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Abstract

By calculating the average thermal energy of photons at high frequencies we
demonstrate that a Tsallis like multi-fractal distribution of energy levels of the
oscillators making up the photon gas generates a Casimir-Like diminution of the
vacuum energy at high frequencies. Such a result points to the importance of
including the vacuum energy in all cosmological considerations.

AMS Subject Classification: 53Z05, 81Q99, 83F05.
Key words: Tsalis statistics, energy.

1 Introduction

Classical statistics is based on the assumption of equi-probablity in phase space [1, 2]
and quantum statistics is based on the results of the spin statistics connection whose
origin is rooted in relativistic quantum field theory [3, 4, 5]. It has been pointed out
that of all of the tenets of quantum theory the spin statistics connection is probably
the most mysterious [6, 7]. In fact, Geroch, et. al. [8] have pointed out that the
spin statistics connection is the result of topological properties in spin space [9] and
is not a space time generated property of fermions. In recent years because of studies
in non-linearity and multi-fractality [10, 11] there has been a new attitude promul-
gated by theorists suggesting a new expression for the entropy of a system admitting
a multi-fractal structure [12]. Such systems have non-Markovian memory associated
with collisions or can admit to long range interactions [13]. The above statistics has
been applied to the solar plasma [14, 15, 16], a generalized H theorem [17, 18, 19],
the fluctuation dissipation theorem [20], the Langevin and Fokker-Planck equation
[21], the equipartition theorem [22], the Ising chain [23, 24], paramagnetic systems
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[25], and the Planck radiation law [26, 27]. Limits on the anomalous statistics pa-
rameter can be set by calculating how the new Tsallis statistics affects the primordial
helium abundance [28]. In a recent study we have calculated the average thermal
energy of each mode (given frequency) of isotropic radiation and demonstrated that
because of Tsallis statistics the spectrum cuts off at a given frequency [29]. In the
present study we show that if one goes beyond this frequency we may interpret the
diminuation of the thermal energy as a Casimir-like diminution of the vacuum state(

hω

2

)
.. Traditionally, the Casimir effect is a diminuation of the vacuum energy either

due to confining boundary conditions or to a non-trivial topology of the space-time
containing the quantum field [30]. The Casimir effect has widespread applications to
the bag-model of quarks [31], the Kaluza Klein theory [32], black hole emissions [33]
and to cosmologies admitting a non-trivial topology [34]. In what follows we show
that even without boundaries or non-trivial topology the radiation field acquires a
Casimir-like contribution to the vacuum energy at any temperature. Such an effect
could lead to both cosmological consequences and the possible self-binding of radia-
tion which is ordinarily forbidden by conventional physics [35]. It also suggests that
multi-fractality generates a coupling of the energy levels of a harmonic oscillator that
simulates the presence of boundaries to a system that does not have any geometric
boundaries.

2 Casimir-Like Contribution to the Thermal En-
ergy of Photons

We begin by writing the expression for the entropy of N particles within the framework
of Tsallis statistics

S =
kN

q − 1

(∑ Ni

N
−

∑ (
Ni

N

)q)
(2.1)

q = non-extensive parameter.

Varying Eq. (2.1) with respect to Ni and using the constraints

Ni = const. (2.2)

NiεI = N (2.3)

with Lagrange multipliers
(

µ

τ
,
−1
τ

)
we find
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e

µ0

τ =
e∑
e
−

εi

τ

, (here τ = kT ).

Eq. (2.4) follows from writing α = q − 1, Ni = Ni0 + αNi1 + α2Ni2 · · ·, µ =
µ0 + µ1 + α2µ2 and using perturbation theory to evaluate Ni1 and µi [36]. From Eq.
(2.4) we find for the average energy of an oscillator [29]

〈ε〉 =
∑

εiNi

N
=

hω

2
+

hω

e

hω

τ − 1

− α (hω)3

8τ2
+ α

(hω)2

τ
. (2.5)

In [29] we showed that apart from the vacuum energy we have a cut-off at

hωc

τ
= Xc,

where e−Xc =
αX2

c

8
− αXc

8
, such that

〈ε〉 − hω

2
= 0. (2.6)

(Note
1

e

hω

τ − 1

∼= e

hω

τ for
hω

τ
> 1.)

If instead of just cutting off the spectrum at ωc we consider the total energy for
ω > ωc we have

〈ε〉 =
hω

2
+ hωe

−
hωT

τ − α
(hω)3

8τ2
+ α

(hω)2

8τ
<

hω

2
(2.7)

for ωc < ω < ωT , where ωT obeys

hωT

2
+ hωT e

−
hωT

τ − α
(hωT )3

8τ2
+ α

(hωT )2

8τ
= 0. (2.8)

Thus for ωc < ω < ωT the thermal energy is less than the vacuum energy and can

be interpreted as a Casimir energy. Eq. (2.8) can be written as
(

XT =
hωT

τ

)
:

1
2

+ e−XT − α

8
(XT )2 +

α

8
(XT ) = 0. (2.9)

The Casimir contribution to the total energy per unit volume is found from the
second, third and fourth terms in Eq. (2.7) for ωc < ω < ωT :

UC =

v
T∫

v
C

hωe
−

hωT
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 8πv2dv
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Eq. (2.10) must have a negative sign and can be viewed as a binding energy per
unit volume brought about by the use of the non-extensive statistics of Tsallis.

3 Conclusion

The fascinating result that a multi-fractal distribution of states applied to the har-
monic oscillator gives rise to a thermal energy having a Casimir contribution at high
suggests that radiation can condense without the presence of matter or catalysts such
as strings, domain walls or monopoles. It also suggests that fluctuations in the CBR
might be induced by a Tsallis parameter varying with position. For decades it was be-
lieved that embryonic structure of matter emerged from quantum field theory whose
primitive components were Fermi and Bose fields. The present study suggests that in
fact many properties of matter and radiation in the large may derive their properties
from an anomalous statistical behavior whose primitive origin lies in the domain of
scale invariance and the multi-fractral distribution of energy levels.

Acknowledgments

I would like to thank the Physics Department at Williams College and Harvard
University for the use of their facilities.

References

[1] J.W. Gibbs, Elem. Princ. of Stat. Mechanics, Dover Pub., N.Y., 1960.

[2] N.S. Krylov, Works on Foundations of Statistical Physics, Princeton Univ. Press,
Princeton, N.J., 1979.

[3] W. Pauli, Phys. Rev. 58, 716 (1940).

[4] R.F. Streater and A.S. Wightman, PCT, Spin Stastics and all That, Benjamin,
N.Y., 1964.

[5] M.V. Berry and J.M. Robbins, Proc. Royal Soc. of London A, 453,6691 (1997).

[6] K. Lamoreaux, Int. J. of Mod. Phys. 7, (1992).

[7] F.J. Dyson, J. of Math. Phys. 8, 1538 (1967).

[8] R. Geroch and G.T. Horowitz, The Global Structure of Space & Time, in Einstein
Centenary Survey, S.W. Hawking and W. Israel, Eds., Cambridge Univ. Press,
1979, pp. 217.

[9] O.W. Greenberg and R.C. Hilborn, Found. of Phys. 29, No. 3, 397 (1999).

[10] J F. Gouyet, Physics and Fractral Structures, Mason Springer-Verlag, Paris
(1996).



“Casimir-Like“ Contribution to the Spectral Energy Density 211

[11] T.C. Halsey, in Intro. to Non-Linear Phys., ed. Lui Lam, Springer-Verlag, N.Y.
(1994), pp. 30.

[12] C. Tsallis, J. of Statistical Physics, 52, 479 (1988).

[13] U. Tirnakli, D. Demirhan and F. Buyukkilic, Acta. Physic Polonica A, 91, 1035
(1997).

[14] D.B. Clayton, Nature 249, 131 (1974).

[15] J.N. Bahcall and M.H. Pinsonneault, Rev. of Mod. Phys. 64, 885 (1992).

[16] G. Kaniadakis, A. Lavagano, P. Quarati, Phys. Lett. B 369, 308 (1996).

[17] J.D. Ramshaw, Phys. Lett. A. 175, 169 (1993).

[18] J.D. Ramshaw, Phys. Lett. A 175, 171 (1993).

[19] M. Mariz, Phys. Lett. A 165, 409 (1992).

[20] A Chame and E.M.L. de Mello, J. of Phys. A 27, 3663 (1994).

[21] D.A. Stariolo, Phys. Lett. A 185, 262 (1994).

[22] A.R. Plastino, A. Plastino and C. Tsallis, J. of Phys. A 27, 5207 (1994).

[23] R.F.S. Andrade, Physica A, 175, 285 (1991).

[24] R.F.S. Andrade, Physica A, 203, 486 (1994).

[25] F. Buyukkilic and D. Demirhan, Z Physics B, 99, 137 (1995).

[26] C. Tsallis, F.C. Sa Berreto and E.D. Loh, Phys. Rev. E 52, 1447 (1995).

[27] U. Tirnakli, F. Buyukkilic and D. Demirhan, Physica A in press (1997).

[28] D.F. Torres, H. Vucetich and A. Plastino, Phys. Rev. Lett 79, 1588 (1997).

[29] C. Wolf, in Proc. of Workshop on Differential Geometry and General Relativity,
Thessaloniki, Greece, Aug. 27 - Spt. 2, Geometry Balkan Press 191-197 (2002).

[30] V.M. Mostepanenko and N.N. Trunov, The Casimir Effect and Its Applications,
Clarenden Press, Oxford, 1997.

[31] I.V. Andreev, Uspekhi Fizichiskikh Nauk 150, 299 (1986).

[32] P. Candelas and S. Weinberg, Nucl. Phys. B 237, 397 (1984).

[33] S.W. Hawking, Comm. in Math Physics 43, 199 (1975).

[34] Xu Goncharov and A.A. Bytsenko, Nucl. Phys. B 271, 726 (1976).

[35] R. Tolman, Relativity, Thermodyamics and Cosmology, Oxford Univ. Press, 1934,
pp. 271.



212 C. Wolf

[36] C. Wolf, Fizika A 9(3), 129-136 (2000).

Author’s address:

C. Wolf
Department of Physics
Massachusetts State College of Liberal Arts
North Adams, Massachusetts 01247 U.S.A..


