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Abstract

In this paper are found the necessary and sufficient conditions of local exis-
tence of parallel r-plane or which is equivalent with existence of parallel r-forms.
The existence of such parallel r-planes (r-forms) depend on the initial conditions,
which in this paper reduce to a homogeneous system of linear equations. If these
integrability conditions are satisfied, then the parallel r-form is represented as
a convergent functional series which contains inside only covariant derivatives.
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1 Introduction

This paper is a continuation of the papers [1–8] which are due to the solving of
ordinary and partial differential equations and their application in the differential
geometry.

In the paper [1] it was found a formula for the k-th covariant derivative. Further
that formula was generalized for k ∈ R. Specially, if k = −1 it yields to a general
solution for a system of linear differential equations [2]. In the paper [3] two main
results are proven. It is found the general solution of an arbitrary system of linear
differential equations of order k, and it is found the general solution of an arbitrary
non-linear system of differential equations of the first order. The previous results are
applied to the system of Frenet equations of curves [4]. In [5] it is considered linear
and non-linear systems of partial differential equations. Indeed the compatibility
conditions are found, and if they are satisfied, the solutions are found. All the solutions
for both ordinary and partial differential equations are given as functional series. The
results in [5] are used in [6] for studying the non-linear connections. In the paper [7]
are found the compatibility conditions for the existence of parallel vector field in a
space with linear, non-linear and d-connection, and if they are satisfied, the solution
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is found. Note that the compatibility conditions depend on the choice of the initial
conditions for the parallel vector field. In [8] are made some further generalizations
of the results in [7].

In this paper we consider the existence of parallel r-plane with given initial plane
at one point. The existence of such plane depends on the initial plane and if such
field of planes exists, in this paper it is found.

2 On the parallel r-planes

In this section we give some preliminaries concerning the r-planes. Let us consider
the space Rn and we denote by e1, · · · , en the standard basis of Rn. The space of
r-forms consists of terms of form

ω =
∑

i1,···,ir

ai1i2···irei1 ∧ ei2 ∧ · · · ∧ eir

which is a vector space of dimension
(
n
r

)
, with the basis {ei1 ∧ ei2 ∧ · · · ∧ eir} for

1 ≤ i1 < i2 < · · · < ir ≤ n. Note that any r-dimensional subspace Π generates
unique r-form w up to a scalar multiplier as follows. If Y(1), · · · , Y(r) is a basis of
Π, then w = Y(1) ∧ · · · ∧ Y(r) is uniquely determined up to scalar multiplier. The
converse is not true, and thus in this paper we will consider only those r-forms which
can be obtained in the previous way. Indeed, for such an r-form w we determine an
r-dimensional vector subspace (r-plane) < ω > by X ∈< ω > if and only if ω∧X = 0.
Although in section 3 the theorem 3.1 considers this special type of r-forms, it easily
can be generalized for arbitrary r-forms.

If Y(i) =
n∑

j=1

Y j
(i)ej , then

ω = λ ·
n∑

i1,···,ir=1

Y i1
(1)Y

i2
(2) · · ·Y

ir

(r)ei1 ∧ ei2 ∧ · · · ∧ eir .

Thus we convenient to denote the r-form Y(1)∧· · ·∧Y(r) as antisymmetric contravariant
tensor Y i1i2···ir such that

1
r!

n∑
i1,···,ir=1

Y i1···irei1 ∧ ei2 ∧ · · · ∧ eir = Y(1) ∧ · · · ∧ Y(r).

Let ξ = (E , π,M) be a vector bundle of class Cω of rank n on a k-dimensional
differentiable manifold M of class Cω. Suppose that the vector bundle is endowed
with a linear connection Γ of class Cω. In order the covariant derivation of a mixed
tensor Xi

j(i ∈ {1, · · · , n}, j ∈ {1, · · · , k}) to be defined, we assume that the base
manifold M is endowed with a linear connection Γi

jr (1 ≤ i, j, r ≤ k), of class Cω.
We will consider the existence of parallel r-plane in the bundle. Suppose that the
r-plane is generated by the following r vector fields Y(1), Y(2), · · · , Y(r), i.e. the r-plane
is generated by the following r-form Y(1) ∧ Y(2) ∧ · · · ∧ Y(r).
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Definition. The field of r-planes Π (or simply the r-plane) on the considered
vector bundle is parallel if the parallel displacement of any vector from the vector
bundle along any curve on the manifold preserves the incidence relation of a vector
in the field of r-planes.

Note that an r-form is parallel if it is parallel as antisymmetric tensor field. Now
we prove the following theorem.

Theorem 2.1. An r-plane Π is parallel, if and only if there exists a parallel
r-form which generates the r-plane Π.

Proof. Suppose that Y(1)∧· · ·∧Y(r) is a parallel r-form which generates the r-plane
Π. In order to prove that the r-plane Π is parallel, we should prove that if X is a
parallel vector field over a curve C over the manifold and (Y(1) ∧ · · · ∧ Y(r)) ∧ X = 0
at one point of the curve, then Y(1) ∧ · · · ∧Y(r) ∧X = 0 along the curve. Let U be the
tangent vector of the curve C. Then

∇U (Y(1) ∧ · · · ∧ Y(r) ∧ X) = 0

because ∇U (Y(1) ∧ · · · ∧Y(r)) = 0 and ∇U (X) = 0. Thus Y(1) ∧ · · · ∧Y(r) ∧X is a zero
(r + 1)-form along the curve C and hence the r-plane Π is also parallel.

Conversely, suppose that an r-plane Π is parallel. Locally, there exist r vector
fields Y(1), · · · , Y(r) such that Y(1) ∧ · · · ∧ Y(r) generates the r-plane Π. Since Π is
parallel, the covariant derivative of any vector Y(i) in any direction must be linear
combination of Y(1), · · · , Y(r). Thus for any direction U there exists a scalar λ such
that

∇U (Y(1) ∧ · · · ∧ Y(r)) = λ · Y(1) ∧ · · · ∧ Y(r).

We should prove that locally there exists a scalar function λ, such that

λ · Y(1) ∧ · · · ∧ Y(r)

is a parallel r-form. Let us choose a local coordinate system (x1, · · · , xk) on the
manifold and let Ui = ∂/∂xi. If λ · Y(1) ∧ · · · ∧ Y(r) is a parallel tensor field, then

(∇Uiλ) · (Y(1) ∧ · · · ∧ Y(r)) + λ · ∇Ui(Y(1) ∧ · · · ∧ Y(r)) = 0.

Hence λ can be found as a solution of equation of the form

∂

∂xi
λ = Fi(x1, · · · , xk, λ), (1 ≤ i ≤ k),

such that

(2.1) Fi(x1, · · · , xk, λ)(Y(1) ∧ · · · ∧ Y(r)) = −λ∇Ui(Y(1) ∧ · · · ∧ Y(r)).

Thus we have to verify only the compatibility conditions.
According to (2.1) we obtain

(∇Uj Fi(x1, · · · , xk, λ))(Y(1) ∧ · · · ∧ Y(r)) + Fi(x1, · · · , xk, λ)∇Uj (Y(1) ∧ · · · ∧ Y(r))

= −(∇Uj λ)(∇Ui(Y(1) ∧ · · · ∧ Y(r)) − λ∇Uj∇Ui(Y(1) ∧ · · · ∧ Y(r)).
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Multiplying this equality by λ and using (2.1), we obtain

λ(∇Uj Fi(x1, · · · , xk, λ))(Y(1) ∧ · · · ∧ Y(r))

−Fi(x1, · · · , xk, λ)Fj(x1, · · · , xk, λ)(Y(1) ∧ · · · ∧ Y(r))

= Fj(x1, · · · , xk, λ)Fi(x1, · · · , xk, λ)(Y(1) ∧ · · · ∧ Y(r)) − λ2∇Uj∇Ui(Y(1) ∧ · · · ∧ Y(r)).

By permuting the indices i by j we obtain

λ(∇UiFj(x1, · · · , xk, λ))(Y(1) ∧ · · · ∧ Y(r))

−Fj(x1, · · · , xk, λ)Fi(x1, · · · , xk, λ)(Y(1) ∧ · · · ∧ Y(r))

= Fi(x1, · · · , xk, λ)Fj(x1, · · · , xk, λ)(Y(1) ∧ · · · ∧ Y(r)) − λ2∇Ui∇Uj (Y(1) ∧ · · · ∧ Y(r)).

Using that [Ui, Uj ] = 0 and

R(Ui, Uj)(λY(1) ∧ · · · ∧ Y(r)) = 0, i.e. R(Ui, Uj)(Y(1) ∧ · · · ∧ Y(r)) = 0,

because the r-plane Π is parallel, by subtracting the last two equalities we obtain that

λ
[∂Fi(x1, · · · , xk, λ)

∂xj
− ∂Fj(x1, · · · , xk, λ)

∂xi

]
(Y(1) ∧ · · · ∧ Y(r))

= λ2
(
∇Ui∇Uj (Y(1) ∧ · · · ∧ Y(r)) −∇Uj∇Ui(Y(1) ∧ · · · ∧ Y(r))

)
= R(Ui, Uj)(Y(1) ∧ · · · ∧ Y(r)) = 0

and hence
∂Fi(x1, · · · , xk, λ)

∂xj
=

∂Fj(x1, · · · , xk, λ)
∂xi

.

Thus the compatibility conditions of the system (2.1) are satisfied. ‖
Remark. Although this theorem is proven for linear connections, indeed it is true

for any connection ∇ such that

(2.2) ∇(X + Y ) = ∇X + ∇Y,

because we used in the proof that

R(Ui, Uj)λ(Y(1) ∧ · · · ∧ Y(r)) = λR(Ui, Uj)(Y(1) ∧ · · · ∧ Y(r))

which is a consequence of the above linearity. Note that it does not mean that the
connection must be linear, because it may happens that

∇X+Y 6= ∇X + ∇Y ,

and the theorem 2.1 is also true. Thus for the connections satisfying (2.2) the request
for parallel r-planes reduces on finding parallel r-forms, while for the connections
which do not satisfy (2.2) we can require only parallel r-forms.
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3 Basic result

We use the same notations and assumptions as in the section 2. According to the
theorem 2.1 we should consider the existence of parallel r-forms, if we want to consider
the parallel r-planes in a vector bundle with linear connection. The main problem in
this paper is to examine locally the existence of parallel r-form ω, i.e.

(3.1) ωi1···ir
;u = 0 for (1 ≤ u ≤ k),

with the initial condition

(3.2) ωi1···ir (0, · · · , 0) = ωi1···ir
0 .

Theorem 3.1.
(i) Locally there exists a parallel r-form ω with the given initial condition, i.e.

(3.1) and (3.2) are satisfied if and only if the following system of linear equations

Ri1
juvY ji2···ir + Ri2

juvY i1j···ir + · · · + Rir
juvY i1i2···j = 0

Ri1
juv;w1

Y ji2···ir + Ri2
juv;w1

Y i1j···ir + · · · + Rir
juv;w1

Y i1i2···j = 0

(3.3) Ri1
juv;w1;w2

Y ji2···ir + Ri2
juv;w1;w2

Y i1j···ir + · · · + Rir
juv;w1;w2

Y i1i2···j = 0

........

Ri1
juv;w1;···;wN−1

Y ji2···ir + Ri2
juv;w1;···;wN−1

Y i1j···ir + · · · + Rir
juv;w1;···;wN−1

Y i1i2···j = 0

for i1, · · · , ir ∈ {1, · · · , n}, u, v, w1, · · · , wN−1 ∈ {1, · · · , k}, N =
(
n
r

)
has an analytical

solution Y i1i2···ir , such that

Y i1i2···ir (0, · · · , 0) = ωi1i2···ir
0 .

(ii) Let the compatibility conditions from (i) be satisfied, and let Y i1i2···ir be an
arbitrary analytical solution of the system (3.3) with the initial conditions (3.2). Then
there exist functions

Qi1i2···ir<v1,...,vk> (1 ≤ i1, · · · , ir ≤ n, v1, · · · , vk ∈ No)

such that

(3.4) Qi1i2···ir<0,...,0> = Y i1i2···ir (1 ≤ i1, i2, · · · , ir ≤ n),

(3.5) Qi1i2···ir<v1,...,vu+1,...,vk> = Qi1i2···ir<v1,...,vk>
;u ≡

≡ ∂

∂xu
Qi1i2···ir<v1,...,vk> +

r∑
s=1

Γis
juQi1···is−1jis+1···ir<v1,...,vk>,

(1 ≤ i1, · · · , ir ≤ n, 1 ≤ u ≤ k, v1, · · · , vk ∈ No)
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and the solution of (3.1) and (3.2) is given by

(3.6) ωi1···ir =
∞∑

v1=0

∞∑
v2=0

· · ·
∞∑

vk=0

(−x1)v1

v1!
(−x2)v2

v2!
· · · (−xk)vk

vk!
×

×Qi1···ir<v1,...,vk> (1 ≤ i1, · · · , ir ≤ n).

Proof. (i) If the system (3.1) with (3.2) is integrable, then each solution Y i1i2···ir

must satisfy

Ri1
juvY ji2···ir + Ri2

juvY i1j···ir + · · · + Rir
juvY i1i2···j = 0.

Since Y i1i2···ir
;w = 0 it holds

Ri1
juv;w1

Y ji2···ir + Ri2
juv;w1

Y i1j···ir + · · · + Rir
juv;w1

Y i1i2···j = 0,

Ri1
juv;w1;w2

Y ji2···ir + Ri2
juv;w1;w2

Y i1j···ir + · · · + Rir
juv;w1;w2

Y i1i2···j = 0,

........

and hence the system (3.3) is satisfied.
Conversely, suppose the that system (3.3) has at least one analytical solution

Y i1i2···ir such that Y i1i2···ir (0, · · · , 0) = ωi1i2···ir
0 . We will prove that the system (3.3)

is equivalent to the following system of infinitely many equations

Ri1
juvY ji2···ir + Ri2

juvY i1j···ir + · · · + Rir
juvY i1i2···j = 0.

(3.7) Ri1
juv;w1

Y ji2···ir + Ri2
juv;w1

Y i1j···ir + · · · + Rir
juv;w1

Y i1i2···j = 0,

Ri1
juv;w1;w2

Y ji2···ir + Ri2
juv;w1;w2

Y i1j···ir + · · · + Rir
juv;w1;w2

Y i1i2···j = 0,

........

Since the rank(ξ) = n and the bundle of r-forms on ξ can be considered as vector
bundle of dimension N =

(
n
r

)
, there exists number s ≤ N − 1 such that if the first

s + 1 equalities of (3.7) are satisfied, then the (s + 2)-nd equality is also true, i.e.

Ri1
juv;w1;···;ws+1

Y ji2···ir + Ri2
juv;w1;···;ws+1

Y i1j···ir + · · · + Rir
juv;w1;···;ws+1

Y i1i2···j = 0.

Using this implication for Y i1i2···ir
;ws+2

, it is easy to see that if the first s + 1 equalities of
(3.7) are satisfied, then the (s + 3)-rd equality is satisfied, i.e.

Ri1
juv;w1;···;ws+2

Y ji2···ir + Ri2
juv;w1;···;ws+2

Y i1j···ir + · · · + Rir
juv;w1;···;ws+2

Y i1i2···j = 0.

Continuing this process we obtain that the systems (3.3) and (3.7) are equivalent.
In order to prove that the system (3.1) is integrable, we prove (ii).
(ii) In order to prove that there exist functions

Qi1i2···ir<v1,...,vk> (1 ≤ i1, · · · , ir ≤ n, v1, · · · , vk ∈ No)
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such that (3.4) and (3.5) are satisfied, we define Qi1···ir<0,...,0> by (3.4), and it is
sufficient to prove that

Qi1···ir<v1,...,vk>
;u;v = Qi1···ir<v1,...,vk>

;v;u

for each i1, · · · , ir ∈ {1, · · · , n}, u, v ∈ {1, · · · , k} and v1, · · · , vk ∈ No. Since

Qi1···ir<v1,...,vk>
;v;u − Qi1···ir<v1,...,vk>

;u;v =
r∑

p=1

R
ip

juvQi1···ip−1jip+1···ir<v1,...,vk>,

we should prove that

(3.8)
r∑

p=1

R
ip

juvQi1···ip−1jip+1···ir<v1,...,vk> ≡ 0.

Indeed, we prove by induction of v1, · · · , vk that the following system

r∑
p=1

R
ip

juvQi1···ip−1jip+1···ir<v1,...,vk> = 0

(3.9)
r∑

p=1

R
ip

juv;w1
Qi1···ip−1jip+1···ir<v1,...,vk> = 0

r∑
p=1

R
ip

juv;w1;w2
Qi1···ip−1jip+1···ir<v1,...,vk> = 0

........

is satisfied. If v1 = · · · = vk = 0, then (3.9) is satisfied according to our assumption.
Further if (3.9) is satisfied, then we should prove that

r∑
p=1

R
ip

juvQi1···ip−1jip+1···ir<v1,...,vk>
;s = 0

(3.10)
r∑

p=1

R
ip

juv;w1
Qi1···ip−1jip+1···ir<v1,...,vk>

;s = 0

r∑
p=1

R
ip

juv;w1;w2
Qi1···ip−1jip+1···ir<v1,...,vk>

;s = 0

........

It is easy to verify that (3.10) is a consequence of (3.9). Since s is an arbitrary element
of {1, · · · , k}, the proof of (3.9) and hence of (3.8) is ready.
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Finally we should prove that the system (3.1) and the initial conditions (3.2) are
satisfied. According to (3.6) we obtain

∂ωi1···ir/∂xu =
∞∑

v1=0

· · ·
∞∑

vu=1

· · ·
∞∑

vk=0

(−x1)v1

v1!
· · · (−1)

(−xu)vu−1

(vu − 1)!
· · · (−xk)vk

vk!
×

×Qi1···ir<v1,...,vk> +
∞∑

v1=0

· · ·
∞∑

vk=0

(−x1)v1

v1!
· · · (−xk)vk

vk!
· ∂

∂xu
Qi1···ir<v1,...,vk>

= −
∞∑

v1=0

· · ·
∞∑

vu=0

· · ·
∞∑

vk=0

(−x1)v1

v1!
· · · (−xu)vu

vu!
· · · (−xk)vk

vk!
×

×
[
Qi1···ir<v1,...,vu+1,...,vk> − ∂

∂xu
Qi1···ir<v1,...,vk>

]
= −

∞∑
v1=0

· · ·
∞∑

vk=0

(−x1)v1

v1!
· · · (−xk)vk

vk!
·

r∑
s=1

Γis
juQi1···is−1jis+1···ir<v1,...,vk>

= −
r∑

s=1

Γis
ju

[ ∞∑
v1=0

· · ·
∞∑

vk=0

(−x1)v1

v1!
· · · (−xk)vk

vk!
Qi1···is−1jis+1···ir<v1,...,vk>

]

= −
r∑

s=1

Γis
juωi1···is−1jis+1···ir ,

and ωi1···ir (0, · · · , 0) = Qi1···ir<0,···,0>(0, · · · , 0) = Y i1···ir (0, · · · , 0) = ωi1···ir
0 , for i1, · · · , ir ∈

{1, · · · , n}.
The convergence of the right side of (3.6) can be proven analogously to the proof

of the convergence given in [5]. ‖
Remark 1. We note that the theorem 3.1 can be generalized for non-linear and d

- connections also, like in [7] and [8].
Remark 2. Note that we can choose an arbitrary (analytical) solution Y i1i2···ir

of the linear homogeneous system (3.3) such that Y i1i2···ir (0, · · · , 0) = wi1i2···ir
0 , and

then the solution (3.6) will not depend on this choice. Hence we have the following
corollary.

Corollary 3.2. The number of linearly independent parallel r-forms in a neighbor-
hood of a considered point is equal to

(
n
r

)
−R where R is the rank of the homogeneous

linear system (3.3) where the coefficients are the components of the curvature tensor
and its derivatives up to

(
n
r

)
− 1 order.
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