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Abstract

Two cases of invariant submanifolds are considered.

In the first case we get an induced almost complex structure or almost prod-
uct structure, and in the second case we obtain an induced f (3, )-structure on
the invariant submanifold in a f(3, €)-manifold.

We shall give the condition for an invariant submanifold of special f(3,¢)-
manifold to be minimal.
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1 Introduction

Let NP be an p-dimensional C* manifold imbedded differentially as a submanifold
in a m-dimensional C°°-Riemannian manifold M™. Let ¢ be an imbedding map
¢ : NP — M", and ¢.(= B) the Jacobian map of ¢ i.e. B : T(NP) — T(M™).
Denoting by T'(NV, M) the set of all vectors tangent to the submanifold ¢(NP). Tt is
known that B : T(NP) — T(N, M) is an isomorphism [2].

Take the C*° vector fields X and Y which are tangential to ¢(AN?). Let X and Y’
be the local C*° extension of X and Y respectively.

The restriction of [X,Y] to ¢(NP), i.e. [X,Y][4,) is determined independently
of the choise of these local extensions X and Y. We can write

[X,Y] =[X, Y]|gr). Since B is an isomorphism, we have

[BX,BY]| = B[X,Y] for all X,Y € T(NP).
We define the induced metric § on N as follows

G(X,Y) = g(BX,BY) for all X,Y € T(NP), (1)
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where ¢ is the Riemannian metric in M™. It can be easily verified that g is Riemanian
metric in NP,

We assume that M™ is the manifold with structure tensor f(3,¢) of rank r <
n. 1=cf? and m = I —ef? (¢ = £1) are complementary projection operators
corresponding to which L and M are complementary distributions of dimension r
and n — r respectively.

We have, as in [3]

fP=cf, (e==%1), l=1f = f, fm=mf =0, (2)
fAl=1f2=¢l, f>’m=mf?=0.

2 Invariant submanifolds of f(3,¢)-structure mani-
fold

Definition 2.1 N7 is said to be an invariant submanifold of M™ if the tangent space
Tu(¢(NP)) of ¢(NP) is invariant by the linear mapping f at each point u of ¢p(NP)
so that for each X € T(N?) we have f(BX) = BX’, for some X’ € T(NP).

If we define a (1, 1) tensor field f in NP by f(X) = X', as in [4], then we have
f(BX) = B(fX). (1)

In the first case we assume that distribution M is never tangential to ¢(N7P) i.e.
no vector field of type mX, X € T(¢(N?)) is tangential to ¢p(NP). It shows that
any vector field of type mX is independent of any vector field of the form BX,
X € T(NP).

Applying f to (2.1) we have

fA(BX) = B(f*X). (2)

Now we shall show that vector fields of type BX belong to the distribution L in
this case. If we suppose that m(BX) # 0, then m(BX) = (Irammy — ef?)(BX) =

BX — ¢f?(BX) = B(X — a€f2X)7 which contrary to our assumption shows that

m(BX) is tangential to ¢(N?). Therefore m(BX) = 0.
Now since 1 = ef?, from (2.2) and (1.2) we have B(f2X) f2(BX) =el(BX) =
e(Irpny — m)(BX) =e¢BX — Em(BX) B(f?X) = B(X), which in view of B being
an isomorphism gives f2(X) = eX.

The tensor field f in AP defines an induced almost complex structure or almost
product structure according as € = —1 or +1.

Theorem 2.1 An invariant submanifold NP in a f(3,¢)-structure manifold M™ such
that distribution M 1is never tangential to ¢(NP) is an almost complex manifold or
almost product manifold according as e = —1 or +1.

Let M™ a Riemannian metric g satisfying

9(X,Y) = g(f X, fY) + g(mX,Y). (3)
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Theorem 2.2 Let NP be an invariant submanifold imbedded in an f(3,¢)-structure
manifold M™ such that the distribution M is never tangential to ¢(NP). If g denotes
a Riemannian metric on M™ given by (2.3) than the induced metric g and NP defined
by (1.1) is Hermitian.

Proof.  §(FX,fV) = g(BfX,BfY) = g(fBX, fBY) =
= g(BX,BY) — g(mBX,BY) = g(BX,BY) = §(X,Y).

In the second case we assume that the distribution M is always tangential to
d(NP). Tt follows, therefore, that m(BX) = BX?, where X € T(NP) for some
X0 e T(NP).

Let us define a (1,1) tensor field m in /7 such that mX = X°. ) )

We can write m(BX) = B(X). Define a (1,1) tensor field 1 in N? by 1 = 2.

Then (B1X) = B(ef?X) = eB(f?X) = ¢f?(BX) = I(BX). Thus we have
B(1X) = 1(BX).

Theorem 2.3 The (1,1) tensor fields 1 and t in NP satisfy the following
1+ 1m=[pnr), Im=ml=0, ?=1 m’=m. (4)
Proof. We have 14+ m = I pry) 1o (1+ m)(BX) = BX. Thus we have
B(X) 4+ B(mX) = BX, B1+m)(X) = BX.

Therefore 1 + m = I in view of the fact that B is an isomorphism.

Similary we can prove other relations.

The relations (2.4) show that 1 and m are complementary projection operators
in N? given by 1 = ¢f2 and m = I — ¢f2. Moreover, from (2.1) we get B(f3X) =
fS(BX) = €f(BX) = eB(fX). Thus we have f3 = ¢f which shows that in this case
f defines an f(3, €)-structure on N’ which we call induced f(3, ¢)-structure. Further,
from (1.1), (2.1) and (2.3) we have

§(fX. JY) +§(mX,Y) = g(B(fX), B(fY)) + g(BmX, BY) =
9(f(BX), f(BY)) + g(mBX,BY) = g(BX,BY) = §(X,Y), i

9(X,Y) = g(fX, [Y)+g(mX,Y). (5)
Theorem 2.4 In invariant submanifold NP imbedded in an f(3,¢)-structure mani-
fold M™ such that the distribution M is always tangential to ¢(NP) there exists an

induced f(3,€)—5tructure manifold which admits a similar Riemanian metric g satis-

fying (2.5)

Theorem 2.5 The Nijenhuis tensor N and N of M" and NP respectively are related,
as in [1], by the following relation N(BY ,BY) = BN(X,Y).

We can easily verify the following relations

N(1X N(1BX,1BY) N(1

17) = , N(1BX,1BY)
BN (m X ,mY) = N(mBX, mBY) { N(

X, 1Y) =
N(X,Y)=mN(BX,BY).
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If L and Z\:l denote the complementary distributions corresponding to the projection
operators 1 and m in AP, then in view of the integrability conditions of the f(3,¢)-
structure we can state the following theorems.

Theorem 2.6 If L is integrable in M™ then L is also integrable in NP. If M is
integrable in M™ then M is also integrable in N'P.

Theorem 2.7 If the f(3,¢)-structure is integrable in M™ then the induced f(3,¢)-
structure is also integrable.

We call such a manifold a normal f(3, e)-manifold.

3 Invariant submanifolds of special
f(3,e)-structure

In the special case let dimM™ =n be 2m + 1, rankf = 2m, e = —1, then M" is a
contact Riemannian manifold with the structure tensor (f,€,n,g). Then they satisfy:

P=—T+ne& fE=0, () =0, g(fX, [Y) = g(X,Y) =n(X)n(Y), (1)

g(fX,Y)=dn(X,Y), n(X)=g(X) (2)

for any vector fields X and Y on M™.
M™ is called a K-contact Riemannian manifold if ¢ is a Killing vector field. Then
we have

vazva R(ng)ng_n(X)gv (3)

where V x denotes the Riemannian connection and R the Riemannian curvature ten-
sor of M"™. Moreover, if we have R(X,&)Y = n(Y)X — g(X,Y)&, then M™ is called
a normal contact metric manifold (Sasakian).

In this special case a submanifold N?(p = 2] 4+ 1) of M" is said to be invariant
if (i) € is tangent to N? everywhere on N?, (ii) f(BX) is tangent to N? for any
tangent vector X to AV’P. An invariant submanfold A’? has the induced structure
tensors ( 1,61, g). Let Vx denote the Riemannian connection on A’? determined by
the induced metric § and R denote the Riemannian curvature tensor of N?. Then
Gauss-Weingarten formula is given by

VX}N/Z@XY—I—NB(X,Y), X,Y/ET(NP), (4)
VN =—-An(X)+DgN, X eT(NP), N € T(NP)+,
where D is the operator of covariant differentiation with respect to the linear connec-
tion induced in the normal bundle. Both A and B are called the second fundamental

form on NP and satisfy g(B(X,Y),N) = §(AxX,Y). The mean curvature vector H
is defined as H = %TrB, T'rB being defined by TrB = > B(é;, €;) for an orthonormal

frame {¢;}. If H = 0, then N? is said to be minimal.
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Lemma 3.1 Let NP be an invariant submanifold of a K -contact Riemannian man-
ifold M™.  Then its second fundamental form B satisfies B(X,§) = 0 for any
X e T(NP).

Proof. Since § is tangent to NP everywhere on N7, we see V 3§ = @Xg—i- B(X,§)
on N'?. On the other hand, by (3.3), V¢ is tangent to NP for any X € T(NP)
hence we have B(X, &) = 0 for any X € T(N?).

For the second fundamental form B of an invariant submanifold NP of a K-contact
Riemannian manifold M", we define its covariant derivative V ¢ B, by

X7Y Z e (Np).

Then by (3.4), we obtain

R(X,Y)Z = R(X, ?)Z_ Ap (Y/ 7 (X )+AB(X Z)(Y)

(VeB)(V.2) - (VyB)(X.2), X.V.Z €T\, ©)

Theorem 3.1 Any invariant submanifold NP with induced structure tensors of a
K-contact Riemannian manifold M™ is also K-contact.

Proof. From Lemma 3.1, € is a Killing vector field on N7, and by Lemma 3.1 and
(3.6), we have

R(X,§)€ = R(X,§E+ (VB)(,E) — (VeB)(X,§), X eT(N?).

On the other hand, from Lemma 3.1 (3 1) and (3.5), we get (Vg B)(£,€) =

(Ve B)(X,€) = 0. Therefore, R(X,£) = R(X,€)6 = X —ij(X )f, which shows that
N p is a K-contact Riemannian manifold.

Lemma 3.2 Let Nf be an invariant submanifold of a K-contact Riemannian mani-
fold M™. Then R(X,€)Y is tangent to NP if and only if fB(X,Y) = B(X, fY) for
any X,Y € T(NP).

Proof.  Since § is a Killing vector field on N? and M", we have R(X,g)f/ =
(Vg f)Y and R(X,§)Y = (V¢ f)Y for any X,Y € T(NP). On the other hand, we
have

Ve(fY)=V(fY)+BX,fY) = (Vg /)Y + f(VgY) + < fY),
Vi (fY )= (Vg /)Y + f(VzY) + fB(X,Y),

hence we get R(X,g)}} — R(X,E)Y/ = fB(X,Y) - B(X, f}}) q.e.d.

Theorem 3.2 An invariant submanifold N2+ of a K -contact Riemannian manifold

M2 s minimal if R(X,€)Y is tangent to NP for any vector fields X and Y on
NP,
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Proof. By Lemma 3.1 and Lemma 3.2, we see
Let us take a f-basis Vi,.... Vi, V..., v, fN) for T,;(N'?). Then the mean curvature
p=20+1

H = Z [B(fVi, fVi) + B(Vi, V;)] + B(£, ) vanishes. q.e.d.

i=1
Corollary 3.1 An invariant submanifold imbedded in a normal contact metric man-
ifold is minimal [4].

By Lemma 3.1, (3.3) and (3.5), B(X,fY) = —(V3B)(X,€) for any X,Y €
T(NP), it follows that

B(fX,[Y) = =(VyB)(V.€) = (Vi Ve B)(€,) — B(FX, fY),

therefore B(fX, fY) = 1(ViVy 7 B)(£,€). From this we obtain B(X,Y) =
%(VﬁgVﬁ,B)(é,f), for any X,Y € T(NP). Let (Vi,...,Vaiq1) be a f-basis for

T,(NP) such that Viy; = fvi, Va1 = €. Then the mean curvature H on NP is
written by
1 241

H=232 (Vi VyB)(E.£). (7)
i=1
Hence we get

Theorem 3.3 Let NP be an invariant submanifold of a K -contact Riemannian man-
ifold M™. Then NP is minimal if and only if H in (3.7) vanishes.
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