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Abstrgct

In the framework of Abstract Differential Geometry, especially that dealing
with vector sheaves (as expounded in [8]) and principal sheaves (initiated
by [9]), we show that to a given principal sheaf (P, G, X, ) together with a
representation ¢ : G — GL(n,A), we associate a vector sheaf (£, X,p). If
¢ is compatible with the representations of G and GL(n,.A) into appropriate
sheaves of Lie algebras, as well as with the Maurer-Cartan (or logarithmic)
differentials of the same sheaves of groups, then every connection on P induces
an A-linear connection on £. An example is provided by the principal sheaf
of frames of a vector sheaf.
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0 Introduction

Gauge theories are, roughly speaking, built on principal bundles (P,G, X, 7) and
their connections. This is a consequence of the fact that observations and measure-
ments in physics lead to certain sections of a parametrized group, in general non
abelian. However, Lie groups and principal bundles are quite complicated objects
and one is looking for a reduction of the non-commutative framework to a commu-
tative one, the latter being described by a vector bundle. This can be often achieved
by an appropriate representation of G into a vector space (in this respect we refer
to [1]).

The aim of this note is to examine the analogous situation in the context of Ab-
stract Differential Geomeiry. As a matter of fact, the present author has initiated
a research program devoted to the geometry of principal sheaves (see [9]-[12]) influ-
enced by the geometry of vector sheaves expounded in [8]. These abstractions are
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developed in a completely algebrotopological setting, without any differentiability,
in spite of the wide use of the adjective “differential” accompanying various terms
in order to remind the analogy with the classical geometry of ordinary (smooth)
fiber bundles.

In the present abstract approach we consider a principal sheaf (P,G, X, 7) and
a representation of the form ¢ : G — GL(n,A), where A is a sheaf of unital,
commutative and associative algebras. Thus A" is the vector sheaf in which the
structure sheaf of groups G is represented. We show that such a representation leads
to a vector sheaf (£, X, p) associated with P (Section 2). In the sequel (Section 3),
under some additional assumptions pertaining to the compatibility of ¢ with the
Maurer-Cartan (or logarithmic) differentials of P and GL(n,.A), as well as with the
representations of the latter into certain sheaves of Lie algebras, we prove that the
connections on P (in the sense of [9]) induce A-connections on & (in the sense of
(8]). The converse is not always true unless extra conditions are imposed on ¢. An
example is provided by the principal sheaf of frames of a given vector sheaf (already
studied in [10]), in which case we have the trivial representation of GL(n,.A).

Since the notations and terminology used throughout are not yet standard, the
preliminary Section 1 contains a brief account of the material essentially needed,in
order to make the note as self sufficient as possible, referring for details to the
relevant literature.

1 Preliminaries

1. Our setting is based on a fixed algebraized space (X,.A), where X is a topological
space and A a sheaf (over X) of unital, commutative and associative K-algebras
(K = R,C). For instance, in the classical case of a real smooth manifold X, we
take A = C¥, the sheaf of germs of smooth functions on X. For other examples we
refer to [8, Chapter 10].

To such an algebraized space we also attach a differential triad (A,d,Q'), where
Q! is an A-module (over X) and d : A — Q! a derivation of A; that is, a K-linear
morphism satisfying the Leibniz condition

d(s-t)=s-d()+1t-d(s);

for any (local) sections s,t € A(U) and U C X open. Note that in the previous
formula we have identified a sheaf with the sheaf of germs of its sections, a convenient
fact which will be often used below.

In the classical case, Q' is nothing but the sheaf of germs of smooth 1-formson X.
In the abstract (algebraic-topological) framework we are dealing with, differential
triads always exist by Kahler’s theory of differentials (for details [7], [8, Chapter 11,
Sections 5-6)).

2. Among the objects of prime interest here are principal sheaves, originally con-
sidered (in a different context) by A. Grothendieck [4]. More precisely, a principal
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sheaf over X is described by a quadruple P = (P, G, X, 7), where 7 is the projec-
tion of P on X and G is a sheaf of groups representing simultaneously the structure
sheaf and the structural type of P. This means that there exists a (right) action
P xx G — P, as well as an open covering U = {Uy|a € I} of X together with
local G-equivariant isomorphisms ¢4 : Plu, — Glu, -

However, in order to built up an abstract differential geometry on P, in particular
a gauge theory, we enrich the structure sheaf with two additional properties. In fact,
we assume that G is a sheaf of groups of Lie-type, by which we mean that:

1) There exists a representation (: a continuous morphism of sheaves of groups)
0: L — Aut(L) of G in an A-module of Lie algebras L;

ii) There exists a morphism (of sheaves of sets) § : G — Q! ® 4 £, called
Maurer-Cartan or logarithmic differential, such that '

d(s-t) = o(t™1).0(s) + 8(2),

for every s,t € G(U) and U C X open. The first term of the right-hand side

of the previous formula denotes the result of the natural action of G on Q! ®4 £

induced by g. To be more explicit, for any ¢ € G and any decomposable element
=0Qu€e N @4 L, we set

o(9)w = (1®e(9))w :=0® o(g)(u), (1)

where 1 here denotes the identity of Q'. We extend this action by linearity to
arbitrary elements.
P admits a family of natural (local) sections

Sa :=Yaolly, EP; €l

where 1 is the unit section of G (: 1(x) is the unit of the fiber G;).

As an example we take the sheaf P of germs of smooth sections of a principal
fibre bundle (P, G, X, p). It is a principal sheaf with structure sheaf G the sheaf of
germs of smooth G-valued maps on X. G is of Lie-type with £ being now the sheaf
of germs of smooth maps on X with values in the Lie algebra of G. In this case ¢
and J are obtained by the sheafification of the adjoint representation and the total
(logarithmic) differential respectively. For complete details we refer e.g to [9, 12]

3. A typical abstract example of a sheaf of groups of Lie-type, which will play
an important role in the sequel, is the sheaf GL(n,.A) generated by the complete
presheaf of groups U +— GL(n, A(U)), U running in the topology of X. Hence,

GL(n, A)U) = GL(n, A(U)) = Lisajy (A" v, A™|v). (2)

Now £ = M,(A), the sheaf generated by the complete presheaf of Lie algebras
U M,(A(U)); thus

Mo (A)U) = M, (A(U)) = A™ (U), (3)
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for every open U C X.

There exists an (adjoint) representation Ad : GL(n, A) — Aut(M,(A)) ob-
tained as follows: Let U be any open subset of X. We define the morphism of
sections

Ad” 1 GL(n, A)(U) — Aut((Mn(A)))(U) = Aut(Mn(A)lu, Ma(A)lv)

by requiring that, for any g € GL(n,.A)(U), AdY(g) to be the automorphism gen-
erated by the automorphisms of presheaves

(4dY(9))y : Ma(A)(V) — Ma(A)V): arg-a-g715 a€ Ma(A)(V)

for all open V C U, with the identifications (2) and (3) being applied here.

The corresponding Maurer-Cartan differential 8 : ¢ — Q! ® 4 Mp, (A) is given
by d(a) = - d(a), for every a € M,(A(U)) and U C X open, where d :
QL(n A) — Q1 ®4 Mn(A) 1s the extension of d (of the mltlal differential triad);
i.e., d(a) := (daj;), for every a = (a;;) € GL(n, A(U)).

4. The last fundamental notion immediately needed in the next section is that of
a vector sheaf. This is a sheaf £ = (£, X, p) which is a locally free .A-module (over
X). Hence, there exist an open cover, say, Y = {Uq|a € I} and A|y_-isomorphisms
Yo : A |lu, — €lu,. The complete study of vector sheaves and their geometry is
the content of [8].

2 Associated sheaves

In this section we fix a principal sheaf P = (P, G, X, 7) and a representation of the
form

w:G — GL(n,A).
We shall construct a vector sheaf of rank n, associated with P. To this end, for

each open U C X, we consider the quotient set Q(U) := P(U) x A*(U)/G(U)
determined by the equivalence relation

(s;0) ~(t,0) <= 3NgeGU):t=s-g,b=p(g"!) aq,

for every s,t € P(U) and a,b € A*(U).
Running now U in the topology of X, we obtain a (not necessarily complete)
presheaf U — Q(U) generating the quotient sheaf

E=Pxx A" /G,

with base X and a projection p defined in the obvious way. This is, by definition,
the sheaf associated with P by the representation ¢.

With regard to the previous construction one may consult [3]. We note that the
last quotient can be also constructed, in an equivalent way, by defining (fiber-wise)
on P xx A" an analogous (global) equivalence relation (see [4]).
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Lemma 1 (&, X,p) is a sheaf locally isomorphic to A™ with corresponding cocycle
(Gop) = (¢(90p)) € Z*(U,GL(n, A)), where (gap) € Z*(U,G) is the cocycle of the
principal sheaf P.

Proof. Fix a U, € U. For every open V C U, we define the map

vyt AM(V) 3 f e [salv, f1 € Q(V),

where s € P(U,) is the natural section over U,.

It is immediate that 1§ is 1-1. On the other hand, for a given [o, h] € Q(V), the
section p(g)-h € A"(V), with g determined by o = sq|v g, gives that ¥ (¢(g)-h) =
[o, h], which implies that 1 is onto. In this way we obtain a morphism {¢{ }vcu.,
between the presheaves V +— A™(V') and V — Q(V), generating an isomorphism (of
sheaves of sets) ¥, : A" |y, — &|v.. This shows the first claim of the statement.

By definition, Gop = ¥ ' o5, where now both the isomorphisms are restricted
on appropriate sheaves over Uyp := U, NUp (for simplicity we omit explicit expres-
sions like ¥q|u, ,). Hence, Gqp is generated by (¢5)~ 1o 11,-{3,, for all open V C Uyg.
As a result, for every h € A"(V), we check that

(%) " ouf)(h) = (¥¢) ([sslv, k) = ¢(gaslv) - h.

Using the identification (2), we obtain (¥&)~! 0 %9 = ¢(gaslv). We prove the
second claim by taking all open V' C U,p. 0

Theorem 1 £ = (€, X, p) is a vector sheaf (of rank n).

Proof. Each isomorphism (of sheaves of sets) ¥4 : A®|y, — €|v, induces (fiber-
wise) on &|y, the operations

La : €lu, xu, €lu, — Elu, ; Mo : A% v, xu, Elu, — Elv.,
respectively given by
Ta(u,v) = u+v = Yo (Y3l (u) + ¥3'(v), ¥3'(v))

Oo(a-u)=a-u:=ve(a-v7(w)),

-~

for every u,v € £&; and a € A; with z € U,.

Since Lo = ¥q 0 L 0 (Ya,¥e) and Il = ¥y o I 0 (Yo, ¥a), where T and 1T are
the respective (continuous) operations of the A-module A™, appropriately restricted
over Uy, it follows that X, and II, are also continuous morphisms giving on &|y,
the structure of an A|y,-module such that 1, is an A|y,-linear isomorphism. This
determines the desired local structure of £.

The previous local operations globalize to corresponding continuous operations
on & since £, = Zg and II, = Il on the overlappings. Indeed, for any (u,v) €
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Elvas XU, s €lu, s, using the identification (2) and the previous Lemma, we have
that

To(uw,v) = (YaoGap)(¥5' (u)+¥5'(v)
= (Yoo ¥y )(u) + (Yao¥5")(u)
= va(va'(u) +9¥7'(v) = Za(y,v)

and similarly for the multiplications. Therefore, £ becomes an A-module. 0O

For the sake of completeness, we examine the relationship between the (global)
sections of £ and certain morphisms corresponding to the classical tensorial maps.
In fact, a morphism (of sheaves of sets) f : P — A" is said to be tensorial if

f(s-9)=¢(g7") - f(s); (s,9) € P(U) x G(U),

for every open U C X. Clearly, the product of the right-hand side is well defined
by the obvious action of GL(n,.A) on the left of A”. As a result, we prove

Theorem 2 Tensorial morphisms f : P — A™ correspond bijectively to global
sections of P.

Proof. Let f be a given tensorial morphism. For a U, € U, we set 04 := [sq, f(54)]
(recall that s, 1s the natural section of P over U, and f is now the induced morphism
of sections). Since oq € (P(Uy) x A™(Ua)/ ~) C £(Uq), we obtain a family of local
sections (oo) of £. However, over U,s, we have that

0p = [sa 'gaﬁ,tp(g;};) - f(sa)) = [Sa) f(50)) = 0a;

hence we can define a global section o € £(X) by setting oy, = 0.
Conversely, let o € £(X) be given a section. For an open U C X, we define the
map fy : P(U) — A"™(U) by requiring that

fu()luav, = v(93') - ¥3 ' (elunu.), (4)

for every s € P(U) and with go € G(Uqs) determined by s|lynu, = salunu, * ga-
We check that fy is defined by gluing the restrictions given by (4), for all U, € U.
Indeed, for Us € U, we have the analogous expression

fu()lvev, = w(95") ¥z (olunu,), (5)
with gs € G(Up) satisfying slunu, = sglunu, - 9. Therefore, over U N U, N Us,

9o = gap - 95 - Omitting, for simplicity the explicit mention of the restrictions on
UnNUaNUg of the sections involved, we see that (see also Lemma 1)

0(95") - ¥5'(0) = 9(95" - 9ap) - Gpa - ¥2'(0) = p(92") - ¥3'(0),
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which proves that (4) and (5) coincide on U NU, NUp and fy is well defined by
the gluing process.
Finally, for any s € P(U) and g € G(U), we have that

fu(s - 9)luav. = e(glunv, - 92°) - ¥a ' (elunv.) = ¢(97Dlunv, - fu(s)lunv.,

for every Uy € U; thus fu(s-g) = ¢(97!) - fu(s). Varying U in the topology of
X, we obtain a morphism of presheaves generating a tensorial morphism f and the
proof is now complete. c

Remark 1 In all the previous construction it is not necessary to assume that G is
a sheaf of groups of Lie-type (see Paragraph 1.2), a fact which will be needed in the
study of connections below.

3 Connections on associated sheaves

In this section we consider a principal sheaf P with structure sheaf G of Lie-type.
We recall that (see [9]) a connection on P (or gauge potential, in the terminology
of [1]) is a morphism of sheaves of sets D : P — Q! ® 4 L satisfying

D(s - g) = p(9z5)-D(s) + 8(9) o (6)

for any s € P(U), g € G(U) and U C X open.
A connection D is equivalently determined by the family of local sections

wo 1= D(sa) € (B ®4 L)(Us); a€l,

which are called, following the classical terminology, the local connection forms (or
local gauge potentials) of D. They satisfy the (local) gauge transform

wp = p(975) wWa + 0(gap) (7)

on each Uqyp # 0 (see [9, Theorem 5.4]).

On the other hand (see [8, Vol. II, Chapter 6, Section 3]), an .A-connection on
a vector sheaf £ (of rank n) is a K-linear morphism V : £ — £ ® 4 Q! satisfying
the Letbniz-Koszul condition s

V(a-s)=a-V(s)+s®d(a), (8)

for every a € A(U),s € £(U) and U C X open.
Equivalently (see also [8, Chapter 7]), V is fully determined by corresponding

local connection forms as follows: For each U,, the A(U,)-module £(Uy) admits a
natural basis e := (e{,...,eJ) with

6?(3) = wa(om---alr:---sor); :I:EUG)
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where 0 and 1; (in the i-th entry) are the zero and unit element of the stalk
A: respectively. Evaluating now V on the sections of the basis, we obtain the
expressions

n
V()= ef®65; 1< j >n,
i=1

with 6% € Q(U,), forming thus a matrix (6f}) € Mp(2'(Uq)), for every a € I. In
virtue of (3), we check that

(' @4 Mn(A))(Us) = Q' (Ua) ®aw.) Ma(A(Ua)) = Ma(Q'(UVa));  (9)

hence, (63 ) can be identified with a section 8, € (' ® 4 Mn(A))(Ua). The sections

(6a)acr, are the local connection forms of V and satisfy the analog of (7), namely

65 = Ad(GZ})-00 + 8(Gap), (10)

where (Gqp) 1s the cocycle of £. This is a consequence of (8) and routine, though
tedious, calculations.

We come now to the following basic
Definition 1 A representation ¢ : § — GL(n,A) is said to be of Lie-type if

there exists a morphism of sheaves of Lie algebras % : £ — M, (A) such that the
following conditions hold:

dop=(1@F)0d
poo(g) = Ad(p(9)) 0P g€,
where, for simplicity, we have set 1 = id|Q?.

Clearly, the previous conditions express the compatibility of ¢ and P with the
Maurer-Cartan differentials of G and GL(n,.A), as well as with the their representa-
tions p and .Ad. For a more general situation see also [11, Definition 3.6]. Note that

in the classical case % is the morphism of Lie algebras induced by the differential of
v and the above conditions are always true.

Theorem 3 Let ¢ : G — GL(n, A) be a representation of Lie-type. Then, every
connection on P induces an A-linear connection on the associated vector sheaf £.

Proof. For a given connection D = (w,) on P, we set

b = (1®P)(wa), a€l. (11)
Then, in virtue of (1), Lemma 1 and Definition 1, equality (6) implies that
0 = (1®%)((1® e(9ap))wa + 0(gap))

= (1®Ad(¢(9;5)) 0 B) wa + (70 9)(gap)
(1® Ad(G)) -6a + 3(Gap)
= Ad(G,5).00 + 9(Gap),
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which proves (10) and yields, in turn, an A-linear connection V on £. For the sake
of completeness we outline the construction of V, referring for details to [8, 10].
First, for each a € I, we define the map V* : €|y, — £ @4 Q! |y, by setting

Ze ® 45(.9‘:”)+2:.s;Or 65%:)

for every s = 370, s7 - ef € £(Ua) with s? € A(Ua). Recall that 6, = (67), after
the identifications (9) The compatibility condition (10) implies that V* = V* on
A(Uqp), hence we obtain a global connection V. O

An immediate consequence of (11) is the following

Corollary 1 If p : L — M,(A) is an isomorphism, then the connections of P
are in bijective correspondence with the A-linear connections of its associated vector

sheaf £.

Example Let £ be now a given vector sheaf of rank n with a local structure as in
Paragraph 1.4. We denote by B the basis of topology on X containing all the open
V C X such that V C U,, for some U, € U, and consider the (complete) presheaf
B3V v Isou, (A"|v,€]|v), where the last space is the group of A|y-linear iso-
morphisms. This generates a principal sheaf P(£) = (P(£),GL(n, A), X, 7), called
the sheaf of frames of £.

We recall that (see [10]) there is a natural action of GL(n,.A) on the right of
P(€) induced by the partial actions

Isoa), (A™v,€lv) x GL(n, A)(V) — Isoa), (A" |v,Elv) : (f,g)— f-9g=fog

by employing, of course, the identification (2). The local structure is described as
follows: First we define the local GL(n,.A)-equivariant isomorphism

g 1 PE)NV) — GL(n, A)(V) : f 93 o f,

for every open V' € U,. Hence, varying V in U,, we obtain an equivariant morphism
Qo : P(€)|lu, — GL(n, A)|y, and similarly for all a € I.
The natural sections o, € P(£)(Ua), with respect to U, are now given by

0o = 71 (id|AM(Us)) = Ya. (12)
The previous considerations lead now to
Corollary 2 Every veclor sheaf £ is associated with its principal sheaf of frames

P(E), with respect to the trivial representation of GL(n, A). Hence, the A-linear
conneclions on £ correspond bijectively to the conneclions on P(E).



Associated vector sheaves 213

Proof. By the general construction discussed in Section 2, the vector sheaf, say,
associated with P(£), is generated by the presheaf

B3>V —PE)V)x A®(V)/ ~,

defined by the trivial representation (: ¢ = id|GL(n,.A)). Though we are restricted
on a basis of topology, instead of the whole topology of X, the final result remains
unaffected. Following the proof of [10, Proposition 4.3], for any V € B with V C U,,
we consider the map

Fv :PE)V) x ANV)/ ~ — E(V):[fia] = foua.

We show that Fy is a well defined bijection. Varying V in B, we obtain an isomor-
phism F' : F — £. It is also an isomorphism of A-modules. Indeed, if we denote
by ¥, : A" |y, — F|u, the isomorphisms describing the local structure of F, then
(12) implies that

(FO\IIQ)(G) :F([aa:a])zaaoa:wa(a); GGA"(UO),

with F' and ¢, denoting now the induced morphisms between sections. By the
procedure used repeatedly so far, we see that F = v, o ¥;!. This, along with
the definition of the module operations on F (see Theorem 2), completes the claim
about F. The rest of the proof is clear. m]

Remark 2 In the previous Corollary we recover, by a different approach, some of
the results of [10], notably Proposition 4.3 and Theorem 5.5.
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