DENSITY OF LIPSCHITZ FUNCTIONS

THEMISTOKLES ANDREOU

Abstract

In this note some results are presented on approximation of continuous function on metric spaces by Lipschitz functions.

AMS Subject Classification: 46J10

Key words: Banach spaces, Lipschitz functions, Approximation of functions, Density of Lipschitz functions.

1 Introduction

Let S be a metric space, and E a (real or complex) normed linear space. Let BC(S, E) be the space of bounded continuous functions $f: S \to E$, supplied with the uniform norm. Now if S be a locally compact metric space, let $C_{00}(S, E)$ be the subset of BC(S, E), consisting of all f in BC(S, E) that vanish in a neighborhood of infinity, i.e. for some compact subset L of S, (depending on f), f(s) = 0 for all $s \in S - L$. Let $C_0(S, E)$ be the subset of BC(S, E), consisting of all $f \in BC(S, E)$ that vanish at infinity, i.e. for every positive number ε , there is a compact subset K of S (depending on f and ε), such that $||f(s)|| < \varepsilon$ for all $s \in S - K$, and let $Lip_{00}(S, E)$ be the subset of $C_{00}(S, E)$ consisting of Lipschitz functions.

All these sets $C_{00}(S, E)$, $C_0(S, E)$ and $Lip_{00}(S, E)$, supplied with the uniform norm, are normed linear spaces and the following inclusions hold:

$$Lip_{00}(S, E) \subset C_{00}(S, E) \subset C_0(S, E)$$
.

When E = K, i.e. the space of real or complex numbers, we write BC(S), $C_{00}(S)$, $C_0(S)$, $C_0(S)$ and $Lip_{00}(S)$ respectively.

The following result is proved in [2].

Lemma 1 Let S be a compact metric space and $\{A_i : 1 \leq i \leq n\}$ a finite open covering of S. Then there exists a Lipschitz - partition of unity of S, subordinated to $\{A_i : 1 \leq i \leq n\}$.

In the present note, following [1] and [2], we give a few results on the density of Lipschitz function.

Editor Gr.Tsagas Proceedings of The Conference of Applied Differential Geometry - General Relativity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 2001, 1-4 ©2004 Balkan Society of Geometers, Geometry Balkan Press

2 Lipschitz functions

Let S be a locally compact metric space and E a normed linear space.

Theorem 2 $Lip_{00}(S, E)$ is dense in $C_0(S, E)$.

Proof. Let h be in $C_{00}(S, E)$; then there is a compact set L, such that h(s) = 0 for all $s \in S - L$. By [2], given $\varepsilon > 0$, there is a Lipschitz function $H : L \to E$, i.e. a function H in $Lip_{00}(S, E)$, such that

$$\|h - H\| < \frac{\varepsilon}{2}.\tag{1}$$

Now let f be in $C_0(S, E)$. By definition for a given positive ε , the set

$$K = \left\{ s \in S : \|f(s)\| \ge \frac{\varepsilon}{2} \right\}$$

is a compact subset of S. It is well known that there is a function $g \in C_{00}(S)$, such that g(s) = 1 for every $s \in K$ and $0 \le g \le 1$ on S.

Taking the function $h = gf \in C_{00}(S, E)$ we have

$$||f(s) - H(s)|| \le ||f(s) - h(s)|| + ||h(s) - H(s)||$$

But

$$||f(s) - h(s)|| = ||f(s) - g(s)f(s)|| = ||f(s)|| |1 - g(s)|$$

For $s \in K$ we have |1 - g(s)| = 0, and for $s \in S - K$, $||f(s)|| < \frac{\varepsilon}{2}$ and $|1 - g(s)| \le 1$ so that, for every $s \in S$:

$$\|f(s) - h(s)\| < \frac{\varepsilon}{2}.$$
(2)

From (1) and (2) follows that for every $s \in S$

$$||f(s) - H(s)|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and $H \in Lip_{00}(S, E)$, i.e. $Lip_{00}(S, E)$ is dense in $C_0(S, E)$.

3 Products in metric spaces

For i = 1, 2, ..., n, let S_i be a metric space and g_i be a K-valued function on S_i . Let $S = S_1 \times S_2 \times ... \times S_n$ be the Cartesian product of all S_i . The product $g = g_1 \times g_2 \times ... \times g_n$ is a K-valued function on S defined by $g(s) = g_1(s_1)g_2(s_2)...g_n(s_n)$ for every $s = (s_1, s_2, ..., s_n)$, where $s_i \in S_i$, i = 1, 2, ..., n.

We set $\underset{i=1}{\overset{n}{\times}} V_i$ for the set of all functions of the form $g_1 \times g_2 \times \ldots \times g_n$, where g_i is in the function space V_i , i = 1, 2, ..., n.

It is well known that S is a (locally) compact metric space when S_i , i = 1, 2, ..., n are (locally) compact metric spaces.

We prove the following

Theorem 3 Let S_i , i = 1, 2, ..., n be compact metric spaces and $S = S_1 \times S_2 \times ... \times S_n$. The set of all linear combinations of functions of the form $g_1 \times g_2 \times ... \times g_n$, where g_i be a K-valued Lipschitz function on S_i , i = 1, 2, ..., n, is dense in BC(S).

Proof. It is sufficient to establish the theorem for n = 2. The general case then follows by induction.

Let f be in BC(S), where $S = S_1 \times S_2$ is compact. Given $\varepsilon > 0$, there is an open covering $\{A_i : 1 \le i \le p\}$ of S_1 and an open covering $\{B_j : 1 \le j \le q\}$ of S_2 such that $s_1, s_2 \in A_i$ and $t_1, t_2 \in B_j$ imply

$$\|f(s_1, t_1) - f(s_2, t_2)\| < \varepsilon.$$
(3)

Let a_{ij} be a value of f in $A_i \times B_j$, $1 \le i \le p$, $1 \le j \le q$ and let $\{g_{1i} : 1 \le i \le p\}$ be a Lipschitz-partition of unity of S_1 , subordinated to $\{A_i : 1 \le i \le p\}$, and $\{g_{2j} : 1 \le j \le q\}$ be a Lipschitz-partition of unity of S_2 , subordinated to $\{B_j : 1 \le j \le q\}$.

Define the function $F:S\to K$ by

$$F(s,t) = \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} g_{1i}(s) g_{2j}(t), \quad s \in S_1 \quad t \in S_2;$$

then

$$\begin{split} \|f(s,t) - F(s,t)\| &= \left\| f(s,t) - \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} g_{1i}(s) g_{2j}(t) \right\| = \\ &= \left\| \left(\sum_{i=1}^{p} \sum_{j=1}^{q} f(s,t) g_{1i}(s) g_{2j}(t) \right) - \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} g_{1i}(s) g_{2j}(t) \right\| = \\ &= \left\| \sum_{i=1}^{p} \sum_{j=1}^{q} g_{1i}(s) g_{2j}(t) (f(s,t) - a_{ij}) \right\| \le \\ &\le \sum_{i=1}^{p} \sum_{j=1}^{q} g_{1i}(s) g_{2j}(t) \|f(s,t) - a_{ij}\| < \varepsilon \end{split}$$

This follows from the fact that

$$\sum_{i=1}^{p} \sum_{j=1}^{q} g_{1i}(s)g_{2j}(t) = \sum_{i=1}^{p} g_{1i}(s)\sum_{j=1}^{q} g_{2j}(t) = 1$$

and from

$$g_{1i}(s)g_{2j}(t) ||f(s,t) - a_{ij}|| < \varepsilon.$$

This estimate is verified by noticing, from (3), that $||f(s,t) - a_{ij}|| < \varepsilon$ if $(s,t) \in A_i \times B_j$, and that $g_{1i}(s)g_{2j}(t) = 0$ if $(s,t) \notin A_i \times B_j$.

The proof is completed by noticing that $g_{1i} \times g_{2j}$ is a product of K-valued Lipschitz functions $g_{1i}: S_1 \to K$ and $g_{2j}: S_2 \to K$.

4 Products in locally compact metric spaces

When S_i , i = 1, 2, ..., n are locally compact metric spaces, we have the following result.

Theorem 4 Let S_i , i = 1, 2, ..., n be locally compact metric spaces and $S = S_1 \times S_2 \times ... \times S_n$. The set of all linear combinations of functions of the form $g_1 \times g_2 \times ... \times g_n$, where $g_i \in Lip_{00}(S_i)$, is dense in $C_0(S)$.

Proof. We first show that the set of all linear combinations of functions of the form $g_1 \times g_2 \times \ldots \times g_n$, $g_i \in Lip_{00}(S_i)$ is dense in $Lip_{00}(S)$.

Let f be in $Lip_{00}(S)$ and $L \subset S$ a compact set such that f(s) = 0 for all $s \in S - L$. Since f is continuous on L, by theorem 3, can be arbitrarily uniformly approximated by a finite sum of functions of the form $g_1 \times g_2 \times \ldots \times g_n$, where $g_i : L_i \to K$ is a Lipschitz function on L_i , and L_i is the projection of L on S_i ; hence g_i is in $Lip_{00}(S_i)$; i.e. the set of all linear combinations of functions in $\bigotimes_{i=1}^{n} Lip_{00}(S_i)$ is dense in $Lip_{00}(S)$.

By theorem 2, $Lip_{00}(S)$ is dense in $C_0(S)$, hence the set of all linear combinations of functions in $\underset{i=1}{\overset{n}{\times}} Lip_{00}(S_i)$ is dense in $C_0(S)$.

References

- J. Dieudonné, Sur les fonctions continues numeriques défini dans un produit de deux espaces compacts, Comptes Rendus Acad. Sc., Paris, t. 205(1937) 593-595.
- G. Georganopoulos, Sur l'approximation des fonctions continues par de fonctions lipschitziennes, Comptes Rendus Acad. Sc., Paris, 264(1967) 319-321.

Author's address:

Themistokles Andreou Technological Education Institute Terma Magnisias 62124 Serres, GREECE E-mail: tandr@teiser.gr