} \mu_{n}^{(d / 2) a} r_{n}(x)^{a},
\end{aligned}
$$

by binary expansion. Hence computation of (54) is reduced to the computation of

$$
\begin{equation*}
\Gamma\left(1+\mu_{n}^{s}\right) \int_{0}^{\mu_{n}^{d / 2} r_{n}(x)} r_{n-1}(x)^{-1+\mu_{1}^{s}+\cdots+\mu_{n-1}^{s}} d^{\mu_{n}^{s}} x . \tag{55}
\end{equation*}
$$

Since we have

$$
\begin{aligned}
& \sum_{m=0}^{\infty}(-1)^{m} \frac{c(c-1) \cdots(c-m+1)(2 m)!}{m!\Gamma(2 m+a+1)} \\
= & \frac{1}{\Gamma(a)} \int_{0}^{1}(1-t)^{a-1}\left(1-t^{2}\right)^{c} d t,
\end{aligned}
$$

computation of the integral (55) is reduced to the computation of this last integral.

References

[1] Asada,A., Non-commutative geometry of $G L_{p}$-bundles, Colloq. Math. Soc. János Bolyai, 66 (1995) 25-49.
[2] Asada, A., Hodge operators over mapping spaces -Local Study, BSG Proc. 1 (1997) 11-20.
[3] Asada, A., Spectral invariants and geometry of mapping spaces, Contemporary Math., 242 (1999) 189-202.
[4] Asada, A., Regularized product of infinitely many independent variables on a Hilbert space and regularization of infinite dimensional indefinite integral via fractional calculus, Rev. Bull. Calcutta Math. Soc., 9 (2001).
[5] Asada, A., Clliford algebras on Sobolev spaces, BSG Proc. 5 (2001) 1-15.
[6] Asada, A., Tanabe, N., Regularized Hilbert space Laplacian and longitude of Hilbert space, BSG Proc. 6 (2001) 1-10.
[7] Bazunova, N., Borowiec, A., Kerner, R., Quantum de Rham complex with $d^{3}=0$ differential, math-ph 0110007, Czechoslovak J. Phys., 51 (2001).
[8] Cognola, G., Elizalde, E., Zerbini, S., Applications in physics of the multiplicative anomaly formula involving some basic differential operators, Nucl. Phys., B532 (1998) 407-428.
[9] Connes, A., Geometry from the spectral point of view, Lett. Math. Phys., 34 (1995) 203-238.
[10] Connes, A., Noncommutative geometry. Year 2000, GAFA2000, 481-559.
[11] Jannussis, A., Papatheou, V., Vlachos, K., Some remarks on non-commutative geometry, to appear.
[12] Landi, G., Lizzi, F., Szabo, R.J., From large N matrices to the noncommutative torus, Commun. Math. Phys. 217 (2001) 181-201.
[13] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, math.CA/0110241, 2001.
[14] Scott, S.G., Wojciechowski, K., The ζ-determinat and Quillen determinant for a Dirac operator on amanifold with boundary, GAFA 10 (2000) 1202-1236.
[15] Seiberg, N., Witten, E., String theory and noncommutative geometry, J. High Energy Phys., 09(1999), 032.
[16] Shovkovy, I. A., Derivative expansion of the one-loop effective action in $Q E D$, Trends in mathematical physics, AMS/IP Stud. Adv. Math., 13(1999) 467-474.

Author's address:

Akira Asada

3-6-21, Nogami, Takarazuka, 665-0022 Japan,
E-mail: asada-a@poporo.ne.jp

[^0]: Editor Gr.Tsagas Proceedings of The Conference of Applied Differential Geometry - General Relativity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 2002, 10-24 (C) 2004 Balkan Society of Geometers, Geometry Balkan Press

