FIELD OF CONES ON COTANGENT BUNDLE OF SYMPLECTIC MANIFOLDS

Constantin Pătrășcoiu

Abstract

Section 1 defines and studies a natural field of cones on the cotangent bundle. Section 2 analysis natural morphisms between two cotangent bundles.

Mathematics Subject Classification: 53C15

Key words: cotangent bundle, symplectic structure, field of cones, symplectic morphisms

1 Field of cones on the cotangent bundle

A symplectic manifold is a couple (M, ω) , where M is a smooth manifold and ω is a symplectic form, i.e., a nondegenerate closed 2-form on M. If (M, ω) is a symplectic manifold, each pair $(T_x M, \omega_x)$ is a symplectic vector space and the manifold M is necessarily of even dimension.

Let (M, ω) be a symplectic manifold. Using the symplectic tangent space $(T_x M, \omega_x)$, $x \in M$ we define the map

$$h_x: T_x M \longrightarrow T_x^* M, \quad X_x \longrightarrow h_x(X_x) = i_{X_x} \omega_x = \omega_x(X_x).$$

Since ω_x is nondegenerate, this map is an isomorphism between the tangent space T_xM and cotangent space T_x^*M . The map $h:TM\longrightarrow T^*M$, $h/_{T_xM}=h_x$, $\forall x\in M$ is an isomorphism between tangent fiber bundle TM and cotangent fiber bundle T^*M .

Proposition 1. Let N be an n - dimensional smooth manifold, and let (T^*N, π_N, N) be the cotangent bundle of N, where $\pi_N : T^*N \longrightarrow N$ is the natural projection. There is a natural symplectic structure on the 2n -dimensional manifold T^*N .

Proof. Let be $q = (x, \theta) \in T^*N$, where $x = \pi_N(q) \in N$ and $\theta \in T_x^*N$.

Let $T_q \pi_N : T_q(T^*N) \longrightarrow T_x N$ be the tangent map of π_N .

We can define a 1-form λ on manifold T^*N , $\lambda_q(X_q) = \theta(T_q\pi_N(X_q)), \forall X_q \in T_q(T^*N)$. This 1-form is the Liouville form on T^*N . Then $\omega = -d\lambda$ is a symplectic form on T^*N .

If (U, u) is a local coordinate chart on N,

$$u: x \in U \longrightarrow u(x) = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n,$$

Editor Gr. Tsagas Proceedings of the Conference of Applied Differential Geometry - General Relativity and The Workshop of Global Analysis, Differential Geometry and Lie Algebras, 2000, 244-248 © 2002 Balkan Society of Geometers, Geometry Balkan Press.

then on the manifold T^*N we have a local coordinate chart $(T^*U = \pi_N^{-1}(U), u^\#)$, where:

$$u^{\#}: q = (x, \theta) \in T^*U \longrightarrow (x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n) \in \mathbb{R}^{2n},$$

such that
$$u(x) = (x_1, x_2, \dots, x_n)$$
 and $\theta = \sum_{i=1}^n y_i dx_{i/x}$.

In these coordinates the Liuoville form has the expression $\lambda = \sum_{i=1}^{n} y_i dx_i$ and the

symplectic forms
$$\omega = \sum_{i=1}^{n} dx_i \wedge dy_i$$
.

Recall that if V is a real vector space, a subset K of V is a cone if $\forall v \in K$, $s \in \mathbb{R}$, $s \geq 0$ imply $sv \in K$.

If moreover $v \in K$ and $-v \in K$ imply v = 0, then K is called *pointed cone*.

A field of cones in a vector bundle is a map $K: x \in M \longrightarrow K(x) \subset E_x = p^{-1}(x)$ such that the following two condition are satisfied:

i) For each $x \in M$, the set K(x) is a closed convex pointed cone of E_x with interior points;

ii) The sets
$$\bigcup_{x \in M} \operatorname{Int} K(x)$$
 and $\bigcup_{x \in M} (E_x - K(x))$ are open in E .

Proposition 2. Let N be an n - dimensional smooth manifold. There is a field of cones in the vector bundle $(T(T^*N), \pi_{T^*N}, T^*N)$.

Proof. The smooth manifold T^*N has a natural symplectic structure given by the symplectic form $\omega = -d\lambda$.

Let J be an almost complex structure on the manifold T^*N (a section of $End(T(T^*N))$ such as $J^2 = -Id$), tamed by the symplectic form ω , i.e., $\omega(X, JX) > 0, \forall X \in T(T^*N) - \{0\}$. If moreover ω is J-invariant, J is said to be calibrated. The space of almost complex structures on a given symplectic manifold (M, ω) which are tamed (resp. calibrated) by ω is nonempty and contractible (particularly these spaces are connected).

Based on bilinearity of ω and linearity of J, we obtain the bilinearity of the map $g(X,Y) = \omega(X,JY) - \omega(JX,Y), \forall X,Y \in T(T^*N).$

However:

$$\begin{split} g(X,X) &= \omega(X,JX) - \omega(JX,X) = 2\omega(X,JX) > 0, \forall X \in T(T^*N) - \{0\} \\ g(JX,JY) &= \omega(JX,J^2Y) - \omega(J^2X,JY) = \omega(JX,-Y) - \omega(-X,JY) = \\ &= -\omega(JX,Y) + \omega(X,JY) = g(X,Y), \forall X,Y \in T(T^*N) \\ g(Y,X) &= g(JY,JX) = \omega(JY,J^2X) - \omega(J^2Y,JX) = \omega(JY,-X) - \\ &-\omega(-Y,JX) = \omega(X,JY) - \omega(JX,Y) = g(X,Y), \forall X,Y \in T(T^*N). \end{split}$$

Then, g is a J-invariant Riemannian metric on $T(T^*N)$. Let

$$h: X_q \in T(T^*N) \longrightarrow h_q(X_q) = i_{X_q}\omega_q = \omega_q(X_q, .) \in T^*(T^*N), \quad q \in T^*N$$

oe the isomorphism between tangent fiber bundle $T(T^*N)$ and cotangent fiber bundle $T^*(T^*N)$ of symplectic manifold T^*N and ${}^{\lambda}X = h^{-1} \circ {}^{\lambda}$ be a vector field on T^*N (a section of vector bundles $(T(T^*N), \pi_{T^*N}, T^*N)$).

For each $q \in T^*N$ we define a cone:

$$K_{\lambda}(q) = \{Y_q \in T_q(T^*N) / \frac{1}{2} (g({}^{\lambda}X_q, {}^{\lambda}X_q)g(Y_q, Y_q))^{\frac{1}{2}} \le$$

$$\le g(X_q, Y_q) \le (g({}^{\lambda}X_q, {}^{\lambda}X_q)g(Y_q, Y_q))^{\frac{1}{2}} \} \forall Y_q \in K(x), s \in \mathbf{R}, s \ge 0 \Longrightarrow$$

$$\Longrightarrow \frac{1}{2} (g({}^{\lambda}X_q, {}^{\lambda}X_q)g(sY_q, sY_q))^{\frac{1}{2}} \le g({}^{\lambda}X_q, sY_q) \le (g({}^{\lambda}X_q, {}^{\lambda}X_q)g(sY_q, \lambda Y_q))^{\frac{1}{2}}$$

mplies $sY_q \in K_{\lambda}(q)$, then. If $Y_q \in K(q)$ and $-Y_q \in K_{\lambda}(q)$ imply $Y_q = 0$, then $K_{\lambda}(q)$ s pointed cone.

Then, $K_{\lambda}(q)$ is a closed convex pointed cone, with $T_q(T^*M)$ interior points, and the sets $\bigcup_{q \in M} \operatorname{Int} K(q)$ and $\bigcup_{q \in M} (T_q(T^*N) - K(q))$ are open in $T(T^*N)$.

2 Morphisms between two cotangent bundles

Proposition 3. Let P and Q be two manifolds. Any diffeomorphism $\varphi: N \longrightarrow M$ ift to a symplectic diffeomorphism (symplectomorphism) $\phi: T^*N \longrightarrow T^*M$.

Proof. Let (T^*N, π_N, N) , (T^*M, π_M, M) be the cotangent bundles of n-limensional manifolds N resp. M; λ_N , λ_M the corresponding Liuoville 1-forms.

One defines ϕ by the formula: $\phi(q) = (\varphi(x), (T_x \varphi)^{-1*}(\theta))$ for any $q = (x, \theta) \in T^*N$.

Because $(T_x\varphi)^{-1}: T_{\varphi(x)}M \longrightarrow T_xN$, and $\theta \in T_x^*N$, we have $(T_x\varphi)^{-1*}(\theta) \in \Gamma_{\varphi(x)}^*M$, and the map ϕ is well defined. The maps involved in definition of ϕ are diffeomorphisms and consequently ϕ is also a diffeomorphism. Also

$$\varphi^* \lambda_{M/q}(X_q) = \lambda_{M/\varphi(q)}(T_q \varphi(X_q)) = (T_x \varphi)^{-1*}(\theta)(T_{\varphi(q)} \pi_M T_q(X_q)) =$$
$$= \theta(T_q(\phi \circ \pi_M \circ \varphi)(X_q)) = \theta(T_q \pi_N(X_q)) = \lambda_{N/q}(X_q)$$

The diffeomorphism ϕ satisfy the equality $\phi^*\lambda_M = \lambda_N$. Then $\phi^*\omega_M = \omega_N$ and hence ϕ is a symplectomorphism.

Remark. Let (E,p,M) be a regular vector bundle endowed with a field of cones denoted by [(E,p,M);K]. It is not difficult to see that the structures [(E,p,M);K] are the objects of a category. A morphism from [(E,p,M);K] to [(E',p',M');K'] in this category is a morphisms $f:E\longrightarrow E'$ of vector bundles such that $f(K(x))\subset K(\underline{f}(x))$, $\forall x\in M$. (The map $\underline{f}:M\longrightarrow M$ is defined such that the diagram

$$\begin{array}{ccc}
E & \xrightarrow{f} & E \\
p \downarrow & & \downarrow p' & \text{commutes} \\
M & \xrightarrow{f} & M
\end{array}$$

Let N and M be two smooth manifolds, and $\varphi: N \longrightarrow M$ a diffeomorphism. The symplectic diffeomorphism $\phi: T^*N \longrightarrow T^*M$ is the lift of φ defined in Proposition 3. The diagram:

$$T(T^*N) \xrightarrow{T\phi} T(T^*M)$$
 $\pi_{T^*N} \downarrow \qquad \downarrow \pi_{T^*M} \quad \text{commutes. Then } T\phi : T(T^*N) \longrightarrow T(T^*M) \text{ (the } T^*N \xrightarrow{\phi} T^*M$

tangent map of ϕ) is an isomorphism of vector bundles $(T(T^*N), \pi_{T^*N}, T^*N)$ and $(T(T^*M), \pi_{T^*M}, T^*M)$.

Proposition 4. Let ${}^{\lambda_N}X$ be the vector field corresponding to Liuoville form ${}^{\lambda_N}X$ on the manifold T^*N and ${}^{\lambda_M}X$ is the vector field corresponding to Liuoville form ${}^{\lambda_M}X$ on the manifold T^*M . If $\varphi:N\longrightarrow M$ is a diffeomorphism and $\phi:T^*N\longrightarrow T^*M$ is the natural lift of φ defined in Proposition 3, then $T\phi({}^{\lambda_N}X)={}^{\lambda_M}X$.

Proof. Let ω_N and ω_M be the symplectic forms determined by λ_N resp. λ_M on the manifold T^*N resp. T^*M . Then, $\lambda_N X$ and $\lambda_M X$ are the vector fields determined by equalities:

$$i_{\lambda_N X} \omega_N = \omega_N(\lambda_N X, .) = \lambda_N, \quad i_{\lambda_M X} \omega_M = \omega_M(\lambda_M X, .) = \lambda_M.$$

The equality $T\phi(^{\lambda_N}X) = ^{\lambda_M}X$ is equivalent to the equality

$$\omega_M(T\phi(^{\lambda_N}X),.) = \lambda_M.$$

But,

$$\omega_{M}(T\phi({}^{\lambda_{N}}X),.) = \lambda_{M} \iff \phi^{*}(\omega_{M}(T\phi({}^{\lambda_{N}}X),.)) = \phi^{*}(\lambda_{M}) \iff$$

$$[\phi^{*}(\omega_{M}(T\phi({}^{\lambda_{N}}X),.))](Y) = [\phi^{*}(\lambda_{M})](Y), \forall Y \in \chi(T^{*}N) \iff$$

$$\omega_{M}(T\phi({}^{\lambda_{N}}X), T\phi Y) = \lambda_{M}(T\phi Y), \forall Y \in \chi(T^{*}N) \iff (\phi^{*}\omega_{M})({}^{\lambda_{N}}X, Y) =$$

$$= (\phi^{*}\lambda_{M})(Y), \forall Y \in \chi(T^{*}N) \iff \omega_{N}({}^{\lambda_{N}}X, Y) = \lambda_{N}(Y), \forall Y \in \chi(T^{*}N)$$

(because the diffeomorphism ϕ satisfies the equality $\phi^* \lambda_M = \lambda_N$, $\phi^* \omega_M = \omega_N$) $\iff \omega_N(\lambda_N X, .) = \lambda_N Q.E.D.$

If J_N is an almost complex structure on the manifold T^*N , then $J_M = T\phi \circ J \circ (T\phi)^{-1}$ is an almost complex structure on the manifold T^*M .

Remark. Let $\varphi: N \longrightarrow M$ be a diffeomorphism and $\phi: T^*N \longrightarrow T^*M$ be the lift of φ defined in Proposition 3. J_N is an almost complex structure on the manifold T^*N , then $J_M = T\phi \circ J \circ (T\phi)^{-1}$ is the corresponding almost complex structure on the manifold T^*M .

Let K_{λ_N} and K_{λ_M} be the field of cones determined (Proposition 2) using the Riemannian metrics corresponding to natural symplectic forms and almost complex structures J_N and $J_M = T\phi \circ J_N \circ (T\phi)^{-1}$.

By Proposition 4 we have $T\phi(K_{\lambda_N}) = K_{\lambda_M}$ and then, $T\phi$ is an isomorphism of structures $[(T(T^*N), \pi_{T^*N}, T^*N); K_{\lambda_N}]$ and $[(T(T^*M), \pi_{T^*M}, T^*M); K_{\lambda_M}]$.

Let Man(n) be the category of n-dimensional manifolds. The morphisms of this category are diffeomorphisms.

To every manifold $N \in Ob(Man(n))$ and to an almost structure we can associate the structure $[(T(T^*N), \pi_{T^*N}, T^*N); K_{\lambda_N}]$. Similarly, to every diffeomorphism $\varphi: N \longrightarrow M$ we associate the isomorphism $T\phi$ of structures $[(T(T^*N), \pi_{T^*N}, T^*N); K_{\lambda_N}]$ and $[(T(T^*M), \pi_{T^*M}, T^*M); K_{\lambda_M}]$.

References

- 1. Audin, M., Lafontaine, J., Holomorphic Curves in Symplectic Geometry, Birkhauser, 1994.
- 2. Guillemin, V., Lerman, E., Sternberg, S., Simpletic Fibration and Multiplicity Diagrams, Cambridge University Press, 1996.
- 3. Kolar, I., Michor, P. W., Slovak I., Natural Operations in Differential Geometry; Springer-Verlag, Berlin, Heidelberg; 1993.
- 4. Dan I. Papuc, Partial ordering on differentiable manifolds, An. Univ. Timisoara, Seria matematica, vol. XXVI, f.1, 55-73, 1988.
- 5. Dan I. Papuc, On the geometry of a differentiable manifold with a partial ordering, An. Univ. Timisoara, Seria matematica, vol. XXVI, f.2, 39-48, 1988.
- 6. Dan I. Papuc, Field of cones and positive operators on a vector bundle, An. Univ. Timisoara, Seria matematica, vol. XXX, f.1, 39-58, 1992.
- 7. Dan I. Papuc, Field of cones on a tensor bundle, Proceedings of the 24 National Conference of Geometry and Topology, Timisoara, Romania, July 5-9, 1994, vol.II, pp.237-242.
- 8. Dan I. Papuc, The Geometry of a Vector Bundle Endowend with a Cone Field, Proceedings of the third International Workshop on Differential Geometry and Its Applications, Sibiu, september 18-27, 1997, volume 5, pp 314-321.

Universitatea din Craiova Colegiul Universitar Drobeta Turnu Severin