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Abstract

In the framework of Abstract Differential Geometry, especially that dealing with
vector sheaves (as expounded in [8]) and principal sheaves (initiated by [9]), we
show that to a given principal sheaf (P,G, X, π) together with a representation
ϕ : G → GL(n,A), we associate a vector sheaf (E , X, p). If ϕ is compatible with
the representations of G and GL(n,A) into appropriate sheaves of Lie algebras,
as well as with the Maurer-Cartan (or logarithmic) differentials of the same
sheaves of groups, then every connection on P induces an A-linear connection
on E . An example is provided by the principal sheaf of frames of a vector sheaf.
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0 Introduction

Gauge theories are, roughly speaking, built on principal bundles (P,G,X, π) and their
connections. This is a consequence of the fact that observations and measurements
in physics lead to certain sections of a parametrized group, in general non abelian.
However, Lie groups and principal bundles are quite complicated objects and one is
looking for a reduction of the non-commutative framework to a commutative one,
the latter being described by a vector bundle. This can be often achieved by an
appropriate representation of G into a vector space (in this respect we refer to [1]).

The aim of this note is to examine the analogous situation in the context of Abstract
Differential Geometry . As a matter of fact, the present author has initiated a research
program devoted to the geometry of principal sheaves (see [9]–[12]) influenced by the
geometry of vector sheaves expounded in [8]. These abstractions are developed in a
completely algebrotopological setting, without any differentiability, in spite of the wide
use of the adjective “differential” accompanying various terms in order to remind the
analogy with the classical geometry of ordinary (smooth) fiber bundles.
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In the present abstract approach we consider a principal sheaf (P,G, X, π) and
a representation of the form ϕ : G −→ GL(n,A), where A is a sheaf of unital,
commutative and associative algebras. Thus An is the vector sheaf in which the
structure sheaf of groups G is represented. We show that such a representation leads
to a vector sheaf (E , X, p) associated with P (Section 2). In the sequel (Section 3),
under some additional assumptions pertaining to the compatibility of ϕ with the
Maurer-Cartan (or logarithmic) differentials of P and GL(n,A), as well as with the
representations of the latter into certain sheaves of Lie algebras, we prove that the
connections on P (in the sense of [9]) induce A-connections on E (in the sense of
[8]). The converse is not always true unless extra conditions are imposed on ϕ. An
example is provided by the principal sheaf of frames of a given vector sheaf (already
studied in [10]), in which case we have the trivial representation of GL(n,A).

Since the notations and terminology used throughout are not yet standard, the
preliminary Section 1 contains a brief account of the material essentially needed,in
order to make the note as self sufficient as possible, referring for details to the relevant
literature.

1 Preliminaries

1. Our setting is based on a fixed algebraized space (X,A), where X is a topological
space and A a sheaf (over X) of unital, commutative and associative K-algebras
(K = R,C). For instance, in the classical case of a real smooth manifold X, we take
A = C∞

X , the sheaf of germs of smooth functions on X. For other examples we refer
to [8, Chapter 10].

To such an algebraized space we also attach a differential triad (A, d, Ω1), where
Ω1 is an A-module (over X) and d : A −→ Ω1 a derivation of A; that is, a K-linear
morphism satisfying the Leibniz condition

d(s · t) = s · d(t) + t · d(s),

for any (local) sections s, t ∈ A(U) and U ⊆ X open. Note that in the previous
formula we have identified a sheaf with the sheaf of germs of its sections, a convenient
fact which will be often used below.

In the classical case, Ω1 is nothing but the sheaf of germs of smooth 1-forms on
X. In the abstract (algebraic-topological) framework we are dealing with, differential
triads always exist by Kähler’s theory of differentials (for details [7], [8, Chapter 11,
Sections 5–6]).

2. Among the objects of prime interest here are principal sheaves, originally consid-
ered (in a different context) by A. Grothendieck [4]. More precisely, a principal sheaf
over X is described by a quadruple P ≡ (P,G, X, π), where π is the projection of P
on X and G is a sheaf of groups representing simultaneously the structure sheaf and
the structural type of P. This means that there exists a (right) action P ×X G −→ P,
as well as an open covering U = {Uα|α ∈ I} of X together with local G-equivariant
isomorphisms φα : P|Uα −→ G|Uα .
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However, in order to built up an abstract differential geometry on P, in particular
a gauge theory, we enrich the structure sheaf with two additional properties. In fact,
we assume that G is a sheaf of groups of Lie-type, by which we mean that:

i) There exists a representation (: a continuous morphism of sheaves of groups)
% : L −→ Aut(L) of G in an A-module of Lie algebras L;

ii) There exists a morphism (of sheaves of sets) ∂ : G −→ Ω1 ⊗AL, called Maurer-
Cartan or logarithmic differential , such that

∂(s · t) = %(t−1).∂(s) + ∂(t),

for every s, t ∈ G(U) and U ⊆ X open. The first term of the right-hand side of the
previous formula denotes the result of the natural action of G on Ω1⊗AL induced by %.
To be more explicit, for any g ∈ G and any decomposable element ω ≡ θ⊗u ∈ Ω1⊗AL,
we set

%(g).ω ≡ (1 ⊗ %(g)).ω := θ ⊗ %(g)(u), (1)

where 1 here denotes the identity of Ω1. We extend this action by linearity to arbitrary
elements.

P admits a family of natural (local) sections

sα := ψα ◦ 1|Uα ∈ P; α ∈ I,

where 1 is the unit section of G (: 1(x) is the unit of the fiber Gx).
As an example we take the sheaf P of germs of smooth sections of a principal

fibre bundle (P,G,X, p). It is a principal sheaf with structure sheaf G the sheaf of
germs of smooth G-valued maps on X. G is of Lie-type with L being now the sheaf
of germs of smooth maps on X with values in the Lie algebra of G. In this case %
and ∂ are obtained by the sheafification of the adjoint representation and the total
(logarithmic) differential respectively. For complete details we refer e.g to [9, 12]

3. A typical abstract example of a sheaf of groups of Lie-type, which will play an
important role in the sequel, is the sheaf GL(n,A) generated by the complete presheaf
of groups U 7→ GL(n,A(U)), U running in the topology of X. Hence,

GL(n,A)(U) ∼= GL(n,A(U)) ∼= LisA|U (An|U ,An|U ). (2)

Now L ≡ Mn(A), the sheaf generated by the complete presheaf of Lie algebras U 7→
Mn(A(U)); thus

Mn(A)(U) ∼= Mn(A(U)) ∼= An2
(U), (3)

for every open U ⊆ X.
There exists an (adjoint) representation Ad : GL(n,A) −→ Aut(Mn(A)) obtained

as follows: Let U be any open subset of X. We define the morphism of sections

AdU : GL(n,A)(U) −→ Aut((Mn(A)))(U) ∼= Aut(Mn(A)|U ,Mn(A)|U )

by requiring that, for any g ∈ GL(n,A)(U), AdU (g) to be the automorphism generated
by the automorphisms of presheaves(

AdU (g)
)
V

: Mn(A)(V ) −→ Mn(A)(V ) : a 7→ g · a · g−1; a ∈ Mn(A)(V ),
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for all open V ⊆ U , with the identifications (2) and (3) being applied here.
The corresponding Maurer-Cartan differential ∂̃ : G −→ Ω1 ⊗A Mn(A) is given by

∂(a) := a−1 ·d(a), for every a ∈ Mn(A(U)) and U ⊆ X open, where d : GL(n,A) −→
Ω1⊗AMn(A) is the extension of d (of the initial differential triad); i.e., d(a) := (daij),
for every a = (aij) ∈ GL(n,A(U)).

4. The last fundamental notion immediately needed in the next section is that of
a vector sheaf . This is a sheaf E ≡ (E , X, p) which is a locally free A-module (over
X). Hence, there exist an open cover, say, U = {Uα|α ∈ I} and A|Uα-isomorphisms
ψα : An|Uα −→ E|Uα . The complete study of vector sheaves and their geometry is
the content of [8].

2 Associated sheaves

In this section we fix a principal sheaf P ≡ (P,G, X, π) and a representation of the
form

ϕ : G −→ GL(n,A).

We shall construct a vector sheaf of rank n, associated with P. To this end, for each
open U ⊆ X, we consider the quotient set Q(U) := P(U)×An(U) /G(U) determined
by the equivalence relation

(s, a) ∼ (t, b) ⇐⇒ ∃! g ∈ G(U) : t = s · g , b = ϕ(g−1) · a,

for every s, t ∈ P(U) and a, b ∈ An(U).
Running now U in the topology of X, we obtain a (not necessarily complete)

presheaf U 7→ Q(U) generating the quotient sheaf

E := P ×X An /G,

with base X and a projection p defined in the obvious way. This is, by definition, the
sheaf associated with P by the representation ϕ.

With regard to the previous construction one may consult [3]. We note that the
last quotient can be also constructed, in an equivalent way, by defining (fiber-wise)
on P ×X An an analogous (global) equivalence relation (see [4]).

Lemma 1 (E , X, p) is a sheaf locally isomorphic to An with corresponding cocycle
(Gαβ) = (ϕ(gαβ)) ∈ Z1(U ,GL(n,A)), where (gαβ) ∈ Z1(U ,G) is the cocycle of the
principal sheaf P.

Proof. Fix a Uα ∈ U . For every open V ⊆ Uα we define the map

ψα
V : An(V ) 3 f 7→ [sα|V , f ] ∈ Q(V ),

where sα ∈ P(Uα) is the natural section over Uα.
It is immediate that ψα

V is 1-1. On the other hand, for a given [σ, h] ∈ Q(V ), the
section ϕ(g) ·h ∈ An(V ), with g determined by σ = sα|V ·g, gives that ψα

V (ϕ(g) ·h) =
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[σ, h], which implies that ψα
V is onto. In this way we obtain a morphism {ψα

V }V ⊆Uα

between the presheaves V 7→ An(V ) and V 7→ Q(V ), generating an isomorphism (of
sheaves of sets) ψα : An|Uα

'−→ E|Uα . This shows the first claim of the statement.
By definition, Gαβ = ψ−1

α ◦ψβ , where now both the isomorphisms are restricted on
appropriate sheaves over Uαβ := Uα ∩ Uβ (for simplicity we omit explicit expressions
like ψα|Uαβ

). Hence, Gαβ is generated by (ψα
V )−1 ◦ ψβ

V , for all open V ⊆ Uαβ . As a
result, for every h ∈ An(V ), we check that(

(ψα
V

)−1 ◦ ψβ
V )(h) = (ψα

V )
(
[sβ |V , h]

)
= ϕ(gαβ |V ) · h.

Using the identification (2), we obtain (ψα
V )−1 ◦ψβ

V = ϕ(gαβ |V ). We prove the second
claim by taking all open V ⊆ Uαβ . 2

Theorem 1 E ≡ (E , X, p) is a vector sheaf (of rank n).

Proof. Each isomorphism (of sheaves of sets) ψα : An|Uα −→ E|Uα induces (fiber-
wise) on E|Uα the operations

Σα : E|Uα ×Uα E|Uα −→ E|Uα ; Πα : An|Uα ×Uα E|Uα −→ E|Uα ,

respectively given by

Σα(u, v) ≡ u + v := ψα

(
ψ−1

α (u) + ψ−1
α (v)) , ψ−1

α (v)
)

Πα(a · u) ≡ a · u := ψα

(
a · ψ−1

α (u)
)
,

for every u, v ∈ Ex and a ∈ Ax with x ∈ Uα.
Since Σα = ψα ◦ Σ ◦ (ψα, ψα) and Πα = ψα ◦ Π ◦ (ψα, ψα), where Σ and Π are

the respective (continuous) operations of the A-module An, appropriately restricted
over Uα, it follows that Σα and Πα are also continuous morphisms giving on E|Uα

the structure of an A|Uα -module such that ψα is an A|Uα -linear isomorphism. This
determines the desired local structure of E .

The previous local operations globalize to corresponding continuous operations
on E since Σα = Σβ and Πα = Πβ on the overlappings. Indeed, for any (u, v) ∈
E|Uαβ

×Uαβ
E|Uαβ

, using the identification (2) and the previous Lemma, we have that

Σβ(u, v) = (ψα ◦ Gαβ)
(
ψ−1

β (u) + ψ−1
β (v)

)
= (ψα ◦ ψ−1

β )(u) + (ψα ◦ ψ−1
β )(u)

= ψα

(
ψ−1

α (u) + ψ−1
α (v)

)
= Σα(u, v)

and similarly for the multiplications. Therefore, E becomes an A-module. 2

For the sake of completeness, we examine the relationship between the (global)
sections of E and certain morphisms corresponding to the classical tensorial maps. In
fact, a morphism (of sheaves of sets) f : P −→ An is said to be tensorial if

f(s · g) = ϕ(g−1) · f(s) ; (s, g) ∈ P(U) × G(U),

for every open U ⊆ X. Clearly, the product of the right-hand side is well defined by
the obvious action of GL(n,A) on the left of An. As a result, we prove
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Theorem 2 Tensorial morphisms f : P −→ An correspond bijectively to global sec-
tions of P.

Proof. Let f be a given tensorial morphism. For a Uα ∈ U , we set σα := [sα, f(sα)]
(recall that sα is the natural section of P over Uα and f is now the induced morphism
of sections). Since σα ∈ (P(Uα) ×An(Uα)/ ∼) ⊂ E(Uα), we obtain a family of local
sections (σα) of E . However, over Uαβ , we have that

σβ = [sα · gαβ , ϕ(g−1
αβ ) · f(sα)] = [sα, f(sα)] = σα;

hence we can define a global section σ ∈ E(X) by setting σ|Uα := σα.
Conversely, let σ ∈ E(X) be given a section. For an open U ⊆ X, we define the

map fU : P(U) −→ An(U) by requiring that

fU (s)|U∩Uα := ϕ(g−1
α ) · ψ−1

α (σ|U∩Uα), (4)

for every s ∈ P(U) and with gα ∈ G(Uα) determined by s|U∩Uα = sα|U∩Uα · gα. We
check that fU is defined by gluing the restrictions given by (4), for all Uα ∈ U . Indeed,
for Uβ ∈ U , we have the analogous expression

fU (s)|U∩Uβ
:= ϕ(g−1

β ) · ψ−1
β (σ|U∩Uβ

), (5)

with gβ ∈ G(Uβ) satisfying s|U∩Uβ
= sβ |U∩Uβ

· gβ . Therefore, over U ∩ Uα ∩ Uβ ,
gα = gαβ · gβ . Omitting, for simplicity the explicit mention of the restrictions on
U ∩ Uα ∩ Uβ of the sections involved, we see that (see also Lemma 1)

ϕ(g−1
β ) · ψ−1

β (σ) = ϕ(g−1
α · gαβ) · Gβα · ψ−1

α (σ) = ϕ(g−1
α ) · ψ−1

α (σ),

which proves that (4) and (5) coincide on U ∩ Uα ∩ Uβ and fU is well defined by the
gluing process.

Finally, for any s ∈ P(U) and g ∈ G(U), we have that

fU (s · g)|U∩Uα = ϕ(g|U∩Uα · g−1
α ) · ψ−1

α (σ|U∩Uα) = ϕ(g−1)|U∩Uα · fU (s)|U∩Uα ,

for every Uα ∈ U ; thus fU (s · g) = ϕ(g−1) ·fU (s). Varying U in the topology of X, we
obtain a morphism of presheaves generating a tensorial morphism f and the proof is
now complete. 2

Remark 1 In all the previous construction it is not necessary to assume that G is
a sheaf of groups of Lie-type (see Paragraph 1.2), a fact which will be needed in the
study of connections below.

3 Connections on associated sheaves

In this section we consider a principal sheaf P with structure sheaf G of Lie-type. We
recall that (see [9]) a connection on P (or gauge potential, in the terminology of [1])
is a morphism of sheaves of sets D : P −→ Ω1 ⊗A L satisfying

D(s · g) = ρ(g−1
αβ ).D(s) + ∂(g) , (6)
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for any s ∈ P(U), g ∈ G(U) and U ⊆ X open.
A connection D is equivalently determined by the family of local sections

ωα := D(sα) ∈ (Ω1 ⊗A L)(Uα); α ∈ I,

which are called, following the classical terminology, the local connection forms (or
local gauge potentials) of D. They satisfy the (local) gauge transform

ωβ = ρ(g−1
αβ ).ωα + ∂(gαβ) (7)

on each Uαβ 6= ∅ (see [9, Theorem 5.4]).
On the other hand (see [8, Vol. II, Chapter 6, Section 3]), an A-connection on a

vector sheaf E (of rank n) is a K-linear morphism ∇ : E −→ E ⊗A Ω1 satisfying the
Leibniz-Koszul condition

∇(a · s) = a · ∇(s) + s ⊗ d(a), (8)

for every a ∈ A(U) , s ∈ E(U) and U ⊆ X open.
Equivalently (see also [8, Chapter 7]), ∇ is fully determined by corresponding local

connection forms as follows: For each Uα, the A(Uα)-module E(Uα) admits a natural
basis eα := (eα

1 , . . . , eα
n) with

eα
i (x) := ψα(0x, . . . , 1x, . . . , 0x); x ∈ Uα,

where 0x and 1x (in the i-th entry) are the zero and unit element of the stalk Ax

respectively. Evaluating now ∇ on the sections of the basis, we obtain the expressions

∇(eα
j ) =

n∑
i=1

eα
i ⊗ θα

ij ; 1 ≤ j ≥ n,

with θα
ij ∈ Ω1(Uα), forming thus a matrix (θα

ij) ∈ Mn(Ω1(Uα)), for every α ∈ I. In
virtue of (3), we check that

(Ω1 ⊗A Mn(A))(Uα) ∼= Ω1(Uα) ⊗A(Uα) Mn(A(Uα)) ∼= Mn(Ω1(Uα)); (9)

hence, (θα
ij) can be identified with a section θα ∈ (Ω1 ⊗A Mn(A))(Uα). The sections

(θα)α∈I , are the local connection forms of ∇ and satisfy the analog of (7), namely

θβ = Ad(G−1
αβ).θα + ∂̃(Gαβ), (10)

where (Gαβ) is the cocycle of E . This is a consequence of (8) and routine, though
tedious, calculations.

We come now to the following basic

Definition 1 A representation ϕ : G −→ GL(n,A) is said to be of Lie-type if there
exists a morphism of sheaves of Lie algebras ϕ : L −→ Mn(A) such that the following
conditions hold:
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∂̃ ◦ ϕ = (1 ⊗ ϕ) ◦ ∂

ϕ ◦ %(g) = Ad(ϕ(g)) ◦ ϕ; g ∈ G,

where, for simplicity, we have set 1 = id|Ω1.

Clearly, the previous conditions express the compatibility of ϕ and ϕ with the Maurer-
Cartan differentials of G and GL(n,A), as well as with the their representations % and
Ad. For a more general situation see also [11, Definition 3.6]. Note that in the classical
case ϕ is the morphism of Lie algebras induced by the differential of ϕ and the above
conditions are always true.

Theorem 3 Let ϕ : G −→ GL(n,A) be a representation of Lie-type. Then, every
connection on P induces an A-linear connection on the associated vector sheaf E.

Proof. For a given connection D ≡ (ωα) on P, we set

θα := (1 ⊗ ϕ)(ωα), α ∈ I. (11)

Then, in virtue of (1), Lemma 1 and Definition 1, equality (6) implies that

θβ = (1 ⊗ ϕ)
(
(1 ⊗ %(gαβ)).ωα + ∂(gαβ)

)
=

(
1 ⊗Ad(ϕ(g−1

αβ )) ◦ ϕ
)
.ωα + (∂ ◦ ϕ)(gαβ)

=
(
1 ⊗Ad(G−1

αβ)
)
.θα + ∂(Gαβ)

≡ Ad(G−1
αβ).θα + ∂(Gαβ),

which proves (10) and yields, in turn, an A-linear connection ∇ on E . For the sake of
completeness we outline the construction of ∇, referring for details to [8, 10]. First,
for each α ∈ I, we define the map ∇α : E|Uα −→ E ⊗A Ω1 |Uα by setting

∇α(s) :=
n∑

i=1

eα
i ⊗

(
∂(sα

i ) +
n∑

j=1

sα
j · θα

ij

)
,

for every s =
∑n

i=1 sα
i · eα

i ∈ E(Uα) with sα
i ∈ A(Uα). Recall that θα ≡ (θα

ij), after
the identifications (9). The compatibility condition (10) implies that ∇α = ∇β on
A(Uαβ), hence we obtain a global connection ∇. 2

An immediate consequence of (11) is the following

Corollary 1 If ϕ : L −→ Mn(A) is an isomorphism, then the connections of P are
in bijective correspondence with the A-linear connections of its associated vector sheaf
E.

Example Let E be now a given vector sheaf of rank n with a local structure as
in Paragraph 1.4. We denote by B the basis of topology on X containing all the
open V ⊆ X such that V ⊆ Uα, for some Uα ∈ U , and consider the (complete)
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presheaf B 3 V 7→ IsoA|V (An|V , E|V ), where the last space is the group of A|V -linear
isomorphisms. This generates a principal sheaf P(E) ≡ (P(E),GL(n,A), X, π), called
the sheaf of frames of E .

We recall that (see [10]) there is a natural action of GL(n,A) on the right of P(E)
induced by the partial actions

IsoA|V (An|V , E|V ) × GL(n,A)(V ) −→ IsoA|V (An|V , E|V ) : (f, g) 7→ f · g ≡ f ◦ g

by employing, of course, the identification (2). The local structure is described as
follows: First we define the local GL(n,A)-equivariant isomorphism

ΦV
α : P(E)(V ) −→ GL(n,A)(V ) : f 7→ ψ−1

α ◦ f,

for every open V ∈ Uα. Hence, varying V in Uα, we obtain an equivariant morphism
Φα : P(E)|Uα

'−→ GL(n,A)|Uα and similarly for all α ∈ I.
The natural sections σα ∈ P(E)(Uα), with respect to U , are now given by

σα := Φ−1
α (id|An(Uα)) = ψα. (12)

The previous considerations lead now to

Corollary 2 Every vector sheaf E is associated with its principal sheaf of frames
P(E), with respect to the trivial representation of GL(n,A). Hence, the A-linear
connections on E correspond bijectively to the connections on P(E).

Proof. By the general construction discussed in Section 2, the vector sheaf, say, F
associated with P(E), is generated by the presheaf

B 3 V 7→ P(E)(V ) ×An(V )/ ∼,

defined by the trivial representation (: ϕ = id|GL(n,A)). Though we are restricted
on a basis of topology, instead of the whole topology of X, the final result remains
unaffected. Following the proof of [10, Proposition 4.3], for any V ∈ B with V ⊆ Uα,
we consider the map

FV : P(E)(V ) ×An(V )/ ∼ −→ E(V ) : [f, a] 7→ f ◦ a.

We show that FV is a well defined bijection. Varying V in B, we obtain an isomorphism
F : F −→ E . It is also an isomorphism of A-modules. Indeed, if we denote by
Ψα : An|Uα

−→ F|Uα the isomorphisms describing the local structure of F , then (12)
implies that

(F ◦ Ψα)(a) = F ([σα, a]) = σα ◦ a = ψα(a); a ∈ An(Uα),

with F and ψα denoting now the induced morphisms between sections. By the proce-
dure used repeatedly so far, we see that F = ψα ◦Ψ−1

α . This, along with the definition
of the module operations on F (see Theorem 2), completes the claim about F . The
rest of the proof is clear. 2

Remark 2 In the previous Corollary we recover, by a different approach, some of
the results of [10], notably Proposition 4.3 and Theorem 5.5.
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