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Abstract

The higher order bundles are considered using a vector pseudo-field on, in
an inductive manner. The main ideas of our construction can be used as well in
other cases.

A dual theory between lagrangians and hamiltonians (via Legendre transfor-
mations) is considered, in a similar way as R.Miron. A canonical way to induce
a hamiltonian on an affine subbundle is given, too.
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A theory of higher order Finsler and Lagrange spaces was developped in [17, 10]
using the bundles of accelerations. A dual theory of higher order Hamilton spaces
was recentely studied in [12, 13]. The theory of Finsler and Lagrange submanifolds is
studied in many papers (for example [1, 2, 3, 4, 5, 15, 19, 20, 21, 22, 28]). A theory of
Hamilton submanifolds of order one was also studied by R. Miron in [18, 11] and the
case of higher order is considered in [14]. In these approaches one define an induced
hamiltonian on the submanifold, which is not intrinsic (the induction procedure is
not uniquely defined by the hamiltonian and the submanifold). A canonical way to
induce a hamiltonian (of order one) on a submanifold is given in [30, 31], solving a
problem of R. Miron [18, 11] concerning the possibility to induce a hamiltonian on a
submanifold in an intrinsic way.

The aim of this paper is to induce canonically a hamiltonian of higher order on
a submanifold using the construction given in [32]. In the first section we give a
recursive definition of the k-acceleration bundles (as affine bundles) and we revise
some known constructions and results related to the geometry of the k-acceleration
bundle and its dual [14]. A canonical way to induce a hamiltonian on an submanifold
is given in the second section.
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1 An inductive construction of the higher accelera-
tion bundles

Let M be a manifold of dimension m and τM = (TM, π,M) its tangent bundle.
Considering an atlas of M , we denote by (xi) the coordinates on an arbitrary domain
U ⊂ M and by (xi, yj) the coordinates on the domain π−1(U) ⊂ TM (i, j = 1,m). On
the intersection of two open domains of coordinates on TM , the coordinates change
according the rule

xi′ = xi′(xi), yi′ =
∂xi′

∂xi
yi.

A surjective submersion E
π→ M is usually called a fibered manifold. An affine

bundle E
π→ M is a fibered manifold which the change rules of the local coordinates

on E have the form

x̄i = x̄i(xj), ȳα = gα
β (xj)yβ + vα(xj). (1)

An affine section in the bundle E is a differentiable map M
s→ E such that π◦s = idM

and its local components change according to the rule s̄α(x̄i) = gα
β (xj)s̄β(xj)+vα(xj).

The set of affine sections is denoted by Γ(E) and it is an affine module over F(M),
i.e. for every f1, . . . , fp ∈ F(M) such that f1 + · · · + fp = 1 and s1, . . . , sp ∈ Γ(E),
then f1s1 + · · ·+ fpsp ∈ Γ(E), where the affine combination is taken in every point of
the base. Using a partition of unity on the base M it can be easily proved that every
affine bundle allows an affine section.

A vector bundle Ē
π̃→ M can be canonically associated with the affine bundle E

π→
M . More precisely, using local coordinates, the coordinates change on Ē following
the rules x̄i = x̄i(xj), z̄α = gα

β (xj)zβ , when the coordinates on E change accoding
the formulas (1).

Every vector bundle is an affine bundle, called a central affine bundle. In this case
vα(xj) = 0.

The tangent bundle TM is an affine bundle, but, for k ≥ 2, the k-accelerations
bundles T k(M) are affine bundles over T k−1(M). They can be defined inductively as
follows.

Let us denote M = T 0M , π = π1 and TM = T 1M and consider element Γ ∈
F(TM)⊗F(M) X (M) defined locally by Γ = yi ∂

∂xi
, where

∂

∂xi
are local fields on M .

Let us associate with every domain π−1(U) ⊂ TM the vector field Γ(1)
U = yi ∂

∂xi
, ,

where
∂

∂xi
are local fields on TM . We call this association a vector pseudofield on

TM .
Let us suppose that the vector pseudofields Γ(r) on T rM and the r-acceleration

bundles T rM have been defined for 1 ≤ r ≤ k − 1 as affine bundles over T r−1M . We
define T kM by the following change rule of the local coordinates:

ky(k)i′ = k
∂xi′

∂xi
y(k)i + Γ(k−1)

U (y(k−1)i′)
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and Γ(k)
U = Γ(k−1)

U +ky(k)i ∂

∂y)k−1)i
, where Γ(k−1)

U is considered as a (local) vector field

on T kM and U is the domain which corresponds to the coordinates (xi). Notice that

Γ(k)
U = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
+ · · · + ky(k)i ∂

∂y(k−1)i

and on the intersection of two domains corresponding to U and U ′, we have:

Γ(k)
U ′ = Γ(k)

U − Γ(k)
U (y(k)i′)

∂

∂y(k)i′

Indeed, according to the recursive definitions of Γ(r)
U and Γ(r)

U ′ we have Γ(k)
U ′ (xi′) =

Γ(k)
U (xi′), Γ(k)

U ′ (y(r)i′) = Γ(k)
U (y(r)i′), for r = 1, r − 1 and

Γ(k)
U ′ (y(k)i′) = 0, (∀)i′ = 1, m; thus Γ(k)

U = Γ(k)
U (xi′)

∂

∂xi′
+ Γ(k)

U (y(1)i′)
∂

∂y(k)i′
+ · · · +

Γ(k)
U (y(k−1)i′)

∂

∂y(k−1)i′
+ Γ(k)

U (y(k)i′)
∂

∂y(k)i′
= Γ(k)

U ′ + Γ(k)
U (y(k)i′)

∂

∂y(k)i′
.

Proposition 1.1 The fibered manifold (T kM,pk, T k−1M) is an affine bundle, for
k ≥ 2.

Proof. Let us consider (xi, y(1)i, . . . , y(k)i), (xi′ , y(1)i′ , . . . , y(k)i′) and (xi′′ , y(1)i′′ , . . .,
y(k)i′′) as being coordinates on three domains of adapted coordinates on T kM , cor-
responding to U , U ′ and U ′′ and having nonvoid intersection.

We have ky(k)i′ = k
∂xi′

∂xi
y(k)i + Γ(k)

U (y(k−1)i′) and ky(k)i′′ = k
∂xi′′

∂xi′
y(k)i′+

Γ(k)
U ′ (y(k−1)i′′). It suffices to prove that

ky(k)i′′ = k
∂xi′′

∂xi
y(k)i + Γ(k−1)

U (y(k−1)i′′).

Indeed, ky(k)i′′ = k
∂xi′′

∂xi′
y(k)i′ + Γ(k−1)

U ′ (y(k−1)i′′) =
∂xi′′

∂xi′
(
∂xi′

∂xi
ky(k)i+

Γ(k−1)
U (y(k−1)i′)) + Γ(k−1)

U (y(k−1)i′′) − Γ(k−1)
U (y(k)i′)

∂y(k−1)i′′

∂y(k−1)i′
= k

∂xi′

∂xi
y(k)i+

Γ(k−1)
U (y(k−1)i′′), since

∂xi′′

∂xi′
∂xi′

∂xi
=

∂xi′′

∂xi
and

∂y(k−1)i′′

∂y(k−1)i′
=

∂xi′′

∂xi′
. 2

Let ker πk∗ = V0T
kM , be the vertical vector bundle of T kM (viewed as a fibered

manifold over T k−1M) and Γ(V0T
kM) be the module of the vertical sections. The

local coordinates on the fibers of V0T
kM have the form (Y i) and change according

to the rules Y i′ =
∂xi′

∂xi
Y i. If S : T kM → V0T

kM is a section, then it has the local

form S = Si ∂

∂y(k)i
and TS =

∂Si

∂y(k)j

∂

∂y(k)i
⊗ dy(k)j defines an endomorphism on the

fibers of V0T
kM .
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A Liouville type section is a vertical section S ∈ Γ(V0T
kM) which TS is the identity

on the fibers of V0T
kM ; it has the local form

Si(xi, y(1)i, . . . , y(k)i) = (y(k)i + ti(xi, y(1)i, . . . , y(k−1)i))
∂

∂y(k)i
.

Proposition 1.2 There is an one to one correspondence between the Liouville type
sections in Γ(V0T

kM) and the affine sections in T kM → T k−1M .

Proof. Let S ∈ Γ(V0T
kM) be a Liouville section. The change rules of the local

functions Si are Si′ =
∂xi′

∂xi
Si. Taking into account the forms of Si′ and Si, it follows

that y(k)i′ + ti
′
(xi′ , y(1)i′ , . . . , y(k−1)i′) =

∂xi′

∂xi
(y(k)i + ti(xi, y(1)i, . . . , y(k−1)i)). Since

ky(k)i′ = k
∂xi′

∂xi
y(k)i + Γ(k−1)

U (y(k−1)i′), it follows that −kti
′
(xi′ , y(1)i′ , . . . , y(k−1)i′) =

−k
∂xi′

∂xi
ti(xi, y(1)i, . . . , y(k−1)i)+Γ(k−1)

U (y(k−1)i′), thus the local functions (−ti(xi, y(1)i,

. . . , y(k−1)i)) are the local components of a global section from Γ(T kM). Conversely,
for a global section s ∈ Γ(T kM) having the local components (si(xi, y(1)i, . . ., y(k−1)i)),
the local functions (y(k)i−si(xi, y(1)i, . . . , y(k−1)i)) on T kM are the local components
of a Liouville type section. 2

The composition πk = π1 ◦ · · · ◦π
k

: T kM → M define a fibered manifold on T kM
on the base M . It is not an affine bundle. The vector bundle V T kM = kerπk

∗ is the
vertical bundle of T kM . The Liouville section is the vertical section defined (locally)

by
k

Γ = y(1)i ∂

∂y(1)i
+2y(2)i ∂

∂y(2)i
+ · · ·+ky(k)i ∂

∂y(k)i
. Notice that it is a global section

on V T kM . A special endomorphism on T kM is defined by

J

(
∂

∂xi

)
=

∂

∂y(1)i
, J

(
∂

∂y(1)i

)
=

∂

∂y(2)i
, . . . , J

(
∂

∂y(k−1)i

)
=

∂

∂y(k)i
,

J

(
∂

∂y(k)i

)
= 0,

called the k-tangent structure.

A k-(semi)spray is a vector field S ∈ X (T kM) with the property J(S) =
k

Γ . A k-

(semi)spray S has the local form S = Γ(k) + Si(xi, y(1)i, . . ., y(k)i)
∂

∂y(k)i
. The change

rule of the local functions Si shows that they define a (global) affine section on the
affine bundle T k+1M over the base T kM . Conversely, every affine section on the
affine bundle T k+1M define, using their components, a k-(semi)spray.

Proposition 1.3 There is an one to one correspondence between the Liouville type
sections in Γ(V0T

kM) and the (k − 1)-(semi)sprays on M .

A nonlinear connection on the k-tangent bundle T kM is a left splitting C of the
inclusion V T kM → T (T kM) or, equivalently, a right splitting D of the projection
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T (T kM) → (πk)∗TM , which define the horizontal lift. Using local coordinates, one
can consider the coefficients and the dual coefficients of a nonlinear connections. The
coefficients of the nonlinear connection are defined by the condition

D

(
∂

∂xi

)
=

∂

∂xi
− N

(1)

j
i

∂

∂y(1)j
− · · ·− N

(k)

j
i

∂

∂y(k)j

not.=
δ

δxi
.

An adapted base of the local vector fields on T kM is

B1 =
{

δ

δxi
,

δ

δy(1)i
= J

(
δ

δxi

)
, . . . ,

δ

δy(k)i
= Jk−1

(
δ

δxi

)
,

δ

δy(k)i
=

∂

∂y(k)i

}
.

The expression of the dual base of B1:

B∗
1 =

{
δxi = ∂xi, ∂y(1)i, . . . , ∂y(r)i

}
with respect to the canonical dual base B∗ = {dxi, dy(1)i, . . . , dy(k)i}, in the form:

δxi = dxi

δy(1)i = dy(1)i+ M
(1)

i
jdxj

· · ·
δy(1)i = dy(k)i+ M

(1)

i
jdy(k−1)i + · · · +

+ M
(k−1)

i
jdy(1)i+ M

(k)

i
jdxi

define the dual coefficients.
In [12]-[14] there is used the Liouville type vector field (called a k-Liouville d-vector

field) on T kM , given by a nonlinear connection on T k−1M , which has the form

kS(k)i = ky(k)i + (k − 1) M
(1)

i
jy

(k−1)j + · · ·+ M
(k−1)

i
jy

(1)j .

We recall breafly the construction of the Legendre and Legendre∗ transformations
using a Lagrangian and a Hamiltonian respectively.

A lagrangian of order k on M is a continous function L : T kM → IR, differentiable
on T̃ kM (i.e. T kM without the null section). The lagrangian is regular if the vertical

Hessian
(

∂2L

∂yαyβ

)
of L is non-degenerate. In this case the vertical hessian defines a

(pseudo)metric structure on the fibers of the vertical bundle V T̃ kM . In order to have
more generality, we remove in that follows the continuity of L in the points situated
in the image of the null section.

The vector bundle canonically associated with the affine bundle (T kM , pk, T k−1M)
is the vector bundle q∗k−1TM , where qk−1 : T k−1M → M is qk−1 = p1 ◦p2 ◦ · · · ◦pk−1.
The fibered manifold (T kM, qk,M) is systematically used in [?, 10] in the study of the
geometrical objects of order k on M , in particular the Lagrangians of order k on M .
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The total space of the dual q∗k−1T
∗M of the vector bundle q∗k−1TM is also the total

space of the fibered manifold (T k−1M×M T ∗M, rk, M) and is used in [12, ?, 14] in the
study of the dual geometrical objects of order k on M , in particular the Hamiltonians
of order k on M . In the sequel we denote q∗k−1T

∗M = T k∗M as an affine bundle over
T k−1M .

A hamiltonian of order k on M is a continuous function H : T k∗M → IR, differ-
entiable on T̃ k∗M (i.e. T k∗M without the null section). The hamiltonian is regular if

the vertical Hessian
(

∂2H

∂pipj

)
of H is non-degenerate. In this case the vertical hessian

defines a (pseudo)metric structure on the fibers of the vertical bundle V T̃ k∗M . In
order to have more generality, as in the case of lagrangians, we remove in that follows
the continuity of H in the points situated in the image of the null section.

If L : T kM → IR is a lagrangian, then the Legendre transformation is the fibered
manifold map L : T̃ kM → T̃ k∗M (both on the base T k−1M) defined in local coordi-

nates on the fibers by (y(k)i) L→ (pi =
∂L

∂y(k)i
(xi, y(1)i, . . . , y(k)i)). It is easy to see that

if L is a regular lagrangian, then L is a local diffeomorphism. Considering a regular
lagrangian locally, we can suppose that L is a global diffeomorphism.

The Legendre transformation defines an L-morphism of the vertical vector bundles
V T̃ kM → V T̃ k∗M (called the vertical Legendre morphism) and expressed in local

coordinates on fibers by (y(k)i, Y j) → (
∂L

∂y(k)i
, Y j ∂2L

∂y(k)jy(k)k
).

Theorem 1.1 Let s : T k−1M → T kM be an affine section and L : T kM → IR be a
regular lagrangian.

Then there is a hamiltonian H : T k∗M → IR defined by L and s such that the
vertical Legendre morphism is an isometry and the vertical hessian of H does not
depend on the section s.

Proof. Let (xi, y(1)i, . . . , y(k−1)i) s→ (xi, y(1)i, . . . , y(k−1)i, sj(xi, y(1)i, . . ., y(k−1)i))
be the local form of the section s. According to Proposition 1.2, the section s
defines a Liouville section S : T k−1M → V T k−1M given in local coordinates by
(xi, y(1)i, . . . , y(k−1)i) S→ (xi, y(1)i, . . . , y(k−1)i, y(k−1)i − si(y(1)i, . . . , y(k−1)i)). Since
L is non-degenerate it means that L is a diffeomorphism, thus consider H = L−1 :
T k∗M → T kM and denote by S̄ = S ◦ H:T k∗M → V T k−1M . Notice that H has the
local form

(xi, y(1)i, . . . , y(k−1)i, pi)
H→ (xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k−1)i, pi)),

where

Hj(xi, y(1)i, . . . , y(k−1)i,
∂L

∂y(k)i
(xi, y(1)i, . . . , y(k)i)) = yj and

∂L

∂y(k)j
(xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k−1)i, pi)) = pj .
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Differentiating the first formula, we obtain:

∂2L

∂y(k)u∂y(k)w
(xi, y(1)i, . . . , y(k)i) · (2)

∂Hw

∂pv
(xi, y(1)i, . . . , y(k−1)i,

∂L

∂y(k)i
(xi, y(1)i, . . . , y(k)i)) = δuv.

Substituting y(k)j = Hj(xi, y(1)i, . . . , y(k−1)i, pi) we also have

∂2L

∂y(k)u∂y(k)w
(xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k)i, pi)) · (3)

∂Hw

∂pv
(xi, y(1)i, . . . , y(k)i) = δuv.

Then S̄ has the form

(xi, y(1)i, . . . , y(k−1)i, pi)
S̄→

(xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k−1)i, pi),Hi(xi, y(1)i, . . . ,

y(k−1)i, pi) − si(xi, y(1)i, . . . , y(k−1)i, pi)).

We define H : T k∗M → IR using the formula

H(xi, y(1)i, . . . , y(k−1)i, pi) = pj(Hj(xi, y(1)i, . . . , y(k−1)i, pi) − (4)

sj(xi, y(1)i, . . . , y(k−1)i, pi)) −
L(xi, y(1)i, . . . , y(k−1)i,Hi(xi, y(1)i, . . . , y(k−1)i, pi)).

It is easy to see that H is globally defined on T k∗M . In order to prove that the
vertical hessian of H is non-degenerate and also that the vertical bundle morphism is
an isometry, it suffices to prove that(

∂H2

∂pu∂pv

(
xi, y(1)i, . . . , y(k−1)i,

∂L

∂yi

(
xi, y(1)i, . . . , y(k)i

)))
=(

∂L2

∂yu∂yv

(
xi, y(1)i, . . . , y(k)i

))−1

.

This can be obtained by a straightforward computation, as follows. Using formula

(2), we obtain
∂H

∂pj
(xi, y(1)i, . . . , y(k−1)i, pi) = Hj(xi, y(1)i, . . .,

y(k−1)i, pi), then using the relations (3) and (2), the above formula follows. It is easy
to see that the vertical hessian of the hamiltonian does not depend on the section s.
2

An inverse construction is performed in the sequel. Starting from a hamiltonian,
a lagrangian on T kM can be constructed.

Given a hamiltonian H : T̃ k∗M → IR and a section s of T kM , the Legendre∗

transformation is the fibered manifold morphism H : T̃ k∗M → T̃ kM defined by the
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local formula (xi, y(1)i, . . . , y(k−1)i, pi)
H→

(xi, y(1)i, . . . , y(k−1)i,
∂H

∂pi
(xj , y(1)j , . . . , y(k−1)j , pj)+si(xj)). If the hamiltonian is reg-

ular, then the Legendre∗ transformation is a diffeomorphism.
The Legendre∗ transformation defines an H-morphism of the vertical vector bun-

dles V T̃ k∗M → V T̃ kM (called the vertical Legendre∗ morphism) and expressed in lo-

cal coordinates by (xi, y(1)i, . . . , y(k−1)i, pi, Pi) → (xi, y(1)i, . . . , y(k−1)i,
∂H

∂pi
(xj , y(1)j ,

. . . , y(k−1)j , pj) + si(xi, y(1)i, . . . , y(k−1)i), Pu ∂2H

∂pi∂pu
(xj , y(1)j , . . . , y(k−1)j , pj)).

Theorem 1.2 Let s : M → T̃ kM be an affine section and H : T k∗M → IR be a
non-degenerate hamiltonian.

Then there is a lagrangian L : T kM → IR of order k on M such that the vertical
Legendre∗ morphism is an isometry and the vertical hessian of L does not depend on
the section s.

Proof. The proof is analogous to the proof of Theorem 1.1. In fact we reverse
the order of H and L in the construction of H in the formula (4). We denote by
L = H−1 : T kM → T k∗M the inverse of the Legendre∗ transformation. It has the
local form

(xi, y(1)i, . . . , y(k)i) L→ (xi, y(1)i, . . . , y(k−1)i, Li(xj , y(1)j , . . . , y(k)j)),

where

Li(xj , y(1)j , . . . , y(k−1)j ,
∂H

∂pj
(xu, y(1)u, . . . , y(k−1)u, pu) +

sj(xu, y(1)u, . . . , y(k−1)u)) = pi and
∂H

∂pi
(xj , y(1)j , . . . , y(k−1)j , Lj(xu, y(1)u, . . . , y(k)u)) +

si(xj , y(1)j , . . . , y(k−1)j) = yi.

One defines H : T̃ k∗M → IR using the formula

L(xi, y(1)i, . . . , y(k)i)= (5)

Li(xj , y(1)j , . . . , y(k)j)
(
yi − si(xj , y(1)j , . . . , y(k−1)j)

)
−

H(xi, y(1)i, . . . , y(k−1)i, Li(xj , y(1)j , . . . , y(k)j)).

The proof follows in the same manner as the proof of Theorem 1.1. 2

2 Induced hamiltonians on submanifolds

Besides the theory of Lagrange and Finsler submanifolds, which is studied by many
authors, (see the Bibliography), an attempt to study the Hamilton submanifolds is



132 M. Popescu and P. Popescu

performed in [18, 11], using an arbitrary section of the natural projection of the
cotangent bundles. In [30] we have shown that there is a distinguished section, which
depends only on the Hamiltonian. It solves a problem from [18, 11], concerning the
possibility to induce in an intrinsic way a hamiltonian on a submanifold. Following a
similar ideea, we show that an analogous result in the higher order.

If E
π→ M is an affine bundle then an affine subbundle of E is an affine bundle

E′ π′

→ M ′ such that E′ ⊂ E and M ′ ⊂ M are submanifolds, π′ is the restriction of π
and the affine structure on the fibers of E′ is induced by the affine structure on the
fibers of E.

Consider M ′ ⊂ M a submanifold and denote by i : M ′ → M the inclusion.
Consider some coordinates on M , along M ′, adapted to the submanifold M ′. It means
that the coordinates have the form (xi)i=1,m = (xα)α=1,m′ ∪ (xᾱ)ᾱ=m′+1,m and the
points in M ′ are characterized by xᾱ = 0, (∀)ᾱ = m′ + 1,m. Using these coordinates
on T kM , the inclusion ik : T kM ′ → T kM has the local form (xα, y(1)α, . . . , y(k)α) →
(xα, xᾱ = 0, y(1)α, y(1)ᾱ = 0, . . . , y(k)α, y(k)ᾱ = 0).

We consider also a section s : T k−1M → T kM which, in general, may not restricts
to a section s′ : T k−1M ′ → T kM ′. If the section s : T k−1M → T kM restricts to a
section s′ : T k−1M ′ → T kM ′ we say that s is adapted to the submanifold M .

There are some local coordinates (xα) on M ′ and (xα, y(1)α, . . . , y(k)α) on T kM ′

which extend to local coordinates (xi) = (xα, xᾱ) on M and (xi, yα) = (xα, xᾱ,
y(1)α, y(1)ᾱ, . . . , y(k)α, y(k)ᾱ) on T kM respectively, such that the points in M ′ and in
T kM ′ are characterized by the conditions xᾱ = 0 and xᾱ = y(1)ᾱ = · · · = y(k)ᾱ = 0
respectively. ( i, j, k, . . . = 1,m, m = dimM , α, β, . . . = 1,m′, ᾱ, β̄v̄, . . . ∈ m′ + 1,m,
m′ = dimM ′.

We consider also local coordinates (xα, , y(1)α, . . . , y(k−1)α, pa) on T k∗M ′ and (xi,
y(1)i, . . . , y(k−1)i, pi) = (xα, , y(1)α, y(1)ᾱ, . . . , y(k−1)α, y(k−1)ᾱ, pa, pᾱ) on T k∗M , which
are adapted to the vector bundle structures and to the submanifolds structures. The
local form of the section s is (xi, y(1)i, . . ., y(k−1)i) s→ (xi, y(1)i, . . . , y(k−1)i, si(xi, y(1)i,
. . . , y(k−1)i)), where sā(xu, 0) = 0.

The local form of the Legendre∗ transformation H is

(xi, y(1)i, . . . , y(k−1)i, pi) → (xi, y(1)i, . . . , y(k−1)i,
∂H

∂pi
(xj , y(1)j , . . . ,

y(k)j , pj) + si(xi, , y(1)i, . . . , y(k−1)i)),

and we denote
∂H

∂pi
(xj , y(1)j , . . . , y(k−1)j , pj) = Hi(xj , y(1)j , . . . , y(k−1)j , pj). The local

forms of the inclusions i : M ′ → M , I : T kM ′ → T kM and of the canonical projection
I∗ : T k∗M → T k∗M ′ are

(xα) i→ (xα, 0), (xα, y(1)α, . . . , y(k)α) I→ (xα, 0, y(1)α, 0, . . . , y(k)α, 0),

and

(xα, xᾱ, y(1)α, y(1)ᾱ, . . . , y(k−1)α, y(k−1)ᾱ, pa, pᾱ) I∗

→ (xα, y(1)α, . . . , y(k−1)α, pa),



Higher order geometry and induced objects 133

respectively.
Let H : T k∗M → IR be a regular hamiltonian, thus the Legendre∗ transforma-

tion H : T̃ k∗M → T̃ kM is a diffeomorphism. We denote by (xi, y(1)i, . . . , y(k)i) →
(xi, y(1)i, . . . , y(k−1)i, Li(xi, y(1)i, . . . , y(k)i)) the local form of L = H−1 : T̃ kM →
T̃ k∗M , the inverse of the Legendre∗ transformation.

We have that W ′ = L ◦ I(T̃ kM ′) is a submanifold of T̃ k∗M .

Proposition 2.1 The restriction of I∗ to W ′, I∗|W ′ : W ′ → T̃ k∗M ′ is a diffeomor-
phism.

Proof. We have: L is a diffeomorphism, I∗ is a surjective submersion and I
is an injective immersion. The local form of I∗ ◦ L ◦ I is (xα, y(1)α, . . . , y(k)α) →
(xα, y(1)α, . . . , y(k−1)α, Lα(xα, 0, y(1)α, 0, . . . , y(k)α, 0)), thus it is a local diffeomor-

phism. In fact I∗ ◦ L ◦ I is a diffeomorphism, since it sends the fibre T̃ kM ′
x in the

fibre T̃ k∗M ′
x for every x ∈ T k−1M ′ and L is a diffeomorphism when it is restricted

to the fiber, thus I∗|W ′ is also a diffeomorphism. 2

Taking into account of the local form of the Legendre∗ transformation and of the
local coordinates, it follows that the points of the submanifold W ′ have as coordinates
(xα, 0, y(1)α, 0, . . . , y(k−1)α, pα, Qā(xα, y(1)α, . . . ,

y(k−1)α, pα)) in T̃ k∗M , where

∂H

∂pᾱ
(xα, 0, y(1)α, 0, . . . , y(k−1)α, pα, Qᾱ(xα, y(1)α, . . . , y(k−1)α, pα)) +

sᾱ(xα, 0, y(1)α, 0, . . . , y(k−1)α) = 0. (6)

Differentiating this equation with respect to pα, we get:

∂2H

∂pα∂pᾱ
+

∂2H

∂pβ̄∂pᾱ
·
∂Qβ̄

∂pα
= 0.

Denoting by hαβ =
∂2H

∂pα∂pβ
, we suppose that the matrix

h̃ = (hᾱβ̄)ᾱ,β̄=m′+1,m is non-degenerate; if this condition holds, we say that the
Hamiltonian is non-degenerate along the affine subbundle E′ (notice that this con-
dition automatically holds when the vertical hessian of the Hamiltonian defines a
positive quadratic form). Considering the inverse h̃−1 = (h̃ᾱβ̄)ᾱ,β̄=m′+1,m, it follows
that

∂Qβ̄

∂pα
= −hαᾱh̃ᾱβ̄ . (7)

Denote Ī = I∗−1
|W ′ : T̃ k∗M ′ → W ′ ⊂ T̃ k∗M . Using the above constructions, we

obtain the following result.

Theorem 2.1 The map Ī is a section of I∗ which depends only on H and s. If the
section s is adapted, then the map Ī depend only on the hamiltonian H.
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We define H ′ = H ◦ Ī : T̃ k∗M ′ → IR and we consider the vertical Hessian of H ′:(
∂2H ′

∂pα∂pβ
(xγ , y(1)γ , . . . , y(k−1)γ , pγ)

)
α,β=1,m′

in every point of T̃ k∗M ′.

Proposition 2.2 a) If the Hamiltonian H is non-degenerate along the submanifold
W ′, then H ′ is a regular Lagrangian.

b) If the Hamiltonian H has a positive definite metric along the submanifold W ′,
then H ′ is a regular Lagrangian with a positive defined metric.

Proof. We use local coordinates. We have H ′(xα, y(1)α, . . . , y(k−1)α, pα)
= H(xα, 0, y(1)α, 0, . . . , y(k−1)α, 0, pα, Qᾱ(xβ , y(1)β , . . . , y(k−1)β , pβ)). Using formula
(6) it follows that:

∂H ′

∂pα
(xβ , y(1)β , . . . , y(k−1)β , pβ)=

∂H

∂pα
(xβ , 0, y(1)β , 0, . . . , y(k−1)β , 0, pβ , Qβ̄(xγ , y(1)γ , . . . , y(k−1)γ , pγ)).

Differentiating this formula with respect to pβ , then using formula (7), we get:

∂2H ′

∂pα∂pβ
=

∂2H

∂pα∂pβ
+

∂Qᾱ

∂pβ

∂2H

∂pᾱ∂pα
= hαβ − hᾱαh̃ᾱβ̄hββ̄ .

We use now the following Lemma of linear algebra.

Lemma 2.1 Let A be a symmetric matrix of dimension p, B a symmetric and non-
degenerated matrix of dimension q and C a p × q matrix such that the symmetric

matrix
(

A C
Ct B

)
of dimension p + q is non-degenerate. Denote

(
A C

Ct B

)−1

=(
X Z
Zt Y

)
, where X, Y and Z have the same dimensions as the matrices A, B and

C respectively.
Then the matrix A − C · B−1Ct is invertible and its inverse is X.

Turning back to the proof of the Proposition 2.2, consider the matrix h = (hij) =(
hαβ hᾱβ

hαβ̄ hᾱβ̄

)
. Using the Lemma 2.1, it follows that the matrix

(
hαβ − hᾱαh̃ᾱβ̄hββ̄

)
α,β=1,m′

is invertible and its inverse is (hαβ), where
(

hαβ hᾱβ

hαβ̄ hᾱβ̄

)
=(

hαβ hᾱβ

hαβ̄ hᾱβ̄

)−1

. 2
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[16] Miron R., Atanasiu Gh. Compendium on the higher order Lagrange spaces, Ten-
sor, N.S., Vol.53 (1993) 39-57.



136 M. Popescu and P. Popescu

[17] Miron R., Atanasiu Gh., Differential geometry of the k-osculator bundle,
Rev.Roum.Math.Pures Appl., Vol.41, 3-4 (1996), 205-236.

[18] Miron R., Kikuchi S., Sakaguchi T., Subspaces in generalized Hamilton spaces
endowed with h-metrical connections, Mem. Secţ. Ştiinţ. Academiei R.S.R., Ser.
IV, 11, 1 (1988) 55–71.

[19] Miron R., Anastasiei M., The Geometry of Lagrange Spaces: Theory and Appli-
cations, Kluwer Acad. Publ., 1994.

[20] Miron R., Bejancu A., A new method in geometry of Finsler subspaces, An. St.
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