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Abstract

This work deals with the constitutive equations for rate type materials as
well as their thermodynamics. We consider both the one-dymensional case and
the three-dymensional case. We introduce the notion of relaxed state in energy
and obtain results on the regular relaxed surfaces. Also, results regarding the
instantaneous response of these materials are given. Finally, we define the notions
of totally relaxed states and of totally relaxed regular surface and obtain results
in these fields. A numerical study is given.
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1 Introduction

1. THE ONE-DIMENSIONAL CASE

Let I C R be an interval.

Definition 1.1. A one dimensional reference configuration for a body ) is an
interval R, finite or infinite, of a real straight line, with a bijective correspondence
between the points of R and those of Q.

A one dimensional movement of the body ) is an application x : R xI =+ R

z=x(X,t), XeR tel, (1.1)

with the feature that for any fized t € I, x(-,t) : R = R is injective and continuous.
e X is designed as the initial co-ordinate (or Lagrangian co-ordinate);
e z is designed as the actual co-ordinate (or Eulerian);
e t is Lime.

Sometimes, it is admitted that y € C'(R x R).
If ye C}(R x R), we will definev: R xI— R,

o(X,t) = #(X,t) := %:-(X,t) (1.2)
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ande: RxI—=R,
ox
80X

designed as the velocity and as the deformation of the (material) particle of the body,
respectively.

We will also introduce the following notations:

o = o(X,t) - stress which is the force per unit of area of the reference configuration;

6 = 6(X,t) - absolute temperature (which is always positive);

e = e(X,t) - internal energy per unit of volume within the referance configuration;

n =n(X,t) - entropy per unit of volume within the reference configuration;

Y =(X,t) = e — b - free energy per unit of volume within the reference configu-
ration; _ _ '

g = q(X,t) - fluz of heat through the unit of area in the reference configuration (it
is oriented after the inner normal);

= g(X,t
g=9(X,t) = 55
b = massforce;
r =r(z,t) - excess of heat received from the exterior;
po = po(X,t) - density in the reference configuration.

e(X,t) == 55 (X, 1) (1.3)

- temperature gradient in the reference configuration;

The equations of conservation of impulse, of energy and the Clausius - Duhem
inequality (see Coleman and Gurtin [5]) (1965)) are of the form:

X2 Xg
d
= (/mpng) /b,oodX e (s Dol (1.4;)
X1 X1
Xa X2
d 2 . e
df,' /PO( 2 E)dX :/($b+T)p0dX+G’(X2,t)$(z\2,t)—‘
X1 X1
_O-(Xlat)i'(Xl:t) - Q(Xﬁat) +Q(Xlat)a (142)
a(T iy (X1,8)  g(Xa,t)
r q 1, q 2st )
—dX = ] >
at (/ ”dX) f PO+ BXn D)~ 6(Xa,0) L)

1 X1

-

If the functions which apear in these relations are smooth enough, they can be
rewrite over a differential form:

do
Po (SL’ = b) = B—i:, (151)
(— + e) po(&b+r) + a%(am') - -E%%, (1.52)

poin 2 &~ o (5). (1.55)
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Definition 1.2. We shall designate as wave throught the body Q0 a smooth curve
dY .
in the plane (X,t), denoted as C = {(Y(t),t)/t € I},U(t) = —d—t——(t) = Y (t), with the

property that upon its crossing some of the magnitudes v,e,0,e,n,v¢,0,q,g or their
derivatives have discontinuities of the first sort', and besides C they are continuous
with respect to (X,1t).

Definition 1.3. We designate as shock wave throughout the body Q a curve
denoted C with the property to render continuous the movement x(X,t) on its crossing,
but with at least one of the magnitudes v,€,0,e,7,v,60,q, g having leaps® and besides C
they are smooth functions of (X,t).

In the case of a body Q through which a shock wave C is propagated, assuming that
b and r are continuous upon crossing €, we get leak equations (see Chen and Gurtin
[9] (1972)):

poU[v] + [a] =, (1.6y)
poU[v—;' +e| + [av] - [q] =1, (1.62)
Uln) 2 - (2] (1.65)

and taking into account (1.2) and (1.3), we get:
Ule] + [v] = 0. (1.64)

The relations (1.6) are called dynamic compatibility relations, while the equality
(1.64) is called kinematic compatibility relations.

Definition 1.4. A smooth curve C with the equation Y = @(t) is called acceler-
ation wave if upon its crossing the movment x(X,t) is of the class C*, the velocity
v(X,t) and deformation €(X,t) as well as 6,0,v, and q are continuous functions,
but their derivatives can assume discontinuities of the first sort, remaining continuous
outside the curve C.

The continuity of the functions v and € lead to the so-called kinematic states of
compatibility that must be satisfied when crossing the curve C:

ov] [ Ov ]
) telax) = i)
O¢ ] [ e ]
[-5?- +c .53{'-- = (1.72),

where ¢ is the slope of the curve C at point (¢(t),t), that is ¢ = c;—‘f(t).

1We say that a function (X,t) 4, J(X,t) has discontinuities of the first sort at the point (X,t) if
for a fixed t, lim f(Y,t) and lim_f(X,t) exist and are finite
YA/X YiX

2If f: A C R — R, we denote by [f](t) := f(t +0) — f(t — 0) - the leap.
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Furthermore, owing to the fact that v and € are partial derivatives of x, we obtain
the compatibilitiy state:
Oe ov
— = |=]. (1.8)
ot X

The dynamic states of compatibility are obtained from the equation (1.6), thus:
these equations are written on either side of the curve €, the limits of the two regions
are calculated at a point on the curve C, then the leap is calculated (that is, the
difference of the two limits). The following relations are thus obtained:

o[5]-[50):
g om g e8] o
w3+ (820 1o

assuming further on that b and r are continuous functions upon crossing of the curve
€.

The leap states (1.7), (1.8), (1.9) thus obtained, form a system of linear and homo-

. 0 0 .
geneous algebraic equations, by the unknowns [6_?] , [—5%} , etc. In order to discuss

the states of existence of the acceleration wave, this system must be completed with
constitutive equations, that is with relations between the magnitudes ¢, 6,0, e,7 and gq.
For exemple, for the elastic-plastic bodies, the treatment of this problem can be found
in Rahmatulin and Demianov [10].

2. THE THREE-DIMENSIONAL CASE

Definition 1.5. A configuration of reference of a body ) is a domain D C R® with
the property that there is a bijection ¢ : = D.

A tree-dimensional movement of the body Q) is an application x : D x I — R3,
z=x(X,t), X€D, tel, (1.10)

where I C R is an interval, with the property that the partial function x(-,t) : D — R3
is injective and continuous, Vt € 1.

The points z = x(X,t) € Ay = x(D,t), t € I are expressed with respect to the
canonical base of the space R® is called actual configuration or configuration at the
moment t of the body (.

As in the one-dimensional case, we admit that the application x € C?(D x I; R?),
except the cases when another smoothness hypotesis is mentioned.

. . Ox .. 0% :
The functions v = z = _c‘i_t'(X’t) and £ = 1 = —t—z(X,t) are designated as the

velocity and, respectively, the acceleration of the material particle.
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Remark 1.1. Ouwing to the invertibility of the function x(-;t) : D = Ay, for any
fized t, the velocity and the acceleration can be also expressed with respect to the actual
co-ordinate of the material point, thus:

- _ d
vlat) = #{x " (2t)t) sialzt) =2~z t),t) = d’:(z:,t). (1.11)
Definition 1.6. The operator
d e) 0
ik e < v,grad, >= a-&v—— +Zv’6x, (1.12)
is called material derivative.
The magnitude
dv;
L(z,t) = Vyvu(z,t) = B, =—(z;1) = (Lij(mat))l-(;‘.j(a (1.13)
J 1<i,5<3 e
15 called the velocity gradient or the deformation velocity, while the magnitude
oxi
F(X,t) = V.x(X,t) = | ===(X,1) = (Fl X, 8))ies 500 (1.14)
9X; 1<i,5<3 =

is called the deformation gradient.

Proposition 1.1. Between the two gradients there is an equality
L(z,t) = F()x F!, (1.15)

where F~1 is the inverse of matriz F', while * designates the usual product of two
matrices.

As regards the forces acting over the body 2, we will take the nonpolar case (see
Truesdell and Toupin [1], sect. 200 or Solomon L. Chap. II), i.e. mass forcess b(X, t)
act on body, as well as contact forces, characterised by the tensor T = T'(X,t) of
Cauchy (see Truesdell and Toupin [1]).

If n is a unitary vector, then t, = T % n is the force acting over the unit of area
perpendicular to n in the current configuration.

The kinetic moment conservation equation leads to the equality

T=T (Ti=Ts), © (1.16)

T* is the transpose of T.
Analogically, the impulse conservation equation and the equation of energy, respec-
tively, according to the actual co-ordinates, assume a differential form

oT;;
pv — div.T = pb (or by components pv; — 6:51 =pbi, 1,7=1,2,3) (1.17)
J
N 0gi _
pé —T x L +diveq = pr (sau pé—T;;Lij + — = pr), (1.18)

81:,
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where p is the actual mass density, e is the internal energy per unit of mass, ¢ is the
heat flux (the quantity of heat input per unit of time, through the actual unit of area,
r = r(z,t) is the excess heat per unit of time and the unit of mass (absorbed by the w
particle of Q and furnished by radiation from the environment).

The mass conservation equation is given by one of the formulas

po=Jp (1.19)
or 9
at

where J = det F' (the determinant of F).
The relation (1.19) is the mass conservation equation according to the reference
configuration), while (1.20) is the mass conservation equation according to the actual

co-ordinates.
If we introduce the Piola-Kirchhoff tensor (see Coleman and Gurtin [5])

+-div.(pv) = 0, - (1.20)

s:p*T*wﬂ”==%S, (1.21)
0

then the equation (1.18) can be written under the form
pé — pSF + divaq = pr. (1.22)

The specific velocity v for entropy prbduction is defined by the equality

Py = pii — [(%’5) -dm(g)], (1.23)

where n = n(X,t) is the entropy per unit of mass, while § = §(X,t) > 0 is absolute
temperature.

The second law of thermodynamics or the Causius-Duhem inequality (see Truesdell
and Toupin [1]) stats that

v 20. (1.24)
By using the relations (1.22), (1.23) and (1.24) we obtain
N PP
'r=n——§+9 SF—quzo, (1.25)
where , y 3\9
g = grad,6, qg= ;qié—g =iz (1.26)

If we introduce free energy by the equality
Y =e—0n, (1.27)
then the inequality (1.25) becomes

0y = —y —nf + SF — (pf)~'qg > 0. (1.28)
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Definition 1.7. A regular (smooth) surface L, given through the implicit equation
o(X,t) =0, X € D, t € I, is called acceleration wave for the body 0 if x €
C!, v,F,6,5,1,n and q are continuous over D x 1\ £ with possible assumptions of
discontinuities of the first sort (leaps®) upon crossing of the surface T.

Definition 1.8. The magnitudes

1 Oy
UX,t) = ———(X,1),
X0 = ~ fgradygy 0t 9 o
() = e (5“" x.1), 22 x.1), 22 (x.1) |
7 |lgradgell \8X, T V78X, T AXs

are called the propagation velocity of the acceleration wave and the direction
of propagation of the acceleration wave, respectively.

The leaps of the derivatives of the thermodynamic magnitudes v, F, 6, S,¢,nand q
cannot be independent. They are subject to three types of states:

- the geometrical-kinetic compatibility states express the fact that the leaps of the

_ v Ov
functions 35X’
v and F are partial derivatives of the same vectorial function x. These compatibility
conditions are:

[%Ef] = UZa;, [BFH] = armn;, 9Fy = —Uaxny,

etc. are connected owing to the continuity of v and to the fact that

BX,v ot a 30)
06 = a6 _ _ 65‘,-3- _ - 85“-3- . a '
[-5-{] = —UU, [EI’J-] =Vvn;, 6t - USIJ, [a—‘x;; = S:an .

The vector a = (a;,a2,a3) is called mechanical amplitude of the wave, v is a scallar
called thermal amplitude of the wave while S;; stands for tension amplitude.

- the dynamic states of compatibility are restrictions owing to the conservation equa-
tions. Since the functions b and r are assumed as continuous, we obtain:

61.),‘ 63,‘:‘ -
‘°°[at]_ ax; | =

9e] _ & [9F; 935 | _
L [Bt] S"[ ot ] + [axj] =1

- the states dictated by the constitutive equations, that is relations that must exist
between F,0,grady6,S,7,¥ and q.

(1.31)

3We will denote by [f(Mp)] the leap of function f at the point Mp, Mp € L, that is [f(Mo)] =
f*(Mo) — f~(Mq), where by fT(Mo) we denoted the limit of function f at the point Mo, when
M — Mg, Mo being located in the sub-domain containing the positive normal at My to £, while by
f~(Mo) we denoted the limit in Mp, when M — Mp from the sub-doman containing the negative
normal to £ at the point Mo.
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i

2 Thermodynamics of Rate Type Constitutive
Equations

1. THE ONE-DIMENSIONAL CASE

Definition 2.1. We will say that the thermodynamic states s as the time t of a
material particle of the body €, which has the X co-ordinate in the reference configu-
ration, is known if for any (X,t) € D x I, the magnitudes £,0,g,0,%,n,k are known
and we will denote:

s = (g,60,9,0,9,7,k), (2.1)

where g
k= —. 22
P (2.2)

Obviously, s can be interpreted as a point in R” whose co-ordinates depend on X
and t.

Definition 2.2. Let f : [a,b] — R™ be a function. The function f is called riglated if
at each pointt €la, b[ one can find within R™ the lateral limits f7(t) := f(t+0), f~(¢) :=
f(t—0) and f*(a) = f(a+0), f~(b) = f(b—0).

The set of riglated functions shall be denoted by R°.

If f € R° and if one can find within R™ the limits

= _ f+
a0 = i f(t)t ﬁfto (o) sy i f(f)t ufto (o) vy o,
&) = f+() (&) = =)

S o ——
fa(e) = lim ==—"—=, f,(b) := lim ———

that f belongs to the class R*.

and if fi, f} € R°, we will say

The set of continuous functions that have as lateral derivatives riglated functions
will be denoted by C°, so C% = C°N R!.

Definition 2.3. We call thermodynamic process of a duration Ts > 0 of the mate-
rial partial w € Q a function s : [0, T] — R, s(t) = (e(¢),6(t), g(t); o(t), (), n(t), k(t)),
of class C°'.

The application 7 = (g,0,9) : [0,T,] = R3 will be called a trajectory of duration T,
of the process s.

We can have trajectories of duration T > T5.

Definition 2.4. We will say that a material particle w of a body (! assumes a
rate type behaviour if there is a domain A C R" and the continuous functions
ai,bi,ci,d;i + A — R,i = 1,4 with the property that for any process s € C°! starting

from the state s € A, there is a duration Ts > 0 in a manner that:

¥ = a1(s)é + az(s)8 + az(s)g + aa(s),
o = by(s)é + ba(s)0 + b3(s)g + by(s),
1=c1(8)€ + cz(s)9_+ c3(s)g + ca(s),
k =dy(s)é + do(s)8 + ds () + da(s),

(2.3)
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are satisfied for any t € [0, T;), with the ezception of a set at most numerable of points
from [0, T).

We will say that the body ) has a rate type behaviour if any of its particles of
a body has rate type behaviour

In other words, a particle of a body has a rate type behaviour if by knowing its
state at the moment (time) t and its increments (¢,6, g) we are able to determine its
increments (o, 1,7, k) by means of the functions a;, b;, ¢;,d;, i = 1,4, that describe the
material properties.

One can see that a trajectory 7(t) = (e(t),0(t),g(t)), t € [0,T-] and the initial
states o(0) = g9,%(0) = vo,n(0) = no,k(0) = ko are sufficient to cause the equations
(2.3) to determine a unique thermodynamic process s(t), for t € [0,T5), 0 < Ty < T if
the functions a;, b;, ¢;, d; are good enough. ,

Further on, we assume that the functions a;,b;,c;,d; are given in such manner
that any fixed trajectory and any fixed initial states determine a unique thermody-
namic process. It starts from the initial state so = (eo, b0, 90,00, %0,M0, ko), With
g0 = €(0),80 = 6(0), go = ¢9(0) and is generated by the trajectory 7(t).

Next, we will attempt to determine the restrictions that must be satisfied by the
functions a;, b;, ¢;, d; in a manner to enable Clausius-Duham inequality

0 !

to be fulfilled.

Theorem 2.1. The constitutive equations (2.3) fulfil the inequality (2.4) for any
process starting from a state so € A and having a certain positive duration T if and
only if the relations hold:

poai(s) =0, az(s) = -n, az(s) =0, Vs € A, (2.5)

and

as(s) + kg <0. (2.6)

Proof. (=) We introduce the first equality (2.3) in the relation (2.4) and we select
s € A in an arbitrary fashion but we set it. As €,6, § can be arbitrarily selected, one
can find a process of C°!, of a positive duration, to satisfy (2.3). Then, the relations
(2.5) and (2.6) are immediately inferred.

(&) Conversely, if the functions a; are selected in a manner to satisfy the relations
(2.5) and (2.6) the inequality (2.4) will take place. Jet, from the inequality (2.6) one
cannot infer that as(s) < 0 and kg < 0. Nevertheless we have

aq(e,0,0;0,¢,n,k) = 0siaq(e,0,9;0,7,0) = 0. (2.7)
O

Definition 2.5. A state so = (€0,00, 90 = 0;00,%0, 70, ko) is called relaxed (with
respect to energy) if

(14(80) = 0. . (28)
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4]

Let S0 = (603&0190 = 0;001 151)017?01 kO) and 81 = (81!91: g1 = 0; 01,’#3'1,7?1;1?1) be two
states. We will say that sp is attracted by s; in energy, if

€0 = €1, O = 6, (2.9)

and if the admissible process s(t) that starts from state so and is generated by the
trajectory
7(t) = (€0,00,90 =0), Vt > 0 (2.10)

satisfies the equality
Y(s(t) = ¥, - (2.11)
for any t > t, > 0 (t, being either finite or infinite).

Theorem 2.2. Let sq be attracted by sy in energy. Then

Y1 < o (2.12)

Proof. By using (2.7); and (2.3);, and by taking into account the fact that (1) =
0, Vt >0 (2.12) will result. O

Definition 2.6. A set ¥ C R is called regular energy relaxation surface if it
satisfies the properties:

(Ry) Vs = (e,0,9 = 0;0,¢%,n,k) € D is a relazed state;

(Rz) between the projection D of the-domain A in the plane (,0) and the surface
L there is a one-to-one correspondence sg : D = ¥ defined by

s = sr(e,0) := (e,6,9 = o; or(e,0),¥r(e,0),nr(c.0), kr(€,0)); (2.13)
(R3) ﬁ)R € Cl:
The direction u = (u;,us) € R? (with ||u|| = 1) is called relaxation direction in

so € X if there is an admissible process s(t) such that
5(0) = 5o, 7(0) = (,0) (2.14)
for a t sufficiently low, s(t) is attracted (in energy) to sr(e(t),0(t)).

Theorem 2.3. Let ¥ be a regular relazation surface and u the relazation direction.
Then

- < VY¥r(€o,00) — fr(0,60),u >< Q. (2.15)

If any direction is a relazation direction, then

V¥Rr(€0,00) = fr(€0,60), (2.16)

where

vwﬁ(gﬂseﬂ) = (%(60190): a_a%bé{{"(eo!a‘:))) 3

(2.17)
Frilengfile= (%aﬂ(so,ee), —TJR(Eo,Gﬂ))
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Proof. Let s(t) be the admissible process with the properties required by the propo-
sition containing (2.14). Let

Yr((t),0(t)) — ¥ (€0, o)
t

I = v¥r(eo, bo)w—fr (€0, bo)w = lim —fr(€0,60) ((0), 6(0)).
Since s is relaxed, (2.3);,(2.5):2 and (2.13) will yield
fr(€o,60)(£(0),6(0)) = 4(0).

Then

I = lim
t\.0

and as Yr(eo,00) = ¥(0), we wil have

ot CRE®,6(0) = (2
t\0 t ’

(wn(e(t), 6(t)) — Yrleo,00)  W(t) - w(O))
t t

Since s(t) attracted sg(e(t),6(t)), then the theorem 2.2 yields
Yr(e(t),6(t)) < ¥(t)

so we will have I < 0. O

3 Instantaneuous Response for Rate Type
Materials

1. THE ONE-DIMENSIONAL CASE
Let us have the system of differential forms

s ﬂiade — nd8,
0
do = by (s)de + ba(s)df + bs(s)dyg, (3.1)

dn = c¢1(s)de + ca2(s)df + c3(s)dg,
dk = d,(s)de + da(s)d8 + ds(s)dg.

Definition 3.1. The system of differential forms (3.1) is called completely in-
tegrable? at a point s € A if there is Uy, C R® x A a neighbourhood of (¢o, 60, 9o, $0)
and the functions ¥;,071,n1,kr : Usy = R,

¢' = 1!”(6:619: 30)1 o = 01(53919130)1 n= 77(519,9, 30)1 k= k}(E,G,Q,So), (32)

that verify the system (3.1) for any curve (E(t),@(t),g(t)) of class C® with t > 0 and
sufficiently close to zero, €(0) = €0,6(0) = 6o, 9(0) = go. Furthermore v (eq, 6o, go, S0) =
1!’010!(50: 90)901 30) —— 601 77!(50: 60: gU: SO) = nﬂ: kl(EC’: 60:901 SO) — k(]-

‘see Hartman [8]
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Definition 3.2. We wiil say that the material possesses an instantaneous re-
sponse to the state s € A if the system of differential forms (3.1) is completely
integrable.

We will say that material possesses an instantaneous response at A if it possesses
an instantaneous response starting from any state sp € A.

Theorem 3.1. If the functions b;,ci,d;, 1 = 1,3 are of class C! on A, then the
required and sufficient condition for the material of rate type behaviour to posses an
instantaneous response to any state so € A is that the following equalities be fulfilled:

Oy , Oy, Bbg L 3c1 L 0o ac2' dea

(Oby b, 0b, ab; ab; _'8b2 by b, b, b,
55 T hgy Mgy tagy Yl = g thg gl ragl gl
dacl+bacl— des 4 o0 o g 00 0o, -szﬂr%-i-ca gl 01
36 " 9 "oy "% TRk T B 1 os 3 oy Yok
ody ,, ody  0di Odi  0dy 0y ‘ody Oy 5553 + 4.0
(30 " %80 "ay T Pep T®eE T Be T tas oy T 15k
(3.5)
ad, +d38d1:8d3+b3 +c1 ody . By
ok De C’f ok’ (3.6)
54, L g0 _0dy 58, 6d3 , 4005 —
dg ' ok _ 98 ' 8o ”&p 2Bk

For proof, see Hartman [8], Chap. VI, part L.

The equalities (3.3),> tell us that in the case the material is endowed with an
instantaneous response, the increases of tension and entropy are not dependent on the
temperaturte gradient increases, while the equalities (3.4) show us that if d3 # 0, then
by, b2, ¢1,¢2 must or must not depens on g and k at the same time. Also, from (3.4)
and (3.6) it can be inferred that if d3 = 0, then by, b2, ¢1,c2 are not depend on g.

Proposition 3.1. If the conditions of Theorem 3.1 are satisfied, then the following
equalities will take place:

( lb - 1}:’)1(51619:30)1

a
a:gf(ssgagsso)290_1%{(619:9530): n
0
n=ni(e,0,9,5) = ——5?1(6,9,9,80),
301 62'4!}[
¢ bl(Eagag:af:"lbf:nI:kf) 8_'(83919380) = 90?(8,6,'@,80), (3?)
9oy Yy

52(5,9;9,0&’1&},7}'!:}51) (5,9:9:30) PO_(S:Q;Q:SO);
a0 32966

0 0
(.0, 9,01, 91,11, k1) = F-(e,8,9,50) = - g;g; (€09, 50),

62(519,930131,[)!,7?!,&1) —
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The proof is obvious.

Under the conditions of theorem 3.1, the Jacobian of the application

(003 %1770! kO) - (UI(E, 9:9; so)s 11’!(5,9, g, 30): nf(eset g, 30)! kj(E, 9& g, 30))

is not zero for any (¢, 6, g) sufficiently close to (0,60, go) since for € = £9,8 = 6,9 = go)
this Jacobian is equal to 1.

We denote by By the three-dimensional domain containing the point (g9, 8o, go) for
which the functions o, v, ns, by are defined and the above mentioned Jacobian differs
from zero.

Proposition 3.2. If the material with a rate type behaviour possesses an instanta-
neous response and the conditions of theorem 3.1 are satisfied, then for any state so € A
and any trajectory 7 = (¢€,6,9) : [0,T] = R®, 7 € R® such that 7(0) = (€0, 60, 90) and
7+(0) € Bo, there is a thermodynamic process of duration 7, > 0,s € R} satisfying the
equations

1 g
Y- gcf€+n9=a4(8),

c—-b (3)£ - 62(3)9 = b4(8), (38)
7= c1(8)é = ea(s)6 = ca(s),
k — dl(S)E - dg(s)o = d3(8)g = dq(S),

fort € [0,T,) ezcept a set at mosty numerable of points, and at the discontinuity points,
the equations are satisfied by the lateral limits of the functions and their derivatives.

Proof. We will use the method of constants’ variation (see the case when the ther-
modynamic influence is neglijable). Let’s consider the functions:

w(t) == 'ﬂf(f(t)ao(t)v‘-’o, 80! gOsa':i_/):ﬁs_k);
O'(t) = U}(E(t),e(t),fo,ao,go,&,llb,ﬁ,!:),
T)(t) =1 (E(t)!e(t)i €o, 001 9o, 61 ’1{% ﬁ! k_)! -
k(t) ™= k!(E(t)! 9(t),g(t),eo,90,go, g, 1/’:771 k)'l

(3.9)

verifying the equations (3.8) without the terms a4, by, ¢4, dy (that is the homogeneous
system corresponding to the system (3.8)) and for &,,17, k being constant. Then, we
will consider @,,1, k as functions of ¢t and we will determine them so that equations
(3.8) be verified when there is a straight member (i.e. we determine a particular
solution to the non homogeneous system (3.8)). Those solutions will be determined as
functions of class C°'. They are solutions for the next system and initial ronditions to
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it
Yoy O0Yr - 3 3¢r 0Yr - ; 51,5'1

gao gl,b0¢+a +aak "‘a4(56g,g}- ﬂ’]rnfsk):
gy - or JI ay = |
gaoo-_i-gwow-i-aa n+gk k = bs(e,0, 9,01, %101, ki),
32;64—3”;1‘3-*_ 3?:;77“"a;:;k—04(6,9,9,01,11):,11;,};‘-),
g Ok;. 0 ak‘,_ dky » (3.10)

; T+
6600+3¢0¢+ 317 Bkok d4(599,ﬂra¢!,ﬂfsk)
0'(0) =0r (E+ (0)1 6+ (0)3 30)1

P(0) = ¢1(e%(0),6%(0), s0),

n(0) = n1(e*(0),6%(0), s0),

| k(0) = k1(e7(0),67%(0), g% (0), s0).

As 7%(0) € By, the matrix of the coefficients of functions &, 7, 7:) has a deter-
minant different from zero, so there is a unique solution of class C% of this Cauchy
problem over an interval [0,7]. with0 < T, < T. O

2. RATE TYPE CONSTITUTIVE EQUATIONS FOR THE THREE-DIMENSIONAL CASE

Definition 3.3. We will say that the thermodynamic state s of a particle w € Q

is known at a moment t if the functions F,Q,d,g,n,w,k = ,q, whose physical

pof
significance is given by §1.
We will write )
s = (F;G,staﬂs':bak) €8, (311)

where § is the space of all posible thermodynamic states (see (1.14), (1.21), (1.25),
(1.27)).

To shorten the writing process, we introduce the notations
1 ==
Y= (Fa 9)1 f= (gss _n) (312)
and

U=L(R%R? xR.

Also, let us consider the functions:

01,3318—-)0, a228—>R3, a3:8—}]R,
By :8 = L(U,U), B,:8 - L(R3,U), ; (3.13)
Q:1:8 = L(U,RY), Qs:8— L(R®,R®), Qs:8— RS,

that we admit as smooth as is necessary to make when proceeding with bperations.

Definition 3.4. We call thermodynamic process for a particle w € Q a function
5:[0,T,] — 8.

We call process trajectory a curve 7 = (Y,9) : [0,Ts) - U x R® C 8,7(t) =
(Y(t),9(t)), t€[0,T7), T > T, > 0.
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Any point (Y, g) € V can by associated to smooth trajectory (Y,9):[0,T7] 2 U x
R?, (Y(2),9(t)) € V,Vt € [0,T;] so that (¥(0),9(0)) = (Yo, g0) si (V(2),(2) = (u,0),
where (u,v) is an arbitrary vector of U x R3.

By writing the equation (3.18); at the moment ¢, we will have:

< VY?J;(Yag:,SU) - j?(Y,g,SQ),’U. >+ < VQ(Y!Q:SO)av >= 01 V(’U.,'U) €U x ]R3

and that will yield:
{ nga(ya g9,80) = 01
Vy¥(Y,g,80) = f(Y, g, 50)-
From the relation (3.20); it can be inferred that the function 1 is independent of

g, and from (3.20), it follows that also the function f is independent of g.
Using an analogue reasoning, from the relations (3.18); 3 we can get:

{ Bos) = Bata
Bi1(Y,g,50) = B:i(Y, g, f

(3.20)

1, k) =0,

4 |
g ,k) (3 )
and

{ QQ(Y:Q:SO) = Q?(Ya g,f,?j},%) = VyI}(Y,g,So), (322)

Ql(yagasﬂ) = Ql (Yag:f:w: k) = vgk(}f:.g: SO)

If in the relation (3.21); we make (Y, g) = (Y5, 90), by taking into account (3.17),
we get

Bs(s,) = 0. - (3.23)

Having in view that sg was arbitrarily selected in 8, it follows that for any materials
with instantaneous response, the equality (3.23) takes place throughout all 8.

Also, from (3.21), we can notice that B; does not depend on g since it is determined
along the hypersurface of the instantaneous response by the function \"%»7,5(3”, s50), and
also from(3.21),, by derivation with respect to g and by taking into account (3.17) and
(322)2 for (Y,g) = (Yo,gg),

Vg¢Bi(so) + {ViB1(s0)}H{V4Q2(s0)} =0, (3.24)

will result as an equality valid for any sg. From (3.24) it can be inferred that B, is not
dependent on g if and only if the second term of the left member of the equality (3.24)
is zero.

The fact that the material possesses or does not possesse an instantaneous response
can be described by conditions laid direcly on the coefficients of equation (3.18).

To simplify the description, we will introduce the following notations:

v f By B &
Z:(g), W=1| v |, D= f 0 (3.25)
k @1 Q2
by which the system is written under the form of a matrix:
W = D(s)* Z, (3.26)

where s = (21, W) € 8.
To characterize the instantaneous response, we will provide the following theorem:
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Theorem 3.2. If the matriz D is of class C' over 8, then a necessary and sufficient
condition for the material to possess an instantaneous response is that

ODy; BDL, BDLJ ODy;
8Z; © Ls oW, D Z W, D (3.27)
For proof, see Hartman [8), Chap. VI, part I.
Remark 3.2. By using the relations (3.27) and (3.23) for k=5, we get
Bi(s) = Bii(s), (3.28)

that is the matriz B; is symmetic.
The same result can be obtained also directly from (3.21) by taking into account that
B, 1is expressed by means of the partial second order derivatives of the function .

4 Totally Relaxed States

Definition 4.1. We will say that a state s* = (Y*,g* = 0,f*,¢",k*) € § is
totally relaxed if

az(s”) =0, Bs(s") =0, Qs3(s*) =0. (4.1)

If we take into account the relations (4.1);) and (3.16), it follows in a relaxed state
in egergy we have:
5(‘13

6(13 i 603 % — AT P iy
W(S )— 0, W aw ( ) 0, ag (S )‘—01 (4-2)

which point out the fact that for a relaxed state in energy, we have

60.3

(s7) =0, G

(s") =0,

8&3
E*=0& —(s"*
T2 (s")

Definition 4.2. A regular surface X, with the equation ¢ = a(Y, f, k), is aregular
surface of total relaxation if:

aS(YO f: (Y f$ )sk):os
(R;) { Bs(Y,0, f,a(Y, f,k), k) = 0, (4.3)
Q3(Y,0, f,a(Y, f,k),k) =0 '
and

ﬂs(Y;U,fﬂb,k) ;é 0

in a neighbourhood of the surface £ for ¢ # a(Y, f,k);
(Ry) there is a continuous function g : R — RY such that

glu) =0 u=0 (4.4)
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in a neighbourhood of the surface ¥ and;

{ a3 — B < —g(¥ —a(y, f,k)) daca ¢ >a(Y,f, k), (4.5)
g —a(Y, f,k)) <as—p  dacd  <a(Y,f, k). :
where

B = Vfa(Y, f-s k)B3(Y’ 0, f: ws k) . Vka(Y, .f: k)Q3(Y: 0, fa ws k)s (46)

(R3) for any set v, a(Y, f,k) = ¥ is a closed surface in U x U x R® and in a
neighbourhood of the surface £, the following relation holds

B, f,4,k) <0 if ¥ #a(Y, f,k). (4.7)

Definition 4.3. We will say that the state so = (Yo,90 = 0, fo, %0, ko) is totally
attracted by the state s, = (Y1,91 =0, f1,¢1, k1) if

Yo=Y, go=01 =0 (4.8)

and if the admissible process s(t) start at sq (that is s(0) = sg) and is generated by the
trajectory

7(t) = 70 = (Yo,90 = 0), pentrut > 0, (4.9)
satisfies the conditions:
U(t) =, f(t) = fr, k(t) = k1, for t 2t (4.10)
wirh t; > 0 (finite or infinite).
Theorem 4.1. Let £ be a regular surface of total relazation, with the equation
Y =a(Y, f,k), and let U be the cylinder with generatices parallel with the azis ¢ passing

throught the surface Lr having the equation ¢, = a(Y, f, k), and with lower faces, and
the upper faces, respectively, contained within the surfaces with the equations:

X_ :T,b"a(Y’f:k) =T— 2+Z1,1)"'(1(Y,f,k) =7+

where v~ and y4 are two numbers in a maner that - < 0 < v4 (see Figure 1).
Furthermore, we will admit that:

i) as, B3, Q3 and A are of class C' over U \ £r and continuous over U;

1
i1) T is Lebesgue integrable over [0,v4+] and over [y-,0].

Then, for any state sp € U\ g there is a unique state s; € Lr by which sq is
totally attracted. If so € Zr N'U then the state so remains there for any t €0, 00[ and
the time t; necessary for the state sy to reach the state s, is finite.
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Fig. 1

Proof. Let’s admit, first, that s € £ N U. Then the system:

LE":AS(YO!O!fr‘;)ak)l w(o) '—"Poa
._f=BS(}/010|f1w1k)! f(0)=f03 (411)
k= Q3(Y0r 0| fi‘é&:k): k(O) = kO

obtained from (3.14), has a unique solution ¥(t) = vy, f(t) = fo,k(t) = ko for any
t > 0. Let’s suppose that there is another solution ¢ = ¥, (t), f = fi(t),k = ki (t) that
verifies the initial conditions ¥, (0) = ¥, f1(0) = fo,k1(0) = ko. Having in view that
hypothesis (R;) of defintion 4.2, with u(t) = ¥, (t) — a(Yo, fi(t), k1 (t)), we obtain:

u(t) < —g(u(t)) dacd u(t) > 0, u(t) > —g(u(t)) dacd u(t) <0, u(0) =0.

Let’s suppose that there is ¢, > 0 in a manner that u(tp) > 0. Then, as u(t) is a
continuous function, there is an interval Jto — €,to + €[, € > 0, with the property that
u(t) > 0,Vt €]ty — €,to + €[, while u(to — &) = 0. But as u(t) < 0 = 0 < u(tp) <
u(t), Vt €]to — €, so it can be inferred that u(tp) = 0. Thus, the new solution
must satisfy the condition ¥, (t) = a(Yo, fi(t), k1(¢)). Taking into account the relation
(Ry), (4.3), we will get ¥ (t) =0, f1(t) = 0,k;(t) = 0 thus the state so remains there,
Vvt €]0, oo|.

Now, we’ll consider the case s € U\ £r. Then, the system (4.11) has the unique so-
lution (f(t),v¥(t),k(t)) with f(0) = fo,%¥(0) = o, k(0) = ko and the solution remains
in U4 UZR, Vt €)0,00[. The existence and uniqueness are ensured by the hypothesis ).
If the solution was not to remain in Uy U Xk that would mean that there is a tg > 0 so
that (Yo, 0, / (to), ¥(to), k(to)) € OU4\Sr and (Yo,0, (), (), k(1)) € Us, Ve € [0,t0].
But, in account the condition (Rz) following that (YO,O, f(to),¥(to), k(to)) cannot be
on the face £ because

U(to)— < Vya(Yo, f(to), k(to)), f(to) > — < Via(Y, f(to), k(to)), k(to) >= as(to) —
B(yo) < —g(¥(to) — a(Yo, f(to), k(o)) <0,

which means that the angle between the tangent to the solution curve and the normal
to I, is greater than 7/2. From the condition (Rj3) it follows that this point can
neither be on the lateral face of U, because, there we have:
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[
(W)
1=

<Vya(Yo, f(to), k(t0)), f(to) > + <Via (Yo, f(to), k(to), k(yo) >=<V sa(Ya, f(to), k(to)),
B3(Y0,0, f(to),¥(to), k(to)) > + <Via(Yo, f(to), k(t0)), @3(Y0,0, f(to), ¥ (o), k(to)) >=
= b(tg) < 0. Now our task is to show that tl_l}{ﬂlO (Y5,0, f(t),1(t), k(t)) exists as a point

on g NU. Having in view the condition (R3), we can write:

{ u(t) < —g(u(?)),

(*) u(t) = ¥(t) — a(Yo, £(2), k(1))

U(O) = Uy = 71’0 - a’(YOS ankO) > 01
which implies tlim u(t) = O and tli}m u(t) = 0. From (3.16)3 and (R; ) we have a3(Ys,0, f,

Y, k) < 0, so from (4.11); it will result that 1 is decreasing and as it is bounded, it
follows that tlim w(t) = 1y with ¢y = tlim a(Yo, (1), k().
— oo —Q

In order to prove that lim f(t) and lim k() do exist, we will first establish that
t—co t—oo

the time necessary for the state so to reach ¥ is finite. Indeed, by using the relations
(#) and the hypothesis it), we get:

Ug 1
%% t1 < ——du < oo.
() e -[0 g(w) "

Therefore, from the uniqueness of the solution, we find:

f(t) == f(tl) — fl:
{ k() = k(ty) =k, 12N
and
¢1 = G(Y[], fls kl)
The case when sg € U_ is dealt with in an analogue manner. O

Remark 4.1. 1° The final state (Yo,gg,fl,gbl,kl) 18 not necessarily determined
by Yo, that is, as a general rule, we don’t have f1 = fr(¥p),41 = Yr(Ys), k1 = kr(Yo),
which means that the material is not necessarily semielastic to effect of Noll (see [2]).

2° If the function g from the relation (Ry) is zero for u < 0 and if a3 = 0, B3 =
0, Q3 =0 for y < a(Y, f,k) and if the material possesses an instantaneous response,
then we obtain, as a particular case, the constitutive equations for the elastc-viscoplastic
materials presented by Perzyna and Wojno in [12] and by Kestin and Rice in [13)].

Y

5 Numerical Examples

19 The constitutive equation o = f(¢) will be deemed to have the form:
e= 21 x(UY0) - 5 )o = (5 +20) o +(0e) 51
=F X 5 =\E ag)|o 0,€), ( g J

where
0, dacd o <oy sau oy <o < op,

X(om) = { 1, d&es o= &4, (5.2)
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With om = om(X,t) = ori‘ar}i“(x’ s), while oy > 0 is the plastic limit at tension and
&

it represent a constant of the material, determinated by standardised experiences (if
o = o, We say that we have a loading, while if ¢ < oy or ¢ < 7,, we have a relief).
The movement (X,t) = u(X,t) is defined by the relation z(X,t) = X +u(X, ).
We will denote by Vi the region (set) of the characteristic plane where the quasi-
linear equation of the hyperbolic type takes effect:

—_— = 2 _—
5z = ¢ Egxm

1d
with c?(g) = —i(X t) (for loading) and we will denote by V, that region (set) where

the movement 1s characterised by the equation:

Bu  ,, 0% dcm 2 8Ew
W_ 0( )aXz (X t) COdX

(for relief) (e, (X,t) = Ié%;'a.xt]e(X,s)).

(X, 1),

The frontier (boundary) separating the two regions, notated V;|Va2, will be desig-
nated as loading-unloading (relief) frontier (boundary). It depends on the initial limit
conditions, but also on the material properties (when tensions begin to decrease for
the ﬁrst time, the Hooke’s law will be applied: ¢ = o7 + E(a — €m) while for loading

f(e).

Smce at the time of starting of the relieving process, the deformation reaches its
relative maximum &,,(C,t), the boundary V;|V, can be defined as the curve of the
specific plane having the property that along it the deformation reaches its maximum
at every point X. In principle, the boundary V;|V; is obtained from the condition that
the solution from V; and from V; be compatible with the limit conditions and with the
continuity condition for ¢,e and u when crossing the boundary.

Once the boundary V;|V; is determinated, the solution for the loading and also for
unloading domain is obtained.

When carrying out a tension experiment (bending or torsion, etc.) a typical dia-
gram is given by Figure 2.

cA M
1
i
1
0'} s Y :
|
0O N QO 8>
Fig. 2

Torsion is represented on the ordinate, while deformation is represented on the
abscissa.
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For small deformations the diagram is virtually linear and the point ¥ marks the
end of of this portion.

If the experiment is carried further on and a continuous loading is applied, for
o > oy we will get, as a general rule, a non-linear diagram o = f(e):

- if f is strictly increasing we will say that the material is cold-hardenable;

- is starting with ¢ = oy over a certain portion of the diagram we have ¢ = gy =
constant, we will say that the material behaves in a perfectly plastic manner.

If, during the unloading experiment over a sufficiently large domain of deformation,
the behaviour of the material can also be modelled using the same non-linear equa.tlon
o = f(€), we say that the material is non-linear elastic.

To conclude, for the loading domains, the non-linear relation o = f(g) will be used,
while for unloading domain, Hooke's relation o = o,, + E(e — gr) will be utilised, so
upon crossing the boundary V;|Vs, the constitutive law will change.

We can also notice that within the domains V5, the characteristics appear as straight
lines, while within the domains V;, the characteristics are, as a general rule, represented
by curves, which rather tedious the problem of numerical solutions; the problem can
be rendered less intricate by using the formula (5.1). Bearing in mind the form (5.1)
of the constitutive equation, the equations of the characteristics, both in V] and in V5,
will be written under the form:

; E "
A =de=12 m, dX—O, (03)
. dX ; ;
(where X = -&t—), while along them we will have
do = +pocdv; de? = ®do; Edef = do. (5.4)
For ¢(o,¢€) of (5.1) let’s admit that:
k(e) . o
bl { +E—.[crﬂf(s)}, for o> f(e) sl e > i (5.5)
0, for o < f(e),

and for the relaxation boundaru (frontier) we’ll take

| oy, if e<ey,
_ N 5.6
1) {'[J’(Eﬂ—eo)u , if e>ey. (5-6)

™

Sometimes, we can use

ay, if e< &y,
fle)=< oy + -g—.:‘ 1/2 (e —ey), if €€ ey,e:l, (5.7)
Bet/e, if £>ey

with
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The coefficient k(¢) > 0 is taken, by a first approximation, as a constant of the
form:

0’ lf E < Ep;
ki, if € € [eo, €],
k(e) = Ko d k2 — ky (e - 52), if € €ler, €], o
€9 —Ex
ko, if &> e,

Where0<k1 <k2, 0<Eo<€1 < &3,

For example, we take g9 = ey, k; = 10°,ey = 0,0001471, &; = 0,0005, &, =
0,004, k; = 108 (see [14]).

The experiment was done for the case of symmetric and longitudinal striking of two
tdentical bars of which one is at rest and the other strikes a speed v = 14,98m/s,D =
2,5cm being the bar diameter, and [ = 10D being its length.

We will assume that the bar for which the calculations are being mode is, at the
initial moment, at rest and not deformed. Thust =0, X € [0,l], 0 =& = v = 0 are the
initial conditions. The end X = [ is assumed as being free and thus X =1, t > 0,0 =0
aree the limit conditions.

At the end X = 0 the bar receives a blow at a moment ¢t = 0 from another identical
bar, moving at the initial speed V. For the second bar, the initial conditions are
i=0; -l X L0, 0=e=0, 0=V,

It is admitted that the striking speed V is transmitted to this bar in a very fast
and continuous way, so we will select a short time initial ¢ € [0,¢,,] (t;, = 0,5us) where
the unvaried increase of the speed at the end of the bar will take place (for example, a

. ; |4 - oy
linear increase), from zero to vmer = —. So the limit conditions are:

2
t
A =0 i -
tm<t<Tc VH = Us,
t>T.: o, =D,

where T, is a calculated magnitude designed as the time of contact (T, € {301, 5; 303;
306, 5; 310, 8}). _

Within the interval t € [t,;,T,] the two bars move together. The speed of the
particles at X = 0 in the two bars being the same. This condition will be applied as
long as ¢(0,t) > 0. The minimum time T, when for the first time ¢(0,t) = 0, is the
contact time. For ¢ > T, the end X = 0 becomes free of tension. Since the initial
conditions prescribe at X = 0,t = 0 distinct values for v this discontinuity will be
propagated within the bar under the form of a shock wave. '

In the case of constitutive laws (5.1). where for ¢ < gy, the former will be linear
o = Fe an elastic compression shock wave will be propagated within the bar with

l
respect with the speed c,. At t = - it is being reflected at the end X = [ and it

0
becomes a tension shock wave (OA). During propagation this tension shock wave will
be gradually absorbed by the plastic compression wave being propagated in the reverse
way (see Figure 3). Let X be the bar section where the tension shock wave (and thus
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the relief wave) will be completely absorbed, that is, this wave will be propagated in
the portion X4 < X <[ of the bar. Hence, on this portion, the straight line

is the front itself of the reflected shock wave.

A
B P
nAt i > A
2At P!
whew S >
Of 1 23 iar t=max x
(mf—n)mc
Fig. 3

So, crossing the front of the shock wave (i.e. of the straight line (%)), o,v and ¢
will assume a leap. In order to calculate this leap, we first calculate the solution of the
problem in the domain beneath the straight line (*). From the equation of the positive

slope characteristics X = ¢(o)t and from dv = ——, we will get

pc(o)

= / 7 dr
o poc(T)’
while from (*) we can obtain the solution from the domain of loading along the straight
line (). Thus, if a constitutive equation of the type

{2 bere o5or 610
with € = 0 being used, we get: %
82 +2
Jb:2pgc§' El__t)y
- (5.11)

2 2 1 2 2
iy il _+[———\/—1/—]- |
*T 38 Po poco 3B " Po "

The solution along the straight line (), but within the unloading domain, is ob-
tained by utilising the leap conditions (6,,62,63) and (64) (§1) where U = —c;. We get
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(see [14]):
( 1
0o =0y = 3 [20y = (pocovs = 0v)],
1
) Vg = Up — ;_Jg_c-c;(g“ — o), (5.12)
E_ %a
Ea —_ E,
\ sf = b

Remark 5.1. The indez”a” designates the values of all magnitudes in the boundary
domain, while the index "b” those of the loading domain.

Within these equalities, it is necessary to know also the value of one of the functions
0a, Vs and € at a point of the straight line (x). Since immediately after reflection at

X =l and at t = t7 = — we have g, = 0, the equalities (5.12) will provide g, v,
e
and €% along () as along 0, # 0s; the calculations are to be made in succesive points
' l
along (x), starting from X = [ and t = —. In this manner, we can also get the point

Co
(noted A) on the straight line (*) where the unloading (relieving) wave is completely
absorbed by the direct plastic waves.

2. The case of shock wave propagation throught a material satisfying a quasi-linear -
constitutive equation of the form

6 = p(0,€)é + Y(o,¢), (5.13)

that can be written in a functional form

o(t) = f(e(t), 7(2)), (5.14)

where 7(t) the history parameter, that is, it depends on the history of the deformation
over [a,b] for a fixed X, while f is being defined by the equation

X e,m) = olste o (5.19)

The equation curve o = f(g,0) of the plane (g,0) is the instantaneous curve with
respect to the natural condition of rest, being defined by the equation

{ %g.(e,o) = p(f(€,0),¢), | (5.16)
f(0,0) = 0.

Thus, the solution o = f(e,0) of the equation (5.16) could stand for the following
three situations:

(i) coincide with the Hooke’s straight line, that is o = Eg;

(i7) be a convex curve;

(7i1) be a concave curve (see Figure 4).
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A
c ¢
N L7
\é,-\ 6
{,\_ﬁf G .':fl(g, 0)
o) 1
G =ogle)
11
Of &, 5,8y, €
Fig. 4

We will consider as posible any of the three situations and we will suppose that for
all those situations there is an interval [0,ey,] where f is linear, ey, is the deformation
corresponding to a certain dynamic limit of non-linearity. Also, in the same figure,
there is a representation of the relaxation curve, ¢ = og(e) (see Figure 4).

In order to describe the propagation of the shock wave, we use the leap relations

poU[v] - [0] =0,
Ule] - [v] =0, (5.17)
o= f(S,O),

where U (e) is the propagation speed of the shock wave, which is variable when f has
its concavity towards o-positive.

1
(For 0 < t < 2us we will take At = 200H whille for 2ps < t < 10us, At will

1
gradually increase to At = Z,us). In this case, OA could be something else than a

straight line (see Figure 3)).
The initial conditionsc = e = v =0fort = 0 and X € [0,!] and the limit conditions

v(0,t) = vg, o(l,t) =0 pentru t >0 (5.18)
and leap conditions (5.17) provide to us, along OA, the equalities
polve = (€0,0) =0, v, ~Ulea) = 0, po? = L0 (5.19)

By using the movement equations

v 1 9o i
—a"t‘ = p_oa_X . (020)
and the compatibility condition 5
v Ot
X = B (5.21)

where we take into account (5,14), we get (along OA)
v 29\ _ 10f or
(E)a“ (ax);‘p—o@;(“” (a—f);
de B (5.22)
%)+ (%), =°
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dv, @ + U Ov )

dt ~ \ ot 0X

fd& B QE U Oe (5.23)
dt — \ ot X

As 7 is continuous upon crossing of the shock wave, then

1.0 ]
§% - oo,

or or :
As (a)b = (ﬁ)b = 0, we will get from (5.24),

Furthermore

(5.24)

9 (car0) (@) = Y(f(€ar0)0),
g} g:' 1 (5.25)
Yot (Z) = -motreat)en)

From (5.22) and (5.23), we will get
N . [O5) o U8 ( O
0xX ), ot),  dt X (5.26)
v\ _ dv, U de ( Oe ) '
ot), dt dt oX

which, together with (5.22); and (5.25) will lead to

dv, dso _ 1 Oe
UG e e + 0= (55) . G
If we use (5.19) in (5.27), we can eliminate v, and get
dU de, 2 Oe
T UG = e 0 + 02 -2 (32) L 629)
where U(g,) is defined by (5.19). For the equation (5.28) we have the initial condition
UG(O) = Yo,
{ €a(0) = o )
with g¢ from
povy = f(€o,0)e0. (5.30).

Remark 5.2. Unlike in the semi-linear case (when U = c) where € along the
shock wave is determinated only by knowing the initial condition €,(0) = &g, here, in
the equation for determining €, we will also introduce its derivative with respect to X
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and in principle, it can be only determined only concurrently with the determination
of the complete solution above the OA curve. Jet, the equation (5.28) contains both
information on the instantaneous response by means of U(e), and information on the
relazation properties of the material, owing to the presence of 1. The function f(e,0)
can by considered, in a preliminary approzimation, as being determined when knowing
two constants of the material (for ezample E and v). Hence, the equation (5.28) can
be used for determining the function ¥ along the curve of instantaneous response of the
material, if we know sufficient ezperimental data along the shock wave for e, and for

o
0X ),
Conclusion If we know &, = £,(t) from (5.19), we get v, = v,(t), and from (5.17)3

we get 0, = 0,(t). As
dX
{ = = clealt)),

dt
X(0)=0

we get the equation of the shock wave OA.

Experimental data (see J. F. Bell [14])

Ex. Tihis Emaz I Vi g Ingress of
no. N/cm? us | m/s | x=1D | reliering
peak | plateau peak plateau |. : : regime
1 7158 5783 | 0,02359 | 0,02248 | 306,5 | 22,46 | 0,0108 4D

2 9284 5763 | 0,02403 | 0,02229 | 303,0 | 22,48 | 0,0107 4,25D
3 | 20999 5738 | 0,02360 | 0,02210 | 301,0 | 22,41 | 0,0101 4,25D

- D is the diameter of the bar;

- € is the deformation at the inflexion point on the time-deformation curve.

The experiments shows that maximum deformation (on the plateau) is constant
over a certain portion along the bar (generally, over a few diameters from the stricken

end) but, approximately over a distance of half a diameter, maximum deformation is
somewhat greater.
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