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Abstract

Section 1 defines and studies a natural field of cones on the cotangent bundle.
Section 2 analysis natural morphisms between two cotangent bundles.
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1 TField of cones on the cotangent bundle

A symplectic manifold is a couple (M,w), where M is a smooth manifold and w is a
symplectic form, i.e., a nondegenerate closed 2-form on M. If (M,w) is a symplectic
manifold, each pair (T, M,w.) is a symplectic vector space and the manifold M is
necessarily of even dimension.

Let (M, w) be a symplectic manifold. Using the symplectic tangent space (T, M, w;),
xz € M we define the map

he : TeM — ToM, Xz — ho(Xe) = ix,ws = we(Xz):

Since w, is nondegenerate, this map is an isomorphism between the tangent space
T, M and cotangent space Ty M. Themap h: TM — T*M, h/1.m = hg,Vz € M is
an isomorphism between tangent fiber bundle T M and cotangent fiber bundle T* M.

Proposition 1. Let N be an n - dimensional smooth manifold, and let (T*N
,mn,IN) be the cotangent bundle of N, where myy : T*N — N is the natural projec-
tion. There is a natural symplectic structure on the 2n -dimensional manifold T*N .

Proof. Let be ¢ = (z,0) € T*N, where z = wn(g) € N and § € T N.

Let Tymrn : Ty(T*N) — Tz N be the tangent map of 7.

We can define a 1-form A on manifold T*N , A\ (X,) = 6(Tynn(X,)), VX, €
T¢(T*N). This 1-form is the Liouville form on T*N. Then w = —dX is a symplectic
form on T*N.

If (U, u) is a local coordinate chart on NV,

u:z €U — u(z) = (x1,2,...,%,) € R",
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then on the manifold T*N we have a local coordinate chart (T*U = 73! (U), u#),
where:

u¥ 1qg=(z,0) €ETU — (21,Z2,... yZn,Y1,Y2,--- Yn) € B,

n
such that u(z) = (z,,z2,... ,Z,) and 6= Zy;dx,-,,.

i=1

n
In these coordinates the Liuoville form has the expression A = Z yidz; and the

i=1

symplectic forms w = Z dz; A dy;.
i=1

Recall that if V is a real vector space, a subset K of V isa coneif Vv € K, s € R,

s 2 0imply sv € K.
~ If moreover v € K and —v € K imply v = 0, then K is called pointed cone.

A field of cones in a vector bundle isamap K : 2 € M — K(z) C E; = p~(z)
such that the following two condition are satisfied:

i) For each £ € M, the set K(z) is a closed convex pointed cone of E,; with
interior points;

ii) The sets U IntK(z) and U (Ez — K(z)) are open in E.

zeM z€M
Proposition 2. Leet N be an n - dimensional smooth manifold. There is a field

of cones in the vector bundle (T'(T*N),nr-n,T*N).

Proof. The smooth manifold T*N has a natural symplectic structure given by
the symplectic form w = —dA.

Let J be an almost complex structure on the manifold T* N (a section of End(T'(T*N))
such as J? = —Id), tamed by the symplectic form w, i.e., w(X,JX) > 0,VX €
T(T*N) — {0}.If moreover w is J-invariant, J is said to be calibrated. The space of
almost complex structures on a given symplectic manifold (M,w) which are tamed
(resp. calibrated) by w is nonempty and contractible (particularly these spaces are
connected).

Based on bilinearity of w and linearity of J, we obtain the bilinearity of the map
9(X,Y) =w(X,JY)-w(JX,Y)VX,Y € T(T*N).

However:

9(X, X) = w(X,JX) - w(JX, X) = 2w(X,JX) > 0,YX € T(T*N) - {0}

g(JX,JY) = w(JX,J?Y) -w(J?X,JY) =w(JX,-Y) —w(-X,JY) =
= -w(JX,Y) +w(X,JY) =9(X,Y),VX,Y € T(T*N)
(Y, X) = g(JY,JX) = w(JY, 2 X) - w(J?Y,JX) = w(JY,-X)-
-w(=Y,JX) =w(X,JY) -w(JX,Y)=9(X,Y),VX,Y € T(T°N).

Then, g is a J-invariant Riemannian metric on T'(T*N).
Let

h: X, € T(T*N) — ho(Xg) = ix,wq = we(X,,.) ET*(T*N), g€T*N
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oe the isomorphism between tangent fiber bundle T(7*N) and cotangent fiber bundle
T*(T*N) of symplectic manifold 7N and *X = h~1o ) be a vector field on 7*N (a
section of vector bundles (T{T*N),np-n,T*N) ).

For each ¢ € T*N we define a cone:

Ka(a) = {¥; € T,(T"N)/5(s*X,,* X)a(%, Vo) <

< 9(Xe,Yy) < (901X, Xo)g(Y,,Y,)) 2 }VY, € K(z),s € R,s > 0 =
1 . . : 5 " 1
= 5 (90" X} Xa)g(sYe, s¥0))? < 9P X, 5Y5) < (90X, X)g(sYq, AY,)

‘mplies sY; € Ki(q), then. If Y; € K(q) and --Y; € K)(q) imply ¥, = 0, then K,(q)
s pointed cone. :
Then, K (g) is a closed convex pointed cone, with T,(7"* M) interior points, and
the sets | | IntK(q) and | J (T,(T"N) — K(q)) are open in T(T*N).
geM gEM

>  Morphisms between two cotangent bundles

Proposition 3. Let P and Q be two manifolds. Any diffeomorphism ¢ : N — M
ift to a symplectic diffeomorphism (symplectomorphism) ¢ : T*N — T* M.

Proof. Let ("N ,an,N) , (T*M ,mp, M) be the cotangent bundles of n-
limensional manifolds IV resp. M; Ay, Ay the corresponding Liuvoville 1-forms.

One defines ¢ by the formula: ¢(q) = (p(z), (Tz¢)'*(8)) for any q = (z,0) €
T*N. ,

Because (Tpp)" ! : Mx) M — TN, and 6 € T;N, we have (To¢)"'*(§) €
Fo(zyM, and the map ¢ is well defined. The maps mvolved in definition of ¢ are
11 eomorphlsms and consequently ¢ is also a diffeomorphism. Also

" M7e(Xq) = Aaso) Tqo(Xq)) = (To0) 1 0) (T mm Ty (X)) =

= 0(Ty(¢ 0 7 © 9)(X,)) = B(Tymn(Xq)) = Ansg(Xy)

The diffeomorphism ¢ satisfy the equality ¢*Ay = Ay. Then ¢*wps = wy and
hence ¢ is a symplectomorphism.

Remark. Let (E,p, M) be a regular vector bundle endowed with a field of cones
denoted by [(E,p, M); K] . It is not difficult to see that the structures [(E, p, M); K]
are the objects of a category. A morphism from [(E, p, M); K] to [(E',p',M"); K'] in
chis category is a morphisms f : E — E’ of vector bundles such that f(K(z)) C
K(f(z)) ,YVz € M. (The map f: M — M is defined such that the diagram

E 4 E
pl 4P  commutes).
M ~£> M

Let N and M be two smooth manifolds, and ¢ : N — M a diffeomdrphism. The
symplectic diffeomorphism ¢ : T*N — T*M is the lift of ¢ defined in Proposition
3. The diagram:
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T(T*N) 2% T(T*M)
TN { } mp-p  commutes. Then T¢ : T(T*N) — T(T*M) (the
™N 8% T'M
tangent map of ¢ ) is an isomorphism of vector bundles (T'(T*N),w7-n,T*N) and
(T(T*M), trep,T*M).
Proposition 4. Let *¥ X be the vector field corresponding to Liuoville form Ay
on the manifold T* N and *™ X is the vector field corresponding to Liuoville form )y
on the manifold T*M. If o : N — M 1is a diffeomorphism and ¢ : T*N — T°M s
the natural lift of ¢ defined in Proposition 3, then T¢(*~ X) =*m X
Proof. Let wy and wys be the symplectic forms determined by Ay resp. Apys on
the manifold T*N resp. T*M. Then, *¥ X and *» X are the vector fields determined
by equalities:

Ay xWN = wn(*¥ X,.) = AN, ian xwnm = wp (P X,.) = Ay
The equality T¢(*~ X) =*» X is equivalent to the equality
wrm(Tp(* X),.) = Am.
But,
wr (TP X),.) = Am <= ¢"(wm(To(*M X),.)) = ¢"(Am) =

(6" (WM (To(*¥ X), NIY) = [¢°(Am))(Y),VY € x(T*N) <=
wm(To(* X),ToY) = Am(ToY),VY € x(T°N) <= (¢"wm)?X,Y) =
= (¢"Am)(Y),VY € x(T*N) <= wn(**X,Y) = An(Y),VY € x(T*N)

(because the diffeomorphism ¢ satisfies the equality ¢*Ap=An, ¢*wpy=wn) =
wn(** X,.) = Any Q.E.D.

If Jy is an almost complex structure on the manifold T°N , then Jyy = T¢o Jo
(T'¢)~'is an almost complex structure on the manifold 7* M.

Remark. Let ¢ : N — M be a diffeomorphism and ¢ : T*N — T°M be the
lift of ¢ defined in Proposition 3. Jy is an almost complex structure on the manifold
T*N, then Jyy = Tdo J o (T¢)~! is the corresponding almost complex structure on
the manifold T M.

Let K), and K, be the field of cones determined (Proposition 2) using the
Riemannian metrics corresponding to natural symplectic forms and almost complex
structures Jy and Jy = T'po Jy o (T¢)™L.

By Proposition 4 we have T¢(K,,) = K),, and then, T¢ is an isomorphism of
structures [(T'(T*N),nr-n,T*N); Kxy] and [(T(T*M), wpepm, T*M); Ky,

Let Man(n) be the category of n-dimensional manifolds. The morphisms of this
category are diffeomorphisms.

To every manifold N € Ob(Man(n)) and to an almost structure we can associate
the structure [(T(T*N),wr-~,T*N); K, ). Similarly, to every diffeomorphism ¢ :
N — M we associate the isomorphism T'¢ of structures [(T'(T*N), nr-n,T*N); K1, ]
and ((T(T*M), 7. p, T*M); K]
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