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Abstract

By applyng Tssalis statistics to each model of thermal black body radiation
we show how gigh frequency modifications to the Planck distributions may arise.
We also demonstrate that Tsallis statistics does not affect the equation of state(
P = ε

3

)
for thermal radiation and how a high frequency cut-off the modified

Planck distribution occurs naturally because of non-extensive statistics.

AMS Subject Classification: 53Z05.
Key words: Planck Spectra, Tsallis Statistics, frequency, spectrum.

1 Introduction

In the past decades there has been a flowering of interest in modifications to con-
ventional statistics brought about by studies in multi-fractals. All of the well-known
results of both classical statistical mechanics and quantum statistical mechanics are
based on an apriori equi-probability in phase base (classical statistics) and the exclu-
sion principle or Bose-Fermi symmetry in quantum statistics. However, when non-
Markovian memory effects and long range interactions are present, Tsallis demon-
strated that the idea of a multi-fractal structure is a better representation of the
statistical system are distributed. Here self-similary and scale invariance replace the
principles applied in previous applications of statistical mechanics. Subsequent appli-
cations of Tsallis statistics to the solar plasma, a generalized H theorem, the fluctua-
tion dissipation theorem, the Langevin and Fokker-Planckequation, the equipartition
theorem, the Ising chain, paramagnetic systems, and the Planck radiation law, have
lead to the usual treatments and provisional tests for the new statistics. Limits on the
non-extensive statistics parameter can be set in cosmology by finding out how the new
statistics effects the primordial helium abundance. In previous notes we have applied
the new statistics to a two level system, to the two state paramagnetic system, and
the Debye theory of specific heats at low temperatures. In the following motivated
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by discussions of [18, 19] we study how the Planck radiation law is altered in the new
statistics using a model that allows the non-extensive parameter to depend on the
frequency of the oscillators. For this particular model we show that the equation of
state

(
ε
3

)
is unaltered in cosmology and secondly high frequency corrections to the

Planck radiation law lead to a high frequency cut-off for the energy density versus
frequency. We show that any experimental measurements of such a high frequency
cut-off at given T can lead to a numerical estimate of the non-extensive parameter q.

2 Corrections to the Planck Spectra and Tsallis Sta-
tistics

We begin by writing the entropy of N particles within the context of Tsallis statistics
as [24]

S =
kN

q − 1

(∑
Pi −

∑
P q

i

)
,

(
Pi =

Ni

N

)
(2.1)

q=non-extensive statistics parameters.
Varyng equation (2.1) with respect to Ni using the constraints∑

Ni = const.,∑
Niεi = const.,

(with Lagrange multipliers, µ
τ , −1

τ ), we find

Ni = Ne−1 e
µ0−εi

τ + αNe−1

[
e

µ0−εi
τ

2
+

µ1

τ
e

µ0−εi
τ − e

µ0−εi
τ

(µ0 − εi)
2

2τ2

]
. (2.2)

In (2.2) we use α = q − 1, µ = µ0 + αµ1 + α2µ2 and calculated the perturbations
in N(q − 1). Also from [24]:

µ1 = −τ

2
+

1
2τ

∑
e

µ0−εi
τ (µ0 − εi)

2∑
e

µ0−εi
τ

− e
µ0−εi

τ
(µ0 − εi)

2

2τ2
. (2.3)

Substituting (2.3) into (2.2) gives

Ni = Ne−1 e
µ0−εi

τ +

αNe−1

[
1

2τ2
e

µ0−εi
τ

∑
e

µ0−εi
τ (µ0 − εi)

2∑
e

µ0−εi
τ

− e
µ0−εi

τ
(µ0 − εi)

2

2τ2

]
. (2.4)

Now for the average energy per particle we have

〈ε〉 =
∑

Niεi

N
=

∑
Ne−1εie

µ0−εi
τ +

αe−1

[
1

2τ2

∑
εie

µ0−εi
τ

∑
(µ0−εi)

2e
µ0−εi

τ∑
e

µ0−εi
τ

− 1
2τ2

∑
εi (µ0 − εi)

2
e

µ0−εi
τ

]
.(2.5)
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Also from [24]

e
µ0
τ =

e∑
e

µi
τ

. (2.6)

Using equations (2.6) and (2.5) we now evaluate the average energy of oscillator of
frequency ω (which represents the average energy in a mode ω of the electromagnetic
field). From (2.6) we calculate exactly(

εn =
(

n +
1
2

)
nhω

)
e

µ0
τ =

e

e
−hω
2τ

∑
e

−nhω
τ

= ee
hω
2τ

(
1 − e

−hω
τ

)
. (2.7)

or

µ0 = τ +
hω

2
+ τ lne

(
1 − e

−hω
τ

)
.

Using (2.5) we may evaluate the average energy of an oscillator (after inserting
e

µ0
τ from (2.6) as

ε =
∑

εiNi

N
=

∑
εie

−εi
τ∑

i e
−εi

τ

+

αe
hω
2τ

(
1 − e

−hω
τ

)
·


(∑

εie
−εi

τ

) ∑ (
µ2

0 − 2µ0εi + ε2
i

)
e

−εi
τ

2τ2
∑

i
e
−εi

τ

− (2.8)

1
2τ2

∑ (
µ2

0 − 2µ0εi + ε2
i

)
e

−εi
τ

]
.

Since we have chosen the high frequency domain we may evaluate the sums∑
ε2

i e
−εi

τ and
∑

ε3
i e

−εi
τ by integrating over n. For the sums

∑
ε2

ne
−εn

τ ,
∑

e
−εn

τ

we may evaluate them exactly
(
εn =

(
n + 1

2

)
hω

)
in (2.8) we have (i = n):

∑
ε2

ne
−εn

τ →
∫ (

n +
1
2

)2

(hω)2 e−(n+ 1
2 )hω

τ dn →

(hω)2
∫

x2e
−xhω

τ dx,

(
x = n +

1
2

)
(2.9)

and
∑

ε3
ne

−εn
τ → (hω)3

∫
x2e

−xhω
τ dx.

Using (2.9), the expression
∑

e
−εn

τ = e
hω
2τ

1−e
hω
2τ

and
∑

εne
−εn

τ =
(

hω
2 + hω

e
hω
τ

−−1

)
e
−hω
2τ

1−e
−hω

τ

in (2.8) we find

〈ε〉 =
hω

2
+

hω(
e

hω
τ − − 1

) + αe
hω
2τ

(
1 − e

−hω
τ

)  1
2τ

hω
2 + hω(

e
hω
τ

−−1

) α11−α22

 ,
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where

α11 = −2µ0

hω

2
+

hω(
e

hω
τ − − 1

)
 − e

−hω
2τ

1 − e
−hω

τ

+ (hω)2
∫ ∞

1
2

x2e
−xhω

τ dx,

α22 = − 1
2τ2

µ2
0

hω

2
+

hω(
e

hω
τ − − 1

)
 e

−hω
2τ

1 − e
−hω

τ

−

2µ0 (hω)2
∫ ∞

1
2

x2e
−xhω

τ dx + (hω)3
∫ ∞

1
2

x3e
−xhω

τ dx

)
.

In (2.10) we insert the value of µ0 in (2.7). For the integrals
∫

x2e
−xhω

τ dx,∫
x3e

−xhω
τ dx we have:∫
x2e

−xhω
τ dx = e

−xhω
τ

(
1
8

( τ

hω

)
+

( τ

hω

)2

+
( τ

hω

)3
)

,∫
x3e

−xhω
τ dx = e

−xhω
τ

(
1
8

( τ

hω

)
+

3
4

( τ

hω

)2

+ 3
( τ

hω

)3

+ 6
( τ

hω

)3
)

.(2.11)

In (2.10) we study the high frequency behavior
(

τ
hω >> 1

)
, using the expression

for µ0 in (2.7), also taking the leading correction to (2.10) for hω >> τ, we find

〈ε〉 =
hω

2
+

hω

e
hω
τ − 1

− α
(hω)3

8τ2
+

α

8τ
(hω)2 . (2.12)

In (2.12), if we neglect the vacuum term hω
2 we have

〈ε〉 =
hω

(e
hω
τ − 1)

− 1
8
α

(hω)3

τ2
+

α

8τ
(hω)2 . (2.13)

The equation (2.13) has the curious property that at a certain critical frequency

〈ε〉 = 0, letting hω
τ = x, we for 〈ε〉 = 0,

(
1

(e
hω
τ −1)

=̃e
hω
τ

)

e−x =
1
8
αx2 − αx

8
. (2.14)

Thus the solution to the transcendental equation (2.14) gives

xc = c =
hωc

τ
=

hωc

kT
,

or

ωc =
c (kT )

h
= 2πvc (c = const.) .
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Thus the spectrum will cut-of at ωc. We secondly choose α to be dependent on ω
at a given τ (τ = kT ) , such that

α = 0 for hω
τ = hω

kT < 1,
α = α for hω

τ > 1.
In this case the total energy per unit volume is using (2.13) (neglecting vacuum

energy):

U =
∫

hϑ(
e

hϑ
kT − 1

) (
8πϑ2dϑ

c3

)
+

∫
hϑ(

e
hϑ
kT − 1

) (
8πϑ2dϑ

c3

)
−

α

8k2T 2

∫
(hϑ)3

8πϑ2dϑ

c3
+

α

8kT

∫
(hϑ)2

8πϑ2dϑ

c3
. (2.15)

In (2.15) we have used (2.13) for 〈ε〉 for hϑ
kT > 1. We now change integration

variables to x = hϑ
kT giving

U =

[ (
k
h

)4
h

(
8π
c3

) ∫
x3dx
ex−1 +

(
k
h

)4
h

(
8π
c3

) ∫
x3dx
ex−1

− α
8k2

(
8π
c3

) (
h3

) (
h
k

)6 ∫
x5dx + α

8k

(
8π
c3

) (
h2

) (
h
k

)5 ∫
x4dx

]
T 4. (2.16)

Thus, (2.16) will give a modified Stefan Boltzmann constant with U = kT 4 for
the energy per unit volume. It also leads to P = U

3 and will not alter the evolution
of the scale factor during the radiation era. Of course, we have chose a specific model
α = q − 1 which was

α = 0 for hϑ
kT < 1 (T fixed),

α = α for hϑ
kT > 1.

The unique feature of our discussion is that independent of the model for how α
varies for high v (2.13) holds and leads to a cut-off the Planck spectrum for v > vc.

3 Conclusion

The results above suggest modification to the Planck distribution occur at high v that
would lead to distinct features in thermal radiation that if red-shifted down would
produce a cut-off even in the low temperature phase of the universe. Anomolies due to
heavy neutrino decay and Higgsino decay have previously been suggested to explain
spikes and irregular patterns in the CBR. Also the mixing of the photon with the para-
photon has also been suggested to explain certain features of the CBR not associated
with the primordial density fluctuations generated during inflation. However, the
cut-off predicted by (2.13) tells us that at very high v (small α) the spectra abruptly
to 0. In observations of gamma ray burst anomolies, there is evidence that a high
energy cut-off exists. Whrtever this is the result the dynamics of particle interactions
creating the bursts or anomalous effects in the photons producedis a question that
clearly has no answer at this time. Hovewer, this unanswered question suggests that
radiation in the high frequency region emitted by astrophysical source should be
studied to see if it exhibits any of the spectral features suggested by (2.13) lending
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evidence to a modification of the statistics of photons. Lastly, if α turns out to be
temperature dependent this would lead to modifications of the total energy U (T ) that
would deviate from the T 4 dependence in (2.16) . Such effects would also produce
nonstandard cosmological evolution of the scale factor during the radiation era that
might have an effect on the time scale for transition from the radiation era to the
matter dominated era
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