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Abstract

We consider a hyperstructure of the form (L,
P
∨,

Q
∧), where (L,∨,∧) is a

lattice and the hyperoperations
P
∨,

Q
∧ are defined as follows: a

P
∨ b = a ∨ b ∨ P ,

a
Q
∧ b = a ∧ b ∧ Q. If the sets P, Q ⊆ L satisfy appropriate conditions, then (L,

P
∨,

Q
∧) is a superlattice. We explore some properties of (L,

P
∨,

Q
∧) with special

attention to various types of
P
∨ and

Q
∧ distributivity.
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1 Introduction

A classical algebraic operation maps two elements from a reference set L to a third
element from L. A hyperoperation, on the other hand, maps two elements of L to a
subset of L. Using hyperoperations, one can generalize the classical algebraic struc-
tures (e.g. group, ring, lattice) to hyperstructures. For example, a hyperlattice [6]
is a structure (L,g,∧) (where g is a hyperoperation and ∧ is a classical operation)
which generalizes a classical lattice. A superlattice [8] is a structure (L,g,f) (where
g, f are hyperoperations) which generalizes both the classical lattice and the hyper-
lattice. In this paper we establish some of the properties of the (P,Q)-superlattice,

and examine various types of
P
∨ and

Q
∧ distributivity.
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2 Definition of the (P,Q)-Superlattice

Let us first give the definition of a general superlattice. In fact, we will give two
equivalent definitions. In what follows P(L) will denote the power set of a reference
set L.

Definition 1 A superlattice is a partially ordered set (L,≤) with two hyperopera-
tions g, f, where g : L×L → P (L), f : L×L → P (L), and the following properties
are satisfied for all a, b, c ∈ S.

S1 a ∈ (a g a) ∩ (a f a) ,

S2 a g b = b g a, a f b = b f a,

S3 (a g b) g c = a g (b g c) , (a f b) f c = a f (b f c) ,

S4 a ∈ [(a g b) f a] ∩ [(a f b) g a] ,

S5a a ≤ b ⇒ (b ∈ a g b and a ∈ a f b) ,

S5b (b ∈ a g b or a ∈ a f b) ⇒ a ≤ b.

The following definition is equivalent to Definition 1, as has been shown in [8]

Definition 2 A superlattice is a partially ordered set (L,≤) with two hyperopera-
tions g, f, where g : L×L → P (L), f : L×L → P (L), and the following properties
are satisfied for all a, b, c ∈ S.

S1 a ∈ (a g a) ∩ (a f a) ,

S2 a g b = b g a, a f b = b f a,

S3 (a g b) g c = a g (b g c) , (a f b) f c = a f (b f c) ,

S4 a ∈ [(a g b) f a] ∩ [(a f b) g a] ,

S6 b ∈ a g b ⇔ a ∈ a f b,

S7 a, b ∈ a g b =⇒ a = b,

S8 b ∈ a g b et c ∈ b g c =⇒ c ∈ a g c.

Next let us define the (P,Q)-superlattice, which has been introduced in [7]. A
(P,Q)-superlattice is a special kind of superlattice, which can be considered as a
generalization of either the P -hyperlattice [4, 5] or the Q-d-hyperlattice1. (P,Q)-
superlattices are constructed on a lattice (L,∨,∧) in a manner analogous to the
construction of P -hypergroups [3, 9, 11] and P -hyperrings [10].

1A Q-d-hyperlattice can be defined analogously to a P -hyperlattice but utilizes an operation ∨

and a hyperoperation f =
Q
∧.
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In what follows, (L,∨,∧) will always denote a lattice (with L 6= ∅) and ≤ will
denote the order of (L,∨,∧). J(L) will denote the set of ideals of L, and F(L) will
denote the set of filters of L. If L possesses a minimum (respectively maximum)
element of L, this will be denoted by 0 (respectively 1).

Let us select two sets P,Q ∈ P(L) and define the following hyperoperations.

Definition 3 For all a, b ∈ L we define a
P
∨ b

.= a ∨ b ∨ P = {a ∨ b ∨ p : p ∈ P}.

Definition 4 For all a, b ∈ L we define a
Q
∧ b

.= a ∧ b ∧ Q = {a ∧ b ∧ q : q ∈ Q}.

Remark. In [4] we have shown that if P = L, then a
L
∨ b = {x ∈ L : a ∨ b ≤ x}. It

can be shown similarly that, if Q = L, then a
L
∧ b = {y ∈ L : y ≤ a ∧ b}.

Remark. It is easy to see that for P,Q, P1, Q1 ∈ P(L) such that P ⊆ P1 and Q ⊆ Q1

we have for all a, b ∈ L that a
P
∨ b ⊆ a

P1∨ b and a
Q
∧ b ⊆ a

Q1
∧ b .

An (L,
P
∨,

Q
∧) structure (with arbitrary choice of P,Q) is not necessary a superlat-

tice. Consider the following example.

Example 5 Consider the lattice L of Figure 1.

Figure 1

(i) If we take P = {0, a}, Q = {b, 1}, then we see that (L,
P
∨,

Q
∧) satisfies the properties

of Definition 1, i.e. it is a superlattice.

(ii) If we take P = {c, d}, Q = {c, d}, then we see that (L,
P
∨,

Q
∧) does not satisfy the

properties of Definition 1, i.e. it is not a superlattice. For example a /∈ a
P
∨a = a∨a∨

{c, d} = {a∨c, a∨d} = {b, 1}. Similarly, a /∈ a
Q
∧a = a∧a∧{c, d} = {a∧c, a∧d} = {0}.

The necessary and sufficient conditions on P,Q for (L,
P
∨,

Q
∧) to be a superlattice

are easily stated in terms of the following two collections of sets.

Definition 6 A(L) .= {A ∈ P (L) : ∀x ∈ L ∃a ∈ A such that a ≤ x}.

Definition 7 B(L) .= {B ∈ P (L) : ∀y ∈ L ∃b ∈ B such that y ≤ b}.
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It is clear that L ∈ AL ∩ BL. Also if L has a 0 and a 1, then (P,Q) ∈ A(L) ×
B(L) ⇔ (0, 1) ∈ P × Q. Furthermore, the following proposition yields the necessary

and sufficient condition for (L,
P
∨,

Q
∧) to be a superlattice.

Proposition 8 (L,
P
∨,

Q
∧) is a superlattice ⇔ (P,Q) ∈ A(L) × B(L).

Proof. The proof appears in [7]. ¤

3 Properties of the (P,Q)-superlattice

In what follows we will assume that (P,Q) ∈ A(L) × B(L) (unless explicitly stated

otherwise). Hence (L,
P
∨,

Q
∧) will be a superlattice.

Definition 9 A superlattice (L,
P
∨,

Q
∧) will be called proper iff there exist pairs (a, b),

(c, d) ∈ L × L, such that

card(a
P
∨ b) ≥ 2 and card(c

Q
∧ d) ≥ 2 .

Proposition 10 (i) If L possesses a maximum element 1 and we set P ∈ A(L),

Q = {1}, then (L,
P
∨,

Q
∧) is a P -hyperlattice.

(ii) If L possesses a minimum element 0 and we set P = {0}, Q ∈ B(L), then

(L,
P
∨,

Q
∧) is a P -d-hyperlattice.

(iii) If L possesses a minimum element 0 and a maximum element 1, and we set

P = {0} and Q = {1}, then (L,
P
∨,

Q
∧) is the lattice (L,∨,∧).

Proof. (i) If Q = {1}, then for all a, b ∈ L we have a
Q
∧ b = a∧ b∧ 1 = a∧ b. Hence

the
Q
∧ is an operation, which yields the required result.
(ii) This is proved similarly to (i).
(iii) This is proved by combining (i) and (ii). ¤

Proposition 11 For all (P,Q) ∈ A(L) ×B(L) and all a, b ∈ L we have: (i) a ∨ b =

min(a
P
∨ b), (ii) a ∧ b = max(a

Q
∧ b).

Proof. (i) Since P ∈ A(L) there will exist a p ∈ P such that p ≤ a ∨ b. Hence

a∨ b = a∨ b∨ p ∈ a
P
∨ b. Clearly, for all x ∈ a

P
∨ b we have a∨ b ≤ x, so we have proved

a ∨ b = min(a
P
∨ b).

(ii) This is proved dually to (i). ¤
Remark. It follows that for all (P,Q) ∈ A(L) × B(L) we have that (L,

P
∨,

Q
∧) is a

strictly strong superlattice [8].



154 K. Serafimidis and M. Konstantinidou

Remark. A (P,Q)-superlattice, by its construction, preserves ≤, the original order
of L. From S5a of Definition 1 follows that the ≤ order can be expressed in terms of

the
P
∨,

Q
∧ hyperoperations as follows:

a ≤ b ⇒ (b ∈ a
P
∨ b and a ∈ a

Q
∧ b),

(b ∈ a
P
∨ b or a ∈ a

Q
∧ b) ⇒ a ≤ b.

Proposition 12 (i) If L has minimum element 0 and maximum element 1, then

(card(P ) ≥ 2 and card(Q) ≥ 2) ⇔
(

(L,
P
∨,

Q
∧) is a proper superlattice

)
.

(ii) If L does not have either minimum or maximum element, then for all (P,Q) ∈

A(L) × B(L) we have that (L,
P
∨,

Q
∧) is a proper superlattice.

Proof. (i) We have 0
P
∨ 0 = 0 ∨ 0 ∨ P = P ; hence card(0

P
∨ 0) = card(P ) ≥ 2.

Similarly, 1
Q
∧ 1 = 1∧ 1∧Q = Q; hence card(1

Q
∧ 1) = card(Q) ≥ 2. Hence (L,

P
∨,

Q
∧) is

a proper superlattice.

(ii) Assume that for some (P,Q) ∈ A(L) × B(L) the corresponding (L,
P
∨,

Q
∧) is

not a proper superlattice. This means that for every a ∈ L we will have a
P
∨ a = a, or

a
Q
∧ a = a, or both. But a = a

P
∨ a = a ∨ P and so we conclude that for every p ∈ P

and for every a ∈ L we have p ≤ a. In particular, for any two p, p1 ∈ P ⊆ L we will
have p = p ∨ p1 = p1. It follows that P = {p} and that (since P ∈ A(L)) p is the

minimum element of L. But this is in contradiction to the assumption. Dually, if a
Q
∧a

we conclude that L has a maximum element, which again leads to a contradiction.
¤

A special subset of A(L) × B(L) is J(L) × F(L), i.e. the Cartesian product of
ideals and filters of L. In part (i) of the following proposition we do not initially
assume (P,Q)∈ A(L)×B(L). However, (i) states that J(L)×F(L) ⊆ A(L)×B(L),

hence (P,Q) ∈ J(L)×F(L) implies that (L,
P
∨,

Q
∧) is a superlattice. Parts (ii) and (iii)

of the proposition use stronger assumptions to reach more specialized conclusions.

Proposition 13 (i) (P,Q) ∈ J(L) × F(L)⇒(P,Q)∈ A(L) × B(L).
(ii) (P∈ A(L) ∩F(L)) ⇔P = L.
(iii) (Q∈ B(L) ∩J(L)) ⇔Q = L.

Proof. (i) In [4] we have shown that P ∈ J(L) implies that P ∈ A(L). To prove
that Q ∈ B(L) we proceed dually. Namely, if Q ∈ F(L), then Q ∨ L ⊆ Q [1]. Now
take any a ∈ L and any q ∈ Q. Then (a, q) ∈ L × Q and exists a q1 ∈ Q such that
a ∨ q = q1, i.e. a ≤ q1. Hence Q ∈ B(L).

(ii) Now assume that P ∈ A(L) ∩F(L). Since P ∈ A(L) for every a ∈ L there
exists p ∈ P such that p ≤ a, i.e. a∨p = a ∈ P ∨L; but, since P ∈ F(L) we also have
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P ∨ L ⊆ P . Hence a ∈ L ⇒ a ∈ P and so L ⊆ P . Since obviously P ⊆ L, we have
P = L. The converse is obvious.

(iii) This is proved dually to (ii). ¤
The converse of (i) in the above proposition does not hold, as we can see in the

next example.

Example 14 If L is the lattice of Figure 2, and P = Q = {0, 1}, then (P,Q) ∈
A(L) × B(L), but (P,Q) /∈ J(L) × F(L).

Figure 2

Proposition 15 For all (P,Q) ∈ A(L) × B(L) we have:
(i) Q ⊆ P ∨ Q, P ⊆ P ∧ Q.
(ii) If for every (p, q) ∈ P × Q we have p ≤ q, then Q = P ∨ Q, P = P ∧ Q.
(iii) If L is distributive and P,Q are intervals, then Q = P ∨ Q, P = P ∧ Q.

Proof. (i) Take any q ∈ Q. Since P ∈ A(L), it follows there will exist p ∈ P such
that p ≤ q. Hence q = p ∨ q ∈ P ∨ Q. Hence Q ⊆ P ∨ Q. It is proved dually that
P ⊆ P ∧ Q.

(ii) This is easy to prove.
(iii) Now assume that P = [a, b], Q = [c, d]. Then there will exist q ∈ [c, d] such

that b ≤ q ≤ d and p ∈ [a, b] such that a ≤ p ≤ c. Hence, since L is distributive, we
will have: P ∨ Q = [a, b] ∨ [c, d] = [a ∨ c, b ∨ d] = [c, d] = Q [2]. Dually we can prove
that P ∧ Q = P . ¤

We now introduce a relation ¹ between elements of P(L); ¹ is an order relation
(see for instance [2]).

Definition 16 Take any A,B ∈ P (L); we write A ¹ B iff

(i) ∀a ∈ A ∃b1 ∈ B : a ≤ b1, (ii) ∀b ∈ B ∃a1 ∈ A : a1 ≤ b.

Proposition 17 If a, b ∈ L and a ≤ b, then for all c ∈ L we have: (i) a
P
∨ c ¹ b

P
∨ c,

(ii) a
Q
∧ c ¹ b

Q
∧ c.
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Proof. (i) If x ∈ a
P
∨ c then exists some p1 ∈ P such that x = a ∨ c ∨ p1 ≤

b ∨ c ∨ p1 = y ∈ b
P
∨ c. Similarly, if z ∈ b

P
∨ c then exists some p2 ∈ P such that

z = b ∨ c ∨ p2 ≥ b ∨ c ∨ p2 = w ∈ a
P
∨ c. Hence a

P
∨ c ¹ b

P
∨ c.

(ii) It is proved dually. ¤
Remark. The relationship ¹ defined above, generally is not an order relationship
on P(L). It is an order relationship on I(L), the class of intervals of L[2].
Remark. If a, b ∈ L are such that a ≤ b and c ∈ L, then it is possible to have

(a
P
∨ c) ∩ (b

P
∨ c) = ∅ and (a

Q
∧ c) ∩ (b

Q
∧ c) = ∅. An example of this follows.

Example 18 Consider the lattice L of Figure 3 and take P = {0, a} ∈ AL and
Q = {b, 1} ∈ BL.

Figure 3

We observe that a ≤ 1 and a
P
∨a = a∨P = a and 1

P
∨a = 1∨P = 1, i.e. (a

P
∨a)∩(1

P
∨a) =

∅. Similarly, 0 ≤ b and b
Q
∧b = b∧Q = b and 0

Q
∧b = 0∧Q = 0, i.e. (b

Q
∧b)∩ (0

Q
∧b) = ∅.

Clearly for a, b ∈ L the form of a
P
∨ b, a

Q
∧ b depends on the form of P,Q. The

following propositions examine some cases of this connection.

Proposition 19 If (L,≤) is a distributive lattice, then for all a, b ∈ L we have

(i) P is an interval ⇒ a
P
∨ b is an interval.

(ii) Q is an interval ⇒ a
Q
∧ b is an interval.

Proof. (i) Assume P = [x, y], then (using [2]) we have a
P
∨ b = a ∨ b ∨ [x, y] =

[a∨ b∨ x, a∨ b∨ y]. But, since ∃p ∈ P = [x, y] such that p ≤ a∨ b, we will have a
P
∨ b

= [a ∨ b, a ∨ b ∨ y].

(ii) Assume Q = [z, w], then (using [2]) we have a
Q
∧ b = a ∧ b ∧ [z, w] = [a ∧ b ∧

z, a ∧ b ∧ w] and, similarly to (i), we get a
Q
∧ b = [a ∧ b ∧ z, a ∧ b]. ¤



Congruences of the Nakano superlattice 157

Proposition 20 If (L,≤) is a distributive lattice and a, b ∈ L are such that a ≤ b,
then we have

(i) P is an interval ⇒ (a
P
∨ c) ∨ (b

P
∨ c) = b

P
∨ c.

(ii) Q is an interval ⇒ (a
Q
∧ c) ∨ (b

Q
∧ c) = a

Q
∧ c.

Proof. (i) Assume P = [x, y], then a
P
∨ c = [a ∨ c ∨ x, a ∨ c ∨ y] and b

P
∨ c =

[b ∨ c ∨ x, b ∨ c ∨ y]. Since L is distributive, we will have

(a
P
∨ c) ∨ (b

P
∨ c) = [a ∨ c ∨ x, a ∨ c ∨ y] ∨ [b ∨ c ∨ x, b ∨ c ∨ y] =

[a ∨ b ∨ c ∨ x, a ∨ b ∨ c ∨ y] = [b ∨ c ∨ x, b ∨ c ∨ y] = b ∨ c ∨ [x, y] = b
P
∨ c.

(ii) It is proved dually. ¤

Proposition 21 If (L,≤) is a distributive lattice, then:

(i) (P is a sublattice) ⇒
(
∀a, b ∈ L a

P
∨ b is a sublattice

)
.

(ii) (P is a sublattice) ⇒
(
∀a, b ∈ L a

Q
∧ b is a sublattice

)
.

Proof. (i) Assume that P is a sublattice of L. Take any a, b ∈ L. For any

x1, x2 ∈ a
P
∨ b there exist p1, p2 ∈ P such that x1 = a ∨ b ∨ p1 and x2 = a ∨ b ∨ p2.

Furthermore, p1 ∨ p2 = p3 ∈ P , p1 ∧ p2 = p4 ∈ P. Hence x1 ∨ x2 = a ∨ b ∨ p3 ∈ a
P
∨ b

and x1 ∧ x2 = (a ∨ b ∨ p1) ∧ (a ∨ b ∨ p2) = (a ∨ b) ∨ (p1 ∧ p2) = (a ∨ b) ∨ p4 ∈ a
P
∨ b.

(ii) Is proved dually to (i). ¤

Proposition 22 (i) If (L,≤) is a distributive lattice and has a minimum element 0,
then we have:

0
P
∨ 0 is a sublattice ⇔ P is a sublattice.

(ii) If (L,≤) is a distributive lattice and has a maximum element 1, then we have:

1
Q
∧ 1 is a sublattice ⇔ Q is a sublattice.

Proof. (i) This is obvious, since 0
P
∨ 0 =0 ∨ P =P .

(ii) It is proved dually to (i). ¤

Corollary 23 (i) If L has a minimum element 0, then we have:(
∀a, b ∈ L a

P
∨ b is a sublattice

)
⇔ (P is a sublattice) .

(ii) If L has a maximum element 1, then we have:(
∀a, b ∈ L a

Q
∧ b is a sublattice

)
⇔ (Q is a sublattice) .
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Proof. Follows immediately from Propositions 21 and 22. ¤
Proposition 24 For all a, b ∈ L we have

(i) P is sublattice ⇒
(

(a
P
∨ b)

P
∨ (a

P
∨ b) = a

P
∨ b ⊆ (a

P
∨ b)

Q
∧ (a

P
∨ b)

)
.

(ii) Q is sublattice ⇒
(

(a
Q
∧ b)

Q
∧ (a

Q
∧ b) = a

Q
∧ b ⊆ (a

Q
∧ b)

P
∨ (a

Q
∧ b)

)
.

Proof. (i) Take any x1, x2 ∈ a
P
∨b; then there exist p1, p2 ∈ P such that x1 = a∨b∨p1

and x2 = a ∨ b ∨ p2. We have x1

P
∨ x2 = {(a ∨ b ∨ p1) ∨ (a ∨ b ∨ p2) ∨ p : p ∈ P}

= {a ∨ b ∨ (p1 ∨ p2 ∨ p) : p ∈ P}; and since P is a sublattice we have x1

P
∨ x2 =

{a ∨ b ∨ (p1 ∨ p2 ∨ p) : p ∈ P} ⊆ a
P
∨ b, which finally implies

(a
P
∨ b)

P
∨ (a

P
∨ b) ⊆ a

P
∨ b. (1)

Now take any x ∈ a
P
∨ b. Then there exist p, p1 ∈ P such that x = a ∨ b ∨ p and

p1 ≤ a∨b∨p. Hence x = a∨b∨p = (a∨b∨p)∨(a∨b∨p)∨p1 ∈ (a∨b∨p)∨(a∨b∨p)∨P

= (a ∨ b ∨ p)
P
∨ (a ∨ b ∨ p) ⊆ (a

P
∨ b)

P
∨ (a

P
∨ b) which implies

a
P
∨ b ⊆ (a

P
∨ b)

P
∨ (a

P
∨ b). (2)

From (1) and (2) we have that (a
P
∨ b)

P
∨ (a

P
∨ b) = a

P
∨ b.

Furthermore, if x ∈ a
P
∨ b, then there exist p ∈ P and q ∈ Q such that x =

a∨ b∨ p ≤ q. Hence a∨ b∨ p = (a∨ b∨ p)∧ (a∨ b∨ p)∧ q ∈ (a∨ b∨ p)∧ (a∨ b∨ p)∧Q

= (a ∨ b ∨ p)
Q
∧ (a ∨ b ∨ p) ⊆ (a

P
∨ b)

Q
∧ (a

P
∨ b).

(ii) This is proved similarly to (ii). ¤
The inclusion in the above proposition can be proper, as can be seen in the fol-

lowing example

Example 25 Consider the distributive lattice of Figure 4. Here we have (d
P
∨e)

Q
∧(d

P
∨e)

= {e, b, k, l, 1} ⊃ {k, l, 1} = d
P
∨ e.ZZ.

Example 26
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Figure 4

Proposition 27 (L,∨,∧) is distributive iff

For all a, x, y ∈ L we have:
a

P
∨ x = a

P
∨ y

a
Q
∧ x = a

Q
∧ y

 ⇒ x = y

Proof. (i) Let L be distributive. Pick any a, x, y such that a
P
∨ x = a

P
∨ y and

a
Q
∧ x = a

Q
∧ y. Then there exist p1, p2 ∈ P and q1, q2 ∈ Q such that

a ∨ x = a ∨ y ∨ p1, a ∨ y = a ∨ x ∨ p2, (3)

a ∧ x = a ∧ y ∧ q1, a ∧ y = a ∧ x ∧ q2. (4)

From (3) we obtain a∨ y ≤ a∨ x and a∨ x ≤ a∨ y, i.e. a∨ x = a∨ y; similarly, from
(4) we obtain a ∧ x = a ∧ y. From these and distributivity we obtain x = y.

(ii) On the other hand, assume that for all a, x, y ∈ L the implication

(a
P
∨ x = a

P
∨ y and a

Q
∧ x = a

Q
∧ y) ⇒ x = y (5)

is true. Now choose any a, x, y ∈ L such that a ∨ x = a ∨ y and a ∧ x = a ∧ y; then

we will also have a
P
∨ x = a

P
∨ y and a

Q
∧ x = a

Q
∧ y and so from (5) follows that x = y.

In short, for all a, x, y ∈ L we have:

(a ∨ x = a ∨ y and a ∧ x = a ∧ y) ⇒ x = y; (6)

but, as is well known (6) is a necessary and sufficient condition for distributivity of
L. ¤

4 Distributivity

In this section we examine the distributivity of the
P
∨,

Q
∧ hyperoperations. Since

the outcome of each of these hyperoperations is generally a set, several forms of
distributivity can be introduced. Let us first introduce the following definitions of
distributivity for a general superlattice.

Definition 28 A superlattice (L,g, f] is called weakly f-distributive (also denoted
by w-f-d) iff

(a f (b g c)) ∩ ((a f b) g (a f c)) 6= ∅;

it is called weakly g-distributive (also denoted by w-g-d) iff

(a g (b f c)) ∩ ((a g b) f (a g c)) 6= ∅.



160 K. Serafimidis and M. Konstantinidou

Definition 29 A superlattice (L,g,f] is called feebly f-distributive (also denoted
by f-f-d) iff

(a f (b g c)) ⊆ ((a f b) g (a f c));

it is called feebly g-distributive (also denoted by f-g-d) iff

(a g (b f c)) ⊆ ((a g b) f (a g c)).

Definition 30 A superlattice (L,g,f] is called f-distributive (also denoted by f-d)
iff

(a f (b g c)) = ((a f b) g (a f c));

it is called g-distributive (also denoted by g-d) iff

(a g (b f c)) = ((a g b) f (a g c)).

In the following, consider a distributive lattice (L,∨,∧) and choose sets P,Q ⊆

P(L) such that (L,
P
∨,

Q
∧) is a superlattice. The distributivity of (L,∨,∧) is connected

to the various forms of distributivity of (L,
P
∨,

Q
∧), as will be seen by the following

propositions.

Proposition 31 For all (P,Q) ∈ A(L) × B(L), (L,
P
∨,

Q
∧) is both w-

P
∨-d and w-

Q
∧-d.

Proof. Take any a, b, c ∈ L, then there exist p ∈ P satisfying p ≤ b, and q ∈ Q
satisfying a ≤ q. Hence we will have that a∧ (b∨ c) = a∧ (b∨ c∨ p) = a∧ (b∨ c∨ p)

∧q ∈ a∧ (b∨ c∨ p) ∧Q = a
Q
∧ (b∨ c∨ p) ⊆ a

Q
∧ (b∨ c∨P ) = a

Q
∧ (b

P
∨ c). On the other

hand, (a ∧ b) ∨ (a ∧ c) ∈ (a ∧ b)
P
∨ (a ∧ c) ⊆ (a

Q
∧ b)

P
∨ (a

Q
∧ c). Since L is distributive,

we will have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). In short, we have shown that

a ∧ (b ∨ c) ∈ (a
Q
∧ (b

P
∨ c)) ∩ ((a

Q
∧ b)

P
∨ (a

Q
∧ c))

and so we have shown that the (P,Q)-superlattice is w-
Q
∧-d. It can be shown dually

that it is also w-
P
∨-d. ¤

Proposition 32 For all (P,Q) ∈ A(L) × B(L) we have:

(i) if L ∧ P ∧ Q ⊆ P , then (L,
P
∨,

Q
∧) is f-

Q
∧-d;

(ii) if L has a minimum element 0 and (L,
P
∨,

Q
∧) is f-

Q
∧-d, then L ∧ P ∧ Q ⊆ P ;

(iii) if L ∨ P ∨ Q ⊆ Q, then (L,
P
∨,

Q
∧) is f-

P
∨-d;

(iv) if L has a maximum element 1 and (L,
P
∨,

Q
∧) is f-

P
∨-d, then L ∨ P ∨ Q ⊆ Q.

Proof. (i) If a, b, c ∈ L and x ∈ a
Q
∧ (b

P
∨ c), then there exists a pair (p, q) ∈ P × Q

such that

x = a ∧ (b ∨ c ∨ p) ∧ q = (a ∧ b ∧ q) ∨ (a ∧ c ∧ q) ∨ (a ∧ p ∧ q) ∈



Congruences of the Nakano superlattice 161

(a ∧ b ∧ q) ∨ (a ∧ c ∧ q) ∨ P = (a ∧ b ∧ q)
P
∨ (a ∧ c ∧ q) ⊆ (a

Q
∧ b)

P
∨ (a

Q
∧ c).

(ii) Now assume that L has a minimum element 0 and (L,
P
∨,

Q
∧) is f-

Q
∧-d. Then, for

every x ∈ L we have

x
Q
∧ (0

P
∨ 0) = ∪p∈P x

Q
∧ p = x ∧ P ∧ Q.

On the other hand,

(x
Q
∧ 0)

P
∨ (x

Q
∧ 0) = (x ∧ 0 ∧ Q)

P
∨ (x ∧ 0 ∧ Q) = 0

P
∨ 0 = P . (7)

From (7) and the fact that x∧ P ∧Q = x
Q
∧ (0

P
∨ 0) ⊆ (x

Q
∧ 0)

P
∨ (x

Q
∧ 0), it follows that

x ∧ P ∧ Q ⊆ P ; since this is true for any x ∈ L, we conclude that L ∧ P ∧ Q ⊆ P .
(iii) and (iv) are proved dually. ¤

Corollary 33 Let P ∈ J(L). Then we have the following.

(i) If for all (p, q) ∈ P × Q we have p ≤ q, then (L,
P
∨,

Q
∧) is f-

Q
∧-d.

(ii) If P,Q are intervals, then (L,
P
∨,

Q
∧) is f-

Q
∧-d.

Similarly, let Q ∈ F(L). Then we have the following.

(iii) If for all (p, q) ∈ P × Q we have p ≤ q, then (L,
P
∨,

Q
∧) is f-

P
∨-d.

(iv) If P,Q are intervals, then (L,
P
∨,

Q
∧) is f-

P
∨-d.

Proof. (i) Since for every pair (p, q) ∈ P × Q we have p ≤ q, it follows that
P ∧Q = P . Since P is an ideal of L, it follows that L∧P ∧Q = L∧P ⊆ P . Now we
can apply Proposition 32 to obtain the desired conclusion.

(ii) Since P,Q are intervals, then from Proposition 15 we have P ∧Q = P and we
can apply part (i) of this proposition.

(iii) and (iv) are proved dually. ¤

Corollary 34 The (L,
L
∨,

L
∧) is f-

Q
∧-d and f-

P
∨-d.

Proof. Taking P = L, Q = L and applying parts (i) and (iii) of Proposition 32,
we immediately obtain the desired conclusion. ¤

The next proposition concerns
Q
∧-distributivity.

Proposition 35 (i) If the lattice L does not have a minimum element, there exist

no (P,Q) pair such that (L,
P
∨,

Q
∧) is a proper

Q
∧-distributive superlattice.

(ii) If the lattice L has a minimum element 0, then for every (P,Q) pair such

that (L,
P
∨,

Q
∧) is a

Q
∧-distributive superlattice, we have P = {0} (i.e. (L,

P
∨,

Q
∧) is a

Q-d-hyperlattice).
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Proof. (i) Assume that there is a pair (P,Q) ∈ A(L) ×B(L) , such that (L,
P
∨,

Q
∧)

is a proper superlattice which is also
Q
∧-distributive. I.e. for all a, b, c ∈ L we have

a
Q
∧ (b

P
∨ c) = (a

Q
∧ b)

P
∨ (a

Q
∧ c). (8)

But we also have
a

Q
∧ (b

P
∨ c) = a ∧ (b ∨ c ∨ P ) ∧ Q (9)

and
(a

Q
∧ b)

P
∨ (a

Q
∧ c) = (a ∧ b ∧ Q) ∨ (a ∧ c ∧ Q) ∨ P. (10)

From (8-10) follows that

a ∧ (b ∨ c ∨ P ) ∧ Q = (a ∧ b ∧ Q) ∨ (a ∧ c ∧ Q) ∨ P ⇒

a ∨ (a ∧ (b ∨ c ∨ P ) ∧ Q) = a ∨ (a ∧ b ∧ Q) ∨ (a ∧ c ∧ Q) ∨ P. (11)

Now
a ∨ (a ∧ (b ∨ c ∨ P ) ∧ Q) = ∪x∈a∧(b∨c∨P )∧Qa ∨ x = {a}. (12)

Similarly,

a ∨ (a ∧ b ∧ Q) ∨ (a ∧ c ∧ Q) ∨ P = (∪x∈(a∧b∧Q)∨(a∧c∧Q)a ∨ x) ∨ P = a ∨ P. (13)

And from (11), (12) and (13) it follows that a = a∨P. Using a = a∨P and referring
to the proof of part (ii), Proposition 12, we conclude that P = {p}, which means that
p will be the minimum element of L; but this is contrary to the hypothesis and we
have reached a contradiction.

(ii) Now assume that L has a minimum element 0 and take any (P,Q) pair such

that (L,
P
∨,

Q
∧) is a proper superlattice is a

Q
∧-distributive superlattice. Duplicating the

argument of part (i), we conclude that P = {0}. ¤
Remark. If L has a maximum element 1, and Q = {1} and card(P ) ≥ 2, then

a
Q
∧ b = a ∧ b and (L,

P
∨,

Q
∧) is a proper P -hyperlattice. But in [4] we have shown

that a proper P -hyperlattice cannot be ∧-d. If, on the other hand, L has a minimum
element 0, and P = {0} and card(Q) ≥ 2, then we have a proper Q-d-hyperlattice,
which may also be ∧-d, as will be seen from the following proposition.

Proposition 36 L is distributive iff (L,∨,
L
∧) is a

L
∧-distributive L-d-hyperlattice.

Proof. The proof is analogous to Corollary 2.3 of [4]. ¤

Proposition 37 (i) If the lattice L does not have a maximum element, there exist

no (P,Q) pair such that (L,
P
∨,

Q
∧) is a proper

P
∨-distributive superlattice.

(ii) If the lattice L has a maximum element 1, then for every (P,Q) pair such

that (L,
P
∨,

Q
∧) is a

P
∨-distributive superlattice, we have Q = {1} (i.e. (L,

P
∨,

Q
∧) is a

P -hyperlattice.)
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Proof. The proof of this proposition is dual to that of Proposition 35. ¤
Remark. If L has a minimum element 0, and P = {0} and card(Q) ≥ 2, then

a
P
∨ b = a ∨ b and (L,

P
∨,

Q
∧) is a proper Q-d-hyperlattice. A proper Q-d-hyperlattice

cannot be ∨-d (the proof is dual to the proof concerning P -hyperlattices [4]). If L has
a maximum element 1, and Q = {1} and card(P ) ≥ 2, then the (P,Q)-superlattice

is a proper P -hyperlattice, which may be
P
∨-d.
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