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Abstract

The geometry of regular Hamiltonians as smooth functions on the cotangent
bundle is mainly due to R. Miron and it is now systematically described in the
monograph [4]. A manifold endowed with a regular Hamiltonian which is 2–
homogeneous in momenta was called a Cartan space. An interesting particular
class of Cartan spaces is given by the so–called Berwald–Cartan spaces. In this
paper some new properties of the Berwald–Cartan spaces are proved.
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Introduction

Analytical Mechanics and some theories in Physics brought into discussion regular
Lagrangians and their geometry, [5]. A regular Lagrangian which is 2-homogeneous in
velocities is nothing but the square of a fundamental Finsler function and its geometry
is Finsler geometry. This geometry was developed since 1918 by P. Finsler, E. Cartan,
L. Berwald and many others, see [2] and the most recent graduate text [1]. But in
Mechanics and Physics there exists also regular Hamiltonians whose geometry is also
useful. This geometry is mainly due to R. Miron ,[3], and it is now systematically
presented in the monograph [4]. A manifold endowed with a regular Hamiltonian
which is 2-homogeneous in momenta was called a Cartan space. The notion of Cartan
space was introduced by R. Miron in [3]. A particular and interesting class of Cartan
spaces is given by the so–called Berwald–Cartan spaces, shortly BC-spaces. The
geometry of the BC-spaces can be found in [4], Chs. 6-7. Our purpose is to prove
some new properties of these spaces. A Cartan space is a pair (M,K) for M a smooth
manifold and K a regular Hamiltonian which is 2-homogeneous in momenta. A BC
space is defined as a Cartan space whose Chern–Rund connection coefficients of the
canonical metrical connection do not depend on momenta, that is, Hi

jk(x, p) = Hi
jk(x).

For a Cartan space the pair (T ∗
x M,K(x, p)) for any fixed x ∈ M is a Minkowski space.

We prove (Theorem 3.2) that for BC spaces the Minkowski spaces (T ∗
x M,K(x, p))
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are all linearly isometric to each other. Noticing that the functions Hi
jk(x) defines a

symmetric linear connection ∇ on M we prove (Theorem 3.3) that ∇ is metrizable,
that is, there exists a Riemannian metric on M whose Levi–Civita connection is ∇.
These proofs are presented in Section 3. Some preliminaries from the geometry of
cotangent bundle are given in Section 1, and Section 2 contains necessary facts from
the geometry of Cartan spaces.

1 Preliminaries

Let M be an n-dimensional C∞ manifold and τ∗ : T ∗M → M its cotangent bundle.
If (xi) are local coordinates on M , then (xi, pi) will be taken as local coordinates
on T ∗M with the momenta (pi) provided by p = pidxi where p ∈ T ∗

x M , x = (xi)
and (dxi) is the natural basis of T ∗

x M . The indices i, j, k... will run from 1 to n
and the Einstein convention on summation will be used. A change of coordinates
(xi, pi) → (x̃i, p̃i) on T ∗M has the form

(1.1)
x̃i = x̃i(x1, ..., xn), rank

(
∂x̃i

∂xj

)
= n

p̃i =
∂xj

∂x̃i
(x̃)pj ,

where
(

∂xj

∂x̃i

)
is the inverse of the Jacobian matrix

(
∂x̃j

∂xk

)
.

Let
(

∂i :=
∂

∂xi
, ∂i :=

∂

∂pi

)
be the natural basis in T(x,p)T

∗M . The change of

coordinates (1.1) produces

(1.2)
∂i = (∂ix̃

j)∂̃j + (∂ip̃j)∂̃j ,

∂̃i = (∂j x̃
i)∂j .

The natural cobasis (dxi, dpi) from T ∗
(x,p)T

∗M transforms as follows.

(1.3) dx̃i = (∂j x̃
i)dxj , dp̃i =

∂xj

∂x̃i
dpj +

∂2xj

∂x̃i∂x̃k
pj dxk.

The kernel V(x,p) of the differential dτ∗ : T(x,p)T
∗M → TxM is called the vertical

subspace of T(x,p)T
∗M and the mapping (x, p) → V(x,p) is a regular distribution on

T ∗M called the vertical distribution. This is integrable with the leaves T ∗
x M, x ∈ M

and is locally spanned by (∂i). The vector field C∗ = pi∂
i is called the Liouville vector

field and ω = pidxi is called the Liouville 1-form on T ∗M . Then dω is the canonical
symplectic structure on T ∗M . For an easier handling of the geometrical objects on
T ∗M it is usual to consider a supplementary distribution to the vertical distribution,
(x, p) → N(x,p), called the horizontal distribution and to report all geometrical objects
on T ∗M to the decomposition

(1.4) T(x,p)T
∗M = N(x,p) ⊕ V(x,p).
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The pieces produced by the decomposition (1.4) are called d–geometrical objects (d
is for distinguished) since their local components behave like geometrical objects on
M , although they depend on x = (xi) and momenta p = (pi).

The horizontal distribution is taken as being locally spanned by the local vector
fields

(1.5) δi := ∂i + Nij(x, p)∂j ,

and for a change of coordinates (1.1), the condition

(1.6) δi = (∂ix̃
j)δ̃j for δ̃j := ∂̃j + Ñjk(x̃, p̃)∂̃k,

is equivalent with

(1.7) Ñij(x̃, p̃) =
∂xs

∂x̃i

∂xr

∂x̃j
Nsr(x, p) +

∂2xr

∂x̃i∂x̃r
pr.

The horizontal distribution is called also a nonlinear connection on T ∗M and the
functions (Nij) are called the local coefficients of this nonlinear connection. It is
important to note that any regular hamiltonian on T ∗M determines a nonlinear con-
nection whose local coefficients verify Nij = Nji. The basis (δi, ∂

i) is adapted to the
decomposition (1.4). The dual of it is (dxi, δpi), for δpi = dpi − Njidxj and then

δp̃i =
∂xj

∂x̃i
δpj .

2 Cartan spaces

A Cartan structure on M is a function K : T ∗M → [0,∞) with the following proper-
ties:

1. K is C∞ on T ∗M \ 0 for 0 = {(x, 0), x ∈ M},

2. K(x, λp) = λK(x, p) for all λ > 0,

3. The n × n matrix (gij), where gij(x, p) =
1
2

∂i∂jK2(x, p), is positive–definite

at all points of T ∗M \ 0.

We notice that in fact K(x, p) > 0, whenever p 6= 0.

Definition 2.1. The pair (M,K) is called a Cartan space.

Example. Let (γij(x)) be the matrix of the local coefficients of a Riemannian metric
on M and (γij(x)) its inverse. Then K(x, p) =

√
γij(x)pipj gives a Cartan structure.

Thus any Riemannian manifold can be regarded as a Cartan space. More examples
can be found in Ch. 6 of [4].
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We put pi =
1
2

∂iK2 and Cijk = −1
4

∂i∂j∂kK2. The properties of K imply

(2.1)
pi = gijpj , pi = gijp

j , K2 = gijpipj = pip
j ,

Cijkpk = Cikjpk = Ckijpk = 0.

One considers the formal Christoffel symbols

(2.2) γi
jk(x, p) :=

1
2

gis(∂kgjs + ∂jgsk − ∂sgjk)

and the contractions γ◦
jk(x, p) := γi

jk(x, p)pi, γ◦
j◦ := γi

jkpip
k. Then the functions

(2.3) Nij(x, p) = γ◦
ij(x, p) − 1

2
γ◦

h◦(x, p)∂hgij(x, p),

verify (1.7). In other words, these functions define a nonlinear connection on T ∗M .
This nonlinear connection was discovered by R. Miron, [3]. Thus a decomposition
(1.4) holds. From now on we shall use only the nonlinear connection given by (2.3).

A linear connection D on T ∗M is said to be an N–linear connection if

1◦ D preserves by parallelism the distributions N and V ,

2◦ Dθ = 0, for θ = δpi ∧ dxi.

One proves that an N -linear connection can be represented in the adapted basis
(δi, ∂

i) in the form

(2.4)
Dδj δi = Hk

ijδj , Dδj ∂
i = −Hi

kj∂
k,

D∂j δi = V kj
i δk, D∂j ∂i = −V ij

k δk,

where V kj
i is a d–tensor field and Hk

ij(x, p) behave like the coefficients of a linear
connection on M . The functions Hk

ij and V kj
i define operators of h–covariant and

v-covariant derivatives in the algebra of d-tensor fields, denoted by |k and
∣∣k, respec-

tively. For gij these are given by

(2.5)
gij

|k = δkgij + gsjHi
sk + gisHj

sk,

gij
∣∣k = ∂kgij + gsjV ik

s + gisV jk
s .

An N -linear connection given in the adapted basis (δi, ∂
j) as DΓ(N) = (Hi

jk, V ik
j ) is

called metrical if

(2.6) gij
|k = 0, gij

∣∣k = 0.

One verifies that the N -linear connection CΓ(N) = (Hi
jk, Cjk

i ) with

(2.7)
Hi

jk =
1
2

gis(δjgsk + δkgjs − δsgjk),

Cjk
i = −1

2
gis(∂jgsk + ∂kgsj − ∂sgjk) = gisC

sjk,



Geometry of Berwald–Cartan spaces 5

is metrical and its h-torsion T i
jk := Hi

jk − Hi
kj = 0, v-torsion Sjk

i := Cjk
i − Ckj

i =
0 and the deflection tensor ∆ij = Nij − pkHk

ij = 0. Moreover, it is unique with
these properties. This is called the canonical metrical connection of the Cartan space
(M,K). It has also the following properties:

(2.8)
K|j = 0, K

∣∣j =
pj

K
, K2

|j = 0, K2
∣∣j = 2pj ,

pi|j = 0, pi

∣∣j = δj
i , pi

|i = 0, pi
∣∣j = gij .

Besides CΓ(N) one may consider on T ∗M three other important N -linear connec-
tion which are partially or not at all metrical: Chern–Rund connection CRΓ(N) =
(Hi

jk, 0), the Hashiguchi connection HΓ(N) = (∂iNjk, Ckj
i ) and the Berwald connec-

tion BΓ(N) = (∂iNjk, 0).

3 Berwald–Cartan spaces

Let Cn = (M,K) be a Cartan space with the canonical metrical connection CΓ(N) =
(Hi

jk, Cjk
i ) given by (2.7).

Definition 3.1. The Cartan space Cn is called a Berwald–Cartan space, shortly
a BC space, if the connection coefficients Hi

jk do not depend on momenta, that is,
Hi

jk(x, p) = Hi
jk(x).

In [4], by direct methods or using the duality between Finsler and Cartan spaces
given by the Legendre map, one proves

Theorem 3.1. The following assertions are equivalent:

1◦ The Cartan space Cn is a BC space,

2◦ The coefficients Bi
jk = ∂iNjk of the Berwald connection are functions of position

only, that is Bi
jk(x, p) = Bi

jk(x),

3◦ The curvature Pj
i
k

h := ∂̇hBi
jk of the Berwald connection vanishes.

4◦ Cijk
|h = 0.

For the Cartan space Cn = (M,K), the function Kx := K(x, ·) : T ∗
x M → IR is a

Minkowski norm for every x ∈ M . Thus we have the Minkowski spaces (T ∗
x M,Kx),

x ∈ M. For BC spaces, the following theorem holds.

Theorem 3.2. Let (M,K) be a BC space. Whenever M is connected the Minkowski
spaces (T ∗

x M,Kx) are all linearly isometric to each other.

Proof. Let ω = ωidxi an 1-form and v = vj∂j a vector field on M . Using the connec-
tion coefficients Hi

jk(x) we may define a covariant derivative of ω in the direction of
v as follows: ∇vω = vk(∂kωi − Hj

ikωj)dxi.
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We restrict ω to a curve c : t → x(t), t ∈ IR, on M , define the covariant derivative

of ω along c by
∇ω

dt
=

[
dωi

dt
− Hj

ikωj
dxk

dt

]
dxi and we say that ω is parallel along

c if
∇ω

dt
= 0. Let us estimate

dK2(x(t), ω(t))
dt

. We write the equality K2(x, p) =

gij(x, p)pjpj for (x(t), ω(t)) and we obtain that along the curve c:
dK2

dt
=

dgij

dt
ωiωj +

2gijωi
dωj

dt
. But

d

dt
(gij) = (δkgij)

dxk

dt
+(∂kgij)

δpk

dt
and using gij

|k = 0 as well as the

last equation (2.1) one gets:

dK2

dt
= 2gijωi

(
dωj

dt
− Hs

jkωs
dxk

dt

)
.

From here we read

Lemma 3.1. If the 1-form ω is parallel along the curve c : t → x(t), then the function
K(t) := K(x(t), ω(t)) is constant along the curve c.

Let x, y be points of M joined by a curve c : [0, 1] → M such that c(0) = x,
c(1) = y. Let be α ∈ T ∗

x M . We consider the unique solution ω = (ωi) of the

system of linear ordinary differential equations
dωi

dt
−Hj

ikωj
dxk

dt
= 0 with the initial

condition ω(0) = α and we associate to α the element α′ = ω(1) of T ∗
y M. The mapping

T ∗
x M → T ∗

y M given by α → α′ is a linear isomorphism. By Lemma 3.1, K(x(t), ω(t))
has the same values at t = 0. Hence Kx(α) = Ky(α′). This means that the Minkowski
spaces (T ∗

x M,Kx) and (T ∗
y M,Ky) are linearly isometric for every x, y ∈ M, 2

Another interesting property of BC spaces is as follows.
The connection coefficients Hi

jk(x, p) = Hi
jk(x) define a symmetric linear connec-

tion ∇ on M and it happens that this is metrizable, that is, there exists on M a
Riemannian metric h such that ∇ is the Levi–Civita connection associated to it. This
h is not unique.

We prove this fact by adapting an idea of Z.I. Szabó [6]. The duality with Finsler
spaces is not used.

Theorem 3.3. Let Cn = (M,K) be a BC space with M connected and ∇ the
symmetric linear connection on M of local coefficients Hi

jk(x, p) = Hi
jk(x). Then

there exists a Riemannian metric h on M such that ∇ is the Levi–Civita connection
of it.

Proof. Let be the Minkowski space (T ∗
x0

M,Kx0) for a fixed x0 ∈ M. Then Sx0 =
{ω | Kx0(ω) = 1} is a compact subset of T ∗

x0
M. Let G be the group of all linear

isomorphisms of T ∗
x0

M that preserve Sx0 . This G is a compact Lie group. It contains
as a subgroup the holonomy group Hx0 defined by (Hi

jk(x)) according to Lemma 3.1.
In general, Hx0 is not compact.
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Let <,> be any inner product in T ∗
x0

M. Define a new inner product on T ∗
x0

M by

(3.1) hx0(ϕ, ω) =
1

vol(G)

∫
G

< aϕ, aω > µG, ϕ, ω ∈ T ∗
x0

M,

for a ∈ G, where µG denotes the bi–invariant Haar measure on G. It results hx0(bϕ, bω) =
hx0(ϕ, ω) for every b ∈ G (from the properties of µG), that is hx0 is G-invariant. In
particular, hx0 is Hx0-invariant.

Let now any x ∈ M and a curve c : t → c(t) joining x with x0, c(0) = x, c(1) = x0.
Denote by Pc : T ∗

x M → T ∗
x0

M the parallel transport of covectors defined by Hi
jk(x).

For every ϕ ∈ T ∗
x M , Pc(ϕ) = ω(1) ∈ T ∗

x0
M, where ω = (ωi) is the unique solution of

the system of linear differential equations

(3.2)
dωi

dt
− Hi

jkωj
dxk

dt
= 0, with ω(0) = ϕ.

In the proof of Theorem 3.2 we have seen that Pc is a linear isometry of Minkowski
spaces. We define an inner product on T ∗

x M by

(3.3) hx(ϕ, ψ) = hx0(Pcϕ,Pcψ), ϕ, ψ ∈ T ∗
x0

M.

Lemma 3.2. hx does not depend on the curve c.

Indeed, if c̃ is another curve joining x and x0, denote by c− the reverse of c and
consider the loop c̃ ◦ c−. Then P

c̃◦c−
∈ Hx0 and from the Hx0 -invariance of hx0 ,

that is, hx0(Pc̃◦c−
ϕ,P

c̃◦c−
ψ) = hx0(ϕ, ψ) we get hx0(Pc̃

ϕ,P
c̃
ψ) = hx0(Pcϕ,Pcψ) as

we claimed.
The mapping x → hx : T ∗

x M × T ∗
x M → R is smooth since Pc smoothly depends

on x, according to a general result regarding the dependence of solution of system of
differential equations by initial data. Thus we have constructed a Riemannian metric
h in the cotangent bundle of M .

The connection coefficients (Hi
jk(x)) define a linear connection ∇ in the cotangent

bundle as follows:

∇ : X (M) × Γ(T ∗M) → Γ(T ∗M), (X,ω) → ∇Xω = Xk

(
∂ωi

∂xk
− Hj

ikωj

)
dxi

and the operator ∇X , X ∈ X (M), extends to the tensorial algebra of the cotangent
bundle. For instance, if we regard h as a section in the vector bundle Ls

2(T
∗M, IR),

then we have

(3.4) (∇Xh)(ϕ,ψ) = X(h(ϕ, ψ)) − h(∇Xϕ,ψ) − h(ϕ,∇Xψ).

Lemma 3.3. ∇Xh = 0, X ∈ X (M).
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Proof. We choose a basis (ϕi(x)) in T ∗
x M. It suffices to show that

(∇Xh)(ϕi(x), ϕj(x)) = 0. Let be the vector X =
dc

dt

∣∣∣∣
◦

tangent to a curve c start-

ing from x ∈ M at t = 0. We parallel translate ϕi(x) along c and we obtain a field of
basis ϕi(t) along c. The general formula

∇h

dt
(ϕ,w) =

dh(ϕ, ψ)
dt

− h

(
∇ϕ

dt
, ψ

)
− h

(
ϕ,

∇ψ

dt

)
,

gives
∇h

dt
(ϕi(x), ϕj(x)) =

dh(ϕi, ϕj)
dt

∣∣∣∣
t=0

because of
∇ϕi

dt
= 0.

Now we show that h(ϕi(t), ϕj(t)) does not depend on t.
Indeed, hc(t)(ϕi(t), ϕj(t)) = hx0(Pϕi , Pϕj ), where P is the parallel translation

from T ∗
c(t)M to Tx0M. This P may be thought as the composition of a parallel

translation P2 from T ∗
c(t)M to T ∗

x M and of a parallel translation P1 from T ∗
x M to

T ∗
x0

M. We have hc(t)(ϕi(t), ϕj(t)) = hx0((P2◦P1)ϕi, (P2◦P1)ϕj) = hx0(P1ϕi, P2ϕj) =
hx(ϕi(x), ϕj(x)). Hence hc(t)(ϕi(t), ϕj(t)) does not depend on t, as we claimed.

This fact ends the proof of Lemma 3.3.
To end the proof of Theorem, we take the covariant part of h as a section in the

vector bundle Ls
2(TM, IR) and so we get a Riemannian metric on M , denoted with

the same letter h. The operator ∇X acts also on vector fields on M by the rule

∇XY = Xk

(
∂Y i

∂xk
+ Hi

jkY j

)
for Y = Y i ∂

∂xi
and (X,Y ) → ∇XY gives a linear

connection on M such that ∇Xh = 0. As ∇ has no torsion, it coincides with the
Levi–Civita connection of h, 2

Remark . An alternative way to prove Lemma 3.3 is to prove first that
∇h

dt
(ϕ,ψ) =

lim
t→0

h(Pcϕ,Pcψ) − h(ϕ, ψ)
t

, where Pc is the parallel translation from c(0) to c(t).
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