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Abstract

We analyze a global nonholonomic economic system defined in [8], inspired
from Gibbs modelization in thermodynamics. Four types of ”simple” economic
models are derived, via integral manifolds of the initial distribution.

We translate some plausible economic hypothesis into a mathematical for-
malism and prove local and global results about the evolution of the modelled
economical systems.
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1 Introduction

In Theoretical physics, modelization has a long history, which often is identified with
(a large part of) the history of great mathematical ideas. In contrast, social sciences
are only at the begining of this process: a huge ”data base” of observations and
experiment records are still waiting for phenomenological interpretation and theories
building. It is not by chance that one tries to adopt and (eventually adapt) the
successful models from Physics, via a translation of notions and results.

The mathematical core of Economy already contains keywords with physical res-
onance, as equilibrium, entropy, stability, dynamics, and so on. The general hope is
twofold: first, to pick a lucky existing matematical theory ( well fitted to an economic
reality) and to use it as a tool box, for interpreting the known economic data and for
making economic previsions.

Secondly, we may hope that via some epistemological feed-back, ideas from Econ-
omy will impose the construction of new mathematical theories (or fundamental orig-
inal new ideas discovered inside old mathematical theories), in a beneficent symbiose
for both disciplines.
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Our paper contribute to the first attempt: we adopt a non-holonomic economic
model from [8], analogous to one used in thermodynamics (based on a Gibbs-Pfaff
equation). Via a translation into economic terms, we use geometrical information
about the integral manifolds of a 1-form, in order to describe the evolution of some
global or local economic systems.

2 Non-holonomic economic systems

In this section we consider a model of an economic system, similar to a thermodynamic
system, defined in [8].

Denote on R5 the global coordinates (G, I,E, P,Q), with the following significa-
tion: G = potential of growth; I = internal stability ; E = entropy; P= price; Q =
production quantity .

Consider the distribution D expressed as a kernel of an 1-form

ω = dG − IdE + PdQ.

The equation ω = 0 is the analogue of the equation Gibbs- Pfaff from thermo-
dynamics, where the same variables have the following meanings: internal energy,
temperature, entropy, pression and, respectively, volume ( [8]).

The distribution D may be expressed contravariantly (in the vector field language)
by

D = sp{∂I , I∂G + ∂E , ∂P , ∂Q − P∂G}.

A complementary distribution (1-dimensional and even orthogonal to D with re-
spect to the Euclidian metric on R5) is

D′ = sp{∂G − I∂E + P∂Q}.

One knows ([2], p. 384, Obs.1.5.3.) D doesn’t admit integral manifolds of dimen-
sion greater than 2 (thus it admits only integral curves and integral surfaces).

An integral surface of D is called simple economic system ([8], p.146).

Remark 1. Due to a theorem from [1], p. 453 (reformulated in [8], p. 146), there
are four families of integral surfaces, which we describe now:

Type I. Let α : R5 → R, α = α(E,Q). The integral surface admits the global
parametrization on R2, expressed in the coordinates (G, I,E, P,Q) through

α̃(E,Q) = (α, ∂Eα,E,−∂Qα,Q).
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We remark that it is a ”graphic-like” parametrization, so it has rank 2 and defines a
2-dimensional submanifold in R5. For simplicity, we will reprezent only the projection
on the 3-plane from R5

E = 0 , Q = 0.

We denote

α(E,Q) = (α, ∂Eα,−∂Qα).

Type II. Let β : R5 → R, β = β(I,Q). The integral surface admits the global
parametrization on R2, expressed in the coordinates (G, I,E, P,Q) through

β̃(I,Q) = (β − I∂Iβ, I,−∂Iβ,−∂Qβ,Q).

We remark it is a ”graphic-like” parametrization, so it has rank two, defining a 2-
dimensional submanifold in R5. For simplicity, we represent only the projection on
the 3-plane of R5, given by

I = 0 , Q = 0.

We denote

β(I,Q) = (β − I∂Iβ,−∂Iβ,−∂Qβ).

Type III. Let γ : R5 → R, γ = γ(E,P ). The integral surface admits the global
parametrization on R2, expressed in coordinates (G, I,E, P,Q) by

γ̃(E,P ) = (γ − P∂P γ, ∂Eγ,E, P, ∂P γ).

We remark it is a ”graphic-like” parametrization, so it has rank 2, defining a 2-
dimensional submanifold in R5. For simplicity, we shall represent only the projection
on the 3-plane of R5, given by

E = 0 , P = 0.

We denote

γ(E,P ) = (γ − P∂P γ, ∂Eγ, ∂P γ).

Type IV. Let δ : R5 → R, δ = δ(I, P ). The surface admits the global parametriza-
tion on R2, expressed in coordonates (G, I,E, P,Q) as

δ̃(I, P ) = (δ − I∂Iδ − P∂P δ, I,−∂Iδ, P, ∂P δ).
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We remark this is also a ”graphic-like” parametrization, of rank 2, defining a 2-
dimensional submanifold in R5. For simplicity, we reprezent only the projection on
the 3-plane of R5, given by

I = 0 , P = 0.

We denote

δ(I, P ) = (δ − I∂Iδ − P∂P δ,−∂Iδ, ∂P δ).

3 Interaction between simple economic systems

(i) Let consider the simple economic systems, expressed by integral surfaces of D of
type I, respectively II, which correspond to the functions α, β : R2 → R respectively,
defined by

α(E,Q) = E2 + Q2 , β(I,Q) = I2 + Q2.

We compute

α̃(E,Q) = (E2 + Q2, 2E,E,−2Q,Q),

α(E,Q) = (E2 + Q2, 2E,−2Q),

β̃(I,Q) = (−I2 + Q2, I,−2I,−2Q, Q),

β(I,Q) = (−I2 + Q2,−2I,−2Q).

Generally, the interaction of such economic systems may be expressed also by the
intersection of the corresponding integral surfaces ; thus, through a common point
of these surfaces, may pass an integral surface, an integral curve or a 0-dimensional
integral manifold of D (i.e. an ”integral” point).

In previous example, the intersection of the two integral surfaces includes the
integral curve c : R → R5, c(Q) = (Q2, 0, 0,−2Q,Q).

Let now consider the objective function f : R5 → R, f(G, I,E, P,Q) = Q. We
remark f models the production quantity of the economic system generated by D and
also that it has no (unconstrained) extremum point. (At the first view, the negative
values of f seem impossible to attain in practice ; it’s possible to ”explain” this as
import, etc.)

Consider that f is restricted to a first type simple economic system ; therefore 0
is a minimum point for f , constrained by D.
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Similarly, the function f restricted to the second type simple economic system has
in 0 a minimum point, constrained by D. Moreover, the restriction of the function f
along the curve c has 0 as minimum point, constrained by D.

(ii) In the previous construction, the dependence of E and I on the ”generating”
functions α and β, respectively was not essential. So, it is possible to generalize the
conclusion for the case of α(E,Q) = a2(E) + Q2 and β(I,Q) = b2(I) + Q2, with a
and b differentiable functions.

4 Interaction between global economic systems

(i) A more complex economic model supposes the existence of two or more economic
systems, similar to that described by the nonholonomic manifold (R5, ω). In [8]
one constructs the following model of a double economic system in which two non-
holonomic manifolds interact: (R5, ω1) and (R5, ω2), with the global coordinates
(G1, I1, E1, P1, Q1) and , respectively, (G2, I2, E2, P2, Q2). We denoted

ω1 = dG1 − I1dE1 + P1dQ1,

ω2 = dG2 − I2dE2 + P2dQ2.

We consider on R5 × R5 the product coordinates

(G1, I1, E1, P1, Q1, G2, I2, E2, P2, Q2)

and the 1-forms on R10 induced by ω1 and ω2 (denoted in the same manner). The
system

ω1 = 0 , ω2 = 0

generates a distribution D of constant (=8) rank, noninvolutive (thus not completely
integrable) on R10. The integral manifolds of D are product of integral manifolds for
the distributions on every factor, and having dimensions only 0, 1, 2, 3 or 4.

In [8] are considered the ”total growth” function, ”total entropy” function and
”total production quantity” function, defined by G = G1 + G2, E = E1 + E2, Q =
Q1 + Q2 respectively. The results proved there refer to the behaviour of the critical
points of the function G, constrained by D, for points with E = constant and Q =
constant (and similar results, where the task of E, G and Q are permutated).

The economic systems modelled by (R5, ω1) and (R5, ω2) are independent from
the geometric point of view, as factors in the product manifold. Their only interaction
manifests through the global functions G, E and Q on R10.

Next, we propose a few alternative models for the interaction of two economic
systems.
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(ii) Constant coordinate model. Let suppose that the potential of growth is
the same (with small variations, this assumption is equivalent to the condition G =
constant from the result quoted in (i) and proved in [8]). We have G2 = G1 and it is
possible to eliminate a coordinate from R10.

We consider on R9 the coordinates

(G1, I1, E1, P1, Q1, I2, E2, P2, Q2)

and the distributions D1, D2 and D, generated by the kernel of 1-forms

ω1 = dG1 − I1dE1 + P1dQ1,

ω2 = dG1 − I2dE2 + P2dQ2,

ω = dG1 − I1dE1 + P1dQ1 − I2dE2 + P2dQ2.

Each of them has rank 8 and thus codimension 1, in R9. For every such distribu-
tion we can resume the study from Remark 1, with the four types of integral surfaces
families.

We denote these models by (R9, ω1 = 0), (R9, ω2 = 0), respectively (R9, ω = 0).

The interaction between the initial economic models is possible to appear also
as part of following ”mixed” models: (R9, ω1 = 0, ω2 = 0), (R9, ω2 = 0, ω = 0),
(R9, ω1 = 0, ω = 0) (which contains the distributions of rank 7) in R9.

The interaction of the initial economic models is more sophisticated within the
framework of these six ”mixed” models than in the case of the product of the models
described in (i).

(iii) Similar constructions may be obtained if we suppose another variable between
I, E, P and Q to be constant.

Also, a very rich family of models appears when we fix (constant) two, three or
four variables between G, I, E, P and Q; thus we obtain economic systems in R8, in
R7 and in R6, respectively.

Case studies: (i) The function f : R5 → R, f(G, I,E, P,Q) = PQ has no
extremum points. We define α((E,Q)) = (Q − 1)2+ a function of E.

Then f has a maximum for Q = 1
2 .

Comment: in the simple economic system of type I, we consider a generating
function α (with quadratic variation in Q (production) ) and a minimum for Q = 1;
(the E-variation is not important). The maximum profit is attained for the production
quantity value Q = 1/2 .

(ii) An integral curve of D admits the parametrization
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c(t) = (
∫ 1

0

{I(s)E′(s) − P (s)Q′(s)}ds + x0, I(t), E(t), P (t), Q(t)),

with I, E, P,Q differentiable arbitrary functions of t, x0 a real constant. We suppose
x0 = 0.

Particular case: c(t) = (−1/2t2, 0, 0, t, 1 − t) ; then f(c(t)) = t − t2 has a
maximum in 1/2 .

Comment : consider an ” economic factor” described by c, with linear variation
in price and production quantity, in inverse proportionality. It follows the growth
potential has quadratic variation (with minus), and the maximum profit is attaind for
t = 1/2.

(iii) Alternatively, an integral curve of D admits also the parametrization

c(t) = (G(t), I(t), E(t), {I(t)E′(t) − G′(t)}/Q′(t), Q(t)),

where the fourth component is the price.
In particular, if G(t) = t; I(t) = sint; E(t) = cost; Q(t) = t, we obtain P (t) =

−sin2t; f(c(t)) = −tsin2t , with an infinity of extremum points.

Comment: initially (at t = 0) the profit decreases; next, it fluctuates cvasiperi-
odically, with increasing amplitude as in Fig. 1.

Fig.1: the variation of the profit vs. time
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