SEMI-SYMMETRIC METRICAL N - LINEAR CONNECTIONS IN THE K-OSCULATOR BUNDLE

Monica Purcaru and Emil Stoica

Abstract

The study of higher order Lagrange spaces based on the notion of k-osculator bundle was made by Radu Miron and Gheorghe Atanasiu in [2] - [5]. The applications of the Lagrange geometry of order k in Physics and Mechanics are quite numerous and important [7].

In this paper we introduce the concept of semi-symmetric metrical N - linear connections on the total space $E=O s c^{k} M$ as a straightforward extension of that on the 2 -osculator bundle [8]. We determine all semi-symmetric metrical N -linear connections in the k -osculator bundle and we study the group of transformations of these connections and its invariants. This paper is a generalization of the same subject in the bundle of accelerations [8]. As to the terminology and notations we use those from [6], which are essentially based on M.Matsumoto's book [1].

AMS Subject Classification: 53C05.
Key words: k - osculator bundle, curvature, torsion, semi-symmetric metrical Nlinear connection.

1 Group of transformations of N - linear connections in the k-osculator bundle

Let M be a real n-dimensional C^{∞} - manifold and $\left(O s c^{k} M, \pi, M\right), k \geq 1$ its k osculator bundle. The local coordinates on the total space $E=O s c^{k} M$ are denoted by $\left(x^{i}, y^{(1) i}, y^{(2) i}, \ldots, y^{(k) i}\right)$. If N is a nonlinear connection on E with the coefficients $N_{(1)}{ }_{j}^{i}, N_{(2)}{ }_{j}^{i}, \ldots, N_{(k)}{ }^{i}$, then let $D \Gamma(N)=\left(L_{j m}^{i}, C_{(1) j m}^{i}, C_{(2) j m}^{i}, \ldots, C_{(k) j m}^{i}\right)$ be an $N-$ linear connection D on $E=O s c^{k} M$.

We consider a metrical d-structure on E, defined by a d-tensor field of the type $(0,2)$, marked as say $g_{i j}\left(x^{i}, y^{(1) i}, \ldots, y^{(k) i}\right)$. This d-tensor field is symmetric and nondegenerate.

Given a metrical d-structure $g_{i j}$ on E, we associate Obata's operators:

$$
\begin{equation*}
\Omega_{s j}^{i r}=\frac{1}{2}\left(\delta_{s}^{i} \delta_{j}^{r}-g_{s j} g^{i r}\right), \Omega_{s j}^{* i r}=\frac{1}{2}\left(\delta_{s}^{i} \delta_{j}^{r}+g_{s j} g^{i r}\right) \tag{1.1}
\end{equation*}
$$

where $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
Obata's operators have the same properties as the ones associated with a Finsler space [6].

The elements of the Abelian group $\mathcal{T}_{N}=\left\{t\left(0,0, B_{j m}^{i}, D_{(1) j m}^{i}, D_{(2) j m}^{i}, \ldots\right.\right.$, $\left.\left.D_{(k) j m}^{i}\right) \in \mathcal{T}\right\}$ are transformations $t\left(0,0, B_{j m}^{i}, D_{(1) j m}^{i}, D_{(2) j m}^{i}, \ldots, D_{(k) j m}^{i}\right): D \Gamma(N)=$ $\left(L_{j m}^{i}, C_{(1) j m}^{i}, C_{(2) j m}^{i}, \ldots, C_{(k) j m}^{i}\right) \rightarrow D \bar{\Gamma}(N)=\left(\bar{L}_{j m}^{i}, \bar{C}_{(1) j m}^{i}, \bar{C}_{(2) j m}^{i}, \ldots, \bar{C}_{(k) j m}^{i}\right)$ given by:
(1.2) $\bar{N}_{(\alpha)}{ }^{i}{ }_{j}=N_{(\alpha) j}{ }^{i}, \bar{L}_{j m}^{i}=L_{j m}^{i}-B_{j m}^{i}, \bar{C}_{(\alpha) j m}^{i}=C_{(\alpha) j m}^{i}-D_{(\alpha) j m}^{i}$,

$$
(\alpha=1,2, \ldots, k)
$$

Proposition 1.1 The transformation of the group \mathcal{T}_{N}, given by (1.2) leads to the transformation of the torsion and curvature d-tensor fields in the following way:
(1.3) $\quad \bar{R}_{(0 \alpha) j m}{ }^{i}=R_{(0 \alpha) j m}{ }^{i}, \quad(\alpha=1,2, \ldots, k)$,
(1.4) $\quad \bar{T}_{(0) j m}{ }^{i}=T_{(0) j m}{ }^{i}+\left(B_{m j}^{i}-B_{j m}^{i}\right)$,
(1.5) $\quad \bar{S}_{(\alpha) j m}^{i}=S_{(\alpha) j m}^{i}+\left(D_{(\alpha) m j}^{i}-D_{(\alpha) j m}^{i}\right),(\alpha=1,2, \ldots, k)$,

$$
\begin{align*}
\bar{R}_{h j m}{ }^{i}= & R_{h}{ }^{i}{ }_{j m}-\sum_{\gamma=1}^{k} D_{(\gamma) h s}^{i} R_{(0 \gamma)}{ }^{s}{ }_{j m}-B_{h s}^{i} T_{(0)}{ }^{s}{ }_{j m}+ \tag{1.6}\\
& +\mathcal{A}_{j m}\left\{-B_{h j \mid m}^{i}+B_{h j}^{s} B_{s m}^{i}\right\}, \\
\bar{P}_{(\alpha) h j m}{ }^{i} & =P_{(\alpha) h}{ }^{i}{ }_{j m}+L_{m j}^{s} D_{(\alpha) h s}^{i}-\sum_{\gamma=1}^{k} D_{(\gamma) h s}^{i} B_{(\alpha \gamma) j m}^{s}-B_{h s}^{i} C_{(\alpha) j m}^{s}- \tag{1.7}\\
& -B_{h j}^{i} \mid \stackrel{(\alpha)}{(\alpha)}+D_{(\alpha) h m \mid j}^{i}+B_{h j}^{s} D_{(\alpha) s m}^{i}-D_{(\alpha) h m}^{s} B_{s j}^{i},(\alpha=1,2, \ldots, k),
\end{align*}
$$

$$
\begin{align*}
& \bar{S}_{(\beta \alpha) h j m}^{i}=S_{(\beta \alpha) h j m}^{i}-C_{(\beta) j m}^{s} D_{(\alpha) h s}^{i}+C_{(\alpha) m j}^{s} D_{(\beta) h s}^{i}-\left.D_{(\alpha) h j}^{i}\right|_{m} ^{(\beta)}+ \tag{1.8}\\
& +\left.D_{(\beta) h m}^{i}\right|_{j} ^{(\alpha)}+D_{(\alpha) h j}^{s} D_{(\beta) s m}^{i}-D_{(\beta) h m}^{s} D_{(\alpha) s j}^{i}-\sum_{\gamma=1}^{k} D_{(\gamma) h s}^{i} C_{(\alpha \beta) j m}^{(\gamma)},
\end{align*}
$$

$$
(\alpha, \beta=1,2, \ldots, k ; \beta \leq \alpha)
$$

We shall consider the tensor fields:

$$
\begin{align*}
& K_{h}{ }^{i}{ }_{j m}=R_{h}{ }^{i}{ }_{j m}-\sum_{\gamma=1}^{k} C_{(\gamma) h s}^{i} R_{(0 \gamma)}{ }^{s}{ }_{j m}, \tag{1.9}\\
& \mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}=\mathcal{A}_{j m}\left\{P_{(\alpha) h}{ }^{i}{ }_{j m}-\sum_{\gamma=1}^{k} C_{(\gamma) h s}^{i} B_{(\alpha \gamma) j m}^{s}\right\},(\alpha=1,2, \ldots, k), \tag{1.10}\\
& \mathcal{S}_{(\beta \alpha) h}{ }^{i}{ }_{j m}=\mathcal{A}_{j m}\left\{S_{(\beta \alpha) h}{ }^{i}{ }_{j m}-\sum_{\gamma=1}^{k} C_{(\gamma) h s}^{i} C_{(\alpha \beta) j m}^{(\gamma)}\right\} \\
& \left.\beta \leq \alpha ; C_{(\alpha \alpha)}^{(\alpha)}=0\right) .
\end{align*}
$$

Proposition 1.2 By a transformation (1.2) the tensor fields $K_{h}{ }^{i}{ }_{j m}, \mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}$, $(\alpha=1,2, \ldots, k) \mathcal{S}_{(\beta \alpha) h}{ }_{h}^{i},(\alpha, \beta=1,2, \ldots, k ; \beta \leq \alpha)$ are transformed according to the following laws:
(1.12) $\bar{K}_{h}{ }^{i}{ }_{j m}=K_{h}{ }^{i}{ }_{j m}-B_{h s}^{i} T_{(0)}{ }^{s}{ }_{j m}+\mathcal{A}_{j m}\left\{-B_{h j \mid m}^{i}+B_{h j}^{s} B_{s m}^{i}\right\}$,
(1.13) $\quad \overline{\mathcal{P}}_{(\alpha) h}{ }^{i}{ }_{j m}=\mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}-D_{(\alpha) h s}^{i} T_{(0)}{ }^{s}{ }_{j m}-B_{h s}^{i} S_{(\alpha)}{ }^{s}{ }_{j m}+\mathcal{A}_{j m}\left\{-\left.B_{h j}^{i}\right|_{m} ^{(\alpha)}-\right.$

$$
\left.-D_{(\alpha) h j \mid m}^{i}+B_{h j}^{s} D_{(\alpha) s m}^{i}+D_{(\alpha) h j}^{s} B_{s m}^{i}\right\}, \quad(\alpha=1,2, \ldots, k),
$$

(1.14) $\overline{\mathcal{S}}_{(\beta \alpha) h}{ }^{i}{ }_{j m}=\mathcal{S}_{(\beta \alpha) h}{ }^{i}{ }_{j m}-D_{(\alpha) h s} \stackrel{i}{ } S_{(\beta)}{ }^{s}{ }_{j m}-D_{(\beta) h s}{ }^{i} S_{(\alpha)}{ }^{s}{ }_{j m}+\mathcal{A}_{j m}\left\{-\left.D_{(\alpha) h j}^{i}\right|_{m} ^{(\beta)}\right.$
$\left.-D_{(\beta) h j}^{i} \stackrel{i}{m}_{(\alpha)}^{(\alpha)}+D_{(\alpha) h j}^{\stackrel{s}{i} D_{(\beta) s m}^{i}}+D_{(\beta) h j}^{s} D_{(\alpha) s m}^{i}\right\}, \quad(\alpha, \beta=1,2, \ldots, k ; \beta \leq \alpha)$.

2 Semi-symmetric metrical N - linear connections in the k-osculator bundle

Definition 2.1 An N - linear connection $D \Gamma(N)=\left(L_{j m}^{i}, C_{(1) j m}^{i}, C_{(2) j m}^{i}, \ldots\right.$, $\left.C_{(k) j m}^{i}\right)$ on $E=O s c^{k} M$, with the property:

$$
\begin{equation*}
g_{i j \mid m}=0,\left.\quad g_{i j}\right|_{m} ^{(\alpha)}=0, \quad(\alpha=1,2, \ldots, k) \tag{2.1}
\end{equation*}
$$

is said to be a metrical N - linear connection on $E=O s c^{k} M, k>2$.
A class of metrical N - linear connections, which have interesting properties is that of semi-symmetric metrical N - linear connections.

Definition 2.2 An N - linear connection $D \Gamma(N)=\left(L_{j m}^{i}, C_{(1) j m}^{i}, C_{(2) j m}^{i}, \ldots\right.$, $\left.C_{(k) j m}^{i}\right)$ on E is called semi-symmetric if the torsion d-tensor fields $T_{(0)}{ }^{i}{ }_{j m}$, $S_{(\alpha) j m}{ }_{i}, \quad(\alpha=1,2, \ldots, k)$ have the form:

$$
\begin{align*}
& \quad T_{(0){ }_{(0 m}{ }^{i}}=\frac{1}{n-1}\left(T_{(0) j} \delta_{m}^{i}-T_{(0) m} \delta_{j}^{i}\right)=\frac{1}{n-1} \mathcal{A}_{j m}\left\{T_{(0) j} \delta_{m}^{i}\right\}, \tag{2.2}\\
& \qquad S_{(\alpha) j m}^{i}=\frac{1}{n-1}\left(S_{(\alpha) j} \delta_{m}^{i}-S_{(\alpha) m} \delta_{j}^{i}\right)=\frac{1}{n-1} \mathcal{A}_{j m}\left\{S_{(\alpha) j} \delta_{m}^{i}\right\},(\alpha=1,2, \ldots, k), \\
& \text { where } T_{(0) j}=T_{(0){ }_{j i}{ }^{i},}, S_{(\alpha) j}=S_{(\alpha) j i}{ }^{i}, \quad(\alpha=1,2, \ldots, k) .
\end{align*}
$$

Definition 2.3 An N - linear connection $D \Gamma(N)=\left(L_{j m}^{i}, C_{(1) j m}^{i}, C_{(2) j m}^{i}, \ldots\right.$,
$\left.C_{(k) j m}^{i}\right)$ on E is called a semi-symmetric metrical N-linear connection, if the relations (2.1) and (2.2) are verified.

If $\sigma_{j}=\frac{T_{(0) j}}{n-1}, \tau_{(\alpha) j}=\frac{S_{(\alpha) j}}{n-1}, \quad(\alpha=1,2, \ldots, k)$ and if we apply the Theorem 5.4.3, [7] we obtain:

Theorem 2.1 The set of all semi-symmetric metrical N-linear connections on E, which preserve the nonlinear connection $N, D \Gamma(N)=\left(L_{j m}^{i}, C_{(1) j m}^{i}\right.$,
$\left.C_{(2) j m}^{i}, \ldots, C_{(k) j m}^{i}\right)$ is given by:

$$
\begin{align*}
& L_{j m}^{i}=\stackrel{0}{L_{j m}^{i}}+\sigma_{j} \delta_{m}^{i}-g_{j m} g^{i s} \sigma_{s}, \\
& C_{(\alpha) j m}^{i}=\stackrel{0}{C_{(\alpha) j m}^{i}}+\tau_{(\alpha) j} \delta_{m}^{i}-g_{j m} g^{i s} \tau_{(\alpha) s}, \quad(\alpha=1,2, \ldots, k), \tag{2.3}
\end{align*}
$$

where $D \stackrel{0}{\Gamma}(N)=\left(\stackrel{0}{L_{j m}^{i}}, \stackrel{0}{C_{(1) j m}^{i}}, \stackrel{0}{C_{(2) j m}^{i}}, \ldots, \stackrel{0}{C_{(k) j m}^{i}}\right)$ is an arbitrary fixed semisymmetric metrical N - linear connection on E.

On notices that (2.3) gives the transformations of the semi-symmetric metrical N - linear connections on E, which preserve the nonlinear connection N .

Let $t\left(\sigma_{j}, \tau_{(\alpha) j}\right): D \Gamma(N) \rightarrow D \bar{\Gamma}(N), \quad(\alpha=1,2, \ldots, k)$ be a transformation of this form. It is given by:

$$
\begin{align*}
& \bar{L}_{j m}^{i}=L_{j m}^{i}+\sigma_{j} \delta_{m}^{i}-g_{j m} g^{i s} \sigma_{s} \\
& \bar{C}_{(\alpha) j m}^{i}=C_{(\alpha) j m}^{i}+\tau_{(\alpha) j} \delta_{m}^{i}-g_{j m} g^{i s} \tau_{(\alpha) s}, \quad(\alpha=1,2, \ldots, k) \tag{2.4}
\end{align*}
$$

Theorem 2.2 The set $\stackrel{s}{\mathcal{T}}_{N}$ of all transformations $t\left(\sigma_{j}, \tau_{(1) j}, \tau_{(2) j}, \ldots, \tau_{(k) j}\right)$ of the semi-symmetric metrical N - linear connections,on E, given by (2.4), together with the mapping product, is an Abelian group. This group acts effectively on the set of all N - linear connections on E.

By applying the result from $\S 1$, one obtains:
Theorem 2.3 By means of transformations (2.4) the tensor fields $K_{h}{ }^{i}{ }_{j m}$, $\mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}, S_{(\alpha \alpha) h}{ }^{i}{ }_{j m}, \mathcal{S}_{(\alpha \alpha) h}{ }^{i}{ }_{j m}, \quad(\alpha=1,2, \ldots, k)$ are changing by the laws:
(2.5) $\bar{K}_{h}{ }_{j m}^{i}=K_{h}{ }^{i}{ }_{j m}+2 \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r} \sigma_{r m}\right\}$,
(2.6) $\quad \overline{\mathcal{P}}_{(\alpha) h}{ }^{i}{ }_{j m}=\mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}+2 \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r} \rho_{(\alpha) r m}\right\}, \quad(\alpha=1,2, \ldots, k)$,

$$
\begin{align*}
& \bar{S}_{(\alpha \alpha) h j m}^{i}=S_{(\alpha \alpha) h j m}^{i}+2 \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r} \tau_{(\alpha \alpha) r m}\right\}+\sum_{\gamma=1}^{k} 2 \Omega_{s h}^{i r} \tau_{(\alpha) r} C_{(\alpha \alpha) j m}^{(\gamma) s}, \tag{2.7}\\
& (\alpha, \gamma=1,2, \ldots, k) \text { and } C_{(\alpha \alpha) j m}^{(\alpha) i}=0,
\end{align*}
$$

$(2.8) \quad \overline{\mathcal{S}}_{(\alpha \alpha) h j m}{ }^{i}=\mathcal{S}_{(\alpha \alpha) h}{ }^{i}{ }_{j m}+4 \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r} \tau_{(\alpha \alpha) r m}\right\},(\alpha=1,2, \ldots, k)$,

$$
\begin{equation*}
\sigma_{r m}=\sigma_{r \mid m}-\sigma_{r} \sigma_{m}+\frac{1}{2} g_{r m} \sigma-\frac{\sigma_{r} T_{(0) m}}{n-1},\left(\sigma=g^{r s} \sigma_{r} \sigma_{s}\right) \tag{2.9}
\end{equation*}
$$

$$
\begin{align*}
& \rho_{(\alpha) r m}=\left.\sigma_{r}\right|_{m} ^{(\alpha)}+\tau_{(\alpha) r \mid m}-\left(\sigma_{r} \tau_{(\alpha) m}+\sigma_{m} \tau_{(\alpha) r}\right)+g_{r m} \rho_{(\alpha)}- \tag{2.10}\\
& -\frac{\tau_{(\alpha) r} T_{(0) m}+\sigma_{r} S_{(\alpha) m}}{n-1}, \quad\left(\rho_{(\alpha)}=g^{r s} \tau_{(\alpha) r} \sigma_{s}\right), \quad(\alpha=1,2, \ldots, k)
\end{align*}
$$

$$
\begin{align*}
& \tau_{(\alpha \alpha) r m}=\left.\tau_{(\alpha) r}\right|_{m} ^{(\alpha)}-\tau_{(\alpha) r} \tau_{(\alpha) m}+\frac{1}{2} g_{r m} \tau_{(\alpha \alpha)}-\frac{\tau_{(\alpha) r} S_{(\alpha) m}}{n-1} \tag{2.11}\\
& \left(\tau_{(\alpha \alpha)}=g^{r s} \tau_{(\alpha) r} \tau_{(\alpha) s}\right), \quad(\alpha=1,2, \ldots, k)
\end{align*}
$$

Using these results we can determine some invariants of the group $\stackrel{s}{\mathcal{T}}_{N}$. To this aim we shall eliminate $\sigma_{i j}, \rho_{(\alpha) i j}, \tau_{(\alpha \alpha) i j}$ from (2.5), (2.6), (2.8).

Theorem 2.4 Let $n>2$. The semi-symmetric metrical N-linear connection determines the following tensor fields:

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j m}=K_{h}{ }^{i}{ }_{j m}+\frac{2}{n-2} \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r}\left(K_{r m}-\frac{K g_{r m}}{2(n-1)}\right)\right\}, \tag{2.12}
\end{equation*}
$$

$$
\begin{align*}
& N_{(\alpha) h}{ }^{i}{ }_{j m}=\mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j m}+\frac{2}{n-2} \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r}\left(\mathcal{P}_{(\alpha) r m}-\frac{\mathcal{P}_{(\alpha)} g_{r m}}{2(n-1)}\right)\right\},(\alpha=1,2, \ldots, k), \tag{2.13}\\
& M_{(\alpha \alpha) h}{ }_{j m}^{i}=\mathcal{S}_{(\alpha \alpha) h}{ }^{i}{ }_{j m}+\frac{4}{2 n-3} \mathcal{A}_{j m}\left\{\Omega_{j h}^{i r}\left(\mathcal{S}_{(\alpha \alpha) r m}-\frac{2 \mathcal{S}_{(\alpha \alpha)} g_{r m}}{3(n-1)}\right)\right\}, \tag{2.14}\\
& (\alpha=1,2, \ldots, k)
\end{align*}
$$

where
$K_{h j}=K_{h}{ }^{i}{ }_{j i}, \mathcal{P}_{(\alpha) h j}=\mathcal{P}_{(\alpha) h}{ }^{i}{ }_{j i}, \mathcal{S}_{(\alpha \alpha) h j}=\mathcal{S}_{(\alpha \alpha) h}{ }^{i}{ }_{j i}, K=g^{h j} K_{h j}$,
$\mathcal{P}_{(\alpha)}=g^{h j} \mathcal{P}_{(\alpha) h j}, \mathcal{S}_{(\alpha \alpha)}=g^{h j} \mathcal{S}_{(\alpha \alpha) h j},(\alpha=1,2, \ldots, k)$.
These tensor fields are invariants of the group $\stackrel{s}{\mathcal{T}}_{N}$.

References

[1] M.Matsumoto, The Theory of Finsler Connections, Publ.Study Group Geom 5, Depart.Math.,Okayama Univ., 1970.
[2] R.Miron and Gh.Atanasiu,Differential geometry of the k - osculator bundle, Rev.Roumaine Math.Pures Appl., 41, 3/4 (1996) 205-236.
[3] R.Miron and Gh.Atanasiu, Prolongation of Riemannian, Finslerian and Lagrangian structures, Rev.Roumaine Math.Pures Appl., 41, 3/4 (1996) 237-249.
[4] R.Miron and Gh.Atanasiu, Higher-order Lagrange spaces, Rev.Roumaine Math.Pures Appl., 41, 3/4 (1996) 251-262.
[5] R.Miron and Gh.Atanasiu, Compendium sur les espaces Lagrange d'ordre supérior, Seminarul de Mecanica no.40, Universitatea din Timişoara, (1994) 1-27.
[6] R.Miron and M.Hashiguchi, Metrical Finsler Connections, Rep.Fac.Sci., Kagoshima Univ (Math., Phys.\&Chem.), 12 (1979) 21-35.
[7] R.Miron, The Geometry of Higher-order Lagrange Spaces. Applications in Mechanics and Physics, Kluwer Academic Publishers, FTPH82, 1997.
[8] M.Purcaru, Metric Semi-Symmetric N-Linear Connections in the Bundle of Accelerations, Balkan Journ.of Geometry and Its Applications, vol.2, 1997 113-118.

Authors' address:
Monica Purcaru and Emil Stoica
University Transilvania, Department of Geometry
Iuliu Maniu 50, 2200, Braşov, ROMANIA
e-mail: mpurcaru@unitbv.ro

