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Abstract

We study the relationship between Pareto maximum points and maximum points
for some suitable value functions associated to multi-criteria optimization prob-
lems. A generalization of the classical framework is given, by introducing Pareto
manifolds: these form a quite large class of manifolds, on which Pareto maxima
may be covariantly defined and studied.

AMS Subject Classification: 49N10, 90C30, 53C15.
Key words: multi-criteria optimization, Pareto maximum, Pareto manifolds, weights,
value functions.

1 Introduction

Differential geometric techniques in Optimization theory were considered only re-
cently; most of them belong to Riemannian geometry (see [3], [4] for a review), but
there are also affine differential ones ([2]). The main notions and results from classical
optimization (of real valued functions on sets in Rn) may be generalized on manifolds.

When multicriteria optimization problems are considered, such a generalization
might seem an utopia: the preference criteria are (usually) inspired by ordering real
numbers, fact which is difficult to translate on manifolds.(See however some recent
attempt to define monotony of vector fields, as particular ”multivalued” functions on
manifolds in [1]). Moreover, the notions of efficiency (Pareto maxima, etc.) do not
seem to have covariant character (in order to be transported on manifolds, via charts
or parametrizations).

In this paper, we consider differentiable functions f : M → N , where M and
N are differentiable manifolds, and we look for an analogue of the (classical) Pareto
maximum for f .

First (§1) we have to restrict ourselves to some special class of target manifolds
N (which will be called Pareto manifolds): these manifolds are characterized by the
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existence of an adapted atlas, with ”order preserving” coordinates changes. Several
examples of such manifolds are provided.

In dealing with multicriteria optimization, one often simplify the setting by weak-
ening the requirements: despite of studying the variation of the multi-valued function
f , one defines (ad hoc) f -dependent weighted ”linearized” and real valued functions
F on M and one looks for their maximum points. Along this path, we associate to
a differentiable function f (on manifolds, as above) a family of weighted functions
F , in such a way that maximum points of F offer information concerning the Pareto
maximum points of f .

Our main results (Theorems 1 and 2, §3) state that:
- any maximum point of a (previous) function F is a Pareto maximum point for

f .
- for any Pareto maximum point x0 of f , there exists a suitable chosen weighted

function F , such that x0 be a maximum point of F .

2 Pareto manifolds

Convention. A vector v ∈ Rn is non-negative (notation v ≥ 0) if each of its
components is non-negative.

Definition 1. Let M be an n-dimensional differentiable manifold. We say M is
a Pareto manifold if there exists a compatible atlas A on M such that for any two
overlapping charts (U,ϕ) and (V, ψ) from A, the following property holds:

if v, w ∈ ϕ(U
∩

V ) , v ≥ w then ψ ◦ ϕ−1(v) ≥ ψ ◦ ϕ−1(w)

Such an atlas will be called an adapted atlas on M.

Examples. (i) The canonical atlas on any open set of Rn produces a Pareto
manifold structure on this set.

(ii) The 2-dimensional torus admits a 6-charts atlas which determines a Pareto
manifold structure on it.

(iii) Consider

M = {(x, y) ∈ R2 | y = 0}
∪

{(x, y) ∈ R2 | y = 1 , x ≥ 0}

Define the charts (U1, h1) and (U2, h2) by

U1 = {(x, y) ∈ R2 | y = 0} , h1 : U1 → R , h1(x, 0) = x

U2 = {(x, y) ∈ R2 | x ≥ 0 , y = 1}
∪

{(x, y) ∈ R2 | x < 0 , y = 0}
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h2 : U2 → R , h2(x, y) = x

We see that h2 ◦ h−1
1 is the identity. This provides an example of a 1-dimensional,

non- Hausdorff Pareto manifold.
iv) The product of two Pareto manifolds is again a Pareto manifold.

Definition 2. Consider M a Pareto manifold, (U, h) an adapted chart and x, y ∈
U . We say x ≥ y if h(x) ≥ h(y).

Due to the property of adapted atlases, the relationship ” ≥ ” is independent of
the choice of the adapted chart around x and y.

Definition 3. Consider M a differentiable manifold, N a Pareto manifold and
f : M → N a continuous function. We say x0 ∈ M is a (local) Pareto point for f if
there exist a chart (V, ϕ) of M around x0 and an adapted chart (U, h) of N around
f(x0), an open set V0 ⊂ V around x0 such that f(V ) ⊆ U and for every x ∈ V0 with
f(x) ≥ f(x0) we have f(x) = f(x0).

Proposition 1. The notion of Pareto points is covariant.

Proof. Consider x0 a Pareto point, the sets V , V0 and U like in the Definition
3. Suppose that x0 is contained also in the chart (Ṽ , ϕ̃), f(x0) is contained in the
adapted chart (Ũ , h̃) such that f(Ṽ ) ⊂ Ũ . Denote by Ṽ0 = Ṽ ∩ V0. Let x ∈ Ṽ0 such
that f(x) ≥ f(x0). The manifold N is Pareto, so this property do not depend on the
chart. Then f(x) = f(x0).

We proved that x0 is a Pareto point with respect to the ”tilde” charts also; this
means the respective notion is covariant.2

3 A useful class of value functions

Consider a differentiable manifold M and a Pareto manifold N . Let f : M → N be
a continuous function. We look for the Pareto points of f . Consider g1, ..., gk some
real valued functions on f(M) and λ1, ..., λk non-negative real numbers; construct

Gi = gi ◦ f , F =
k∑

i=1

λiGi

The function F is a weighted function associated to f .

Theorem 1. Let x0 be a (local) maximum point for F in M . Suppose:
(i) the functions g1, ..., gk are monotone increasing around f(x0).
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(ii) F is injective or there exists at least one injective ”term” λigi.
Then x0 is a (local ) Pareto point for f .

Proof. Let (U, h) be a chart around x0 in M and (V, ϕ) an adapted chart around
f(x0) such that f(U) ⊆ V . By restricting (if necessary) the domains U and V , we
may suppose that x0 is a maximum point of F on the whole U , and the functions gi

are non-decreasing on the whole V .
Take an arbitrary x ∈ U such that f(x) ≥ f(x0). Then Gi(x) ≥ Gi(x0) for every

index i = 1, k, so F (x) ≥ F (x0) on U . Because x0 is a maximum point, we deduce
F (x) = F (x0). Hence, for every indice i, we have

λigi(f(x)) = λigi(f(x0))

From the definition of F and the hypothesis (ii), it follows that f(x) = f(x0); thus
x0 is a (local) Pareto point for f . 2

Examples. Consider the particular case of a function f : U ⊆ Rm → R+
n, and

define

F (x) =
1
n
{f1(x) + ... + fn(x)}

and
F̃ (x) = the volume of the simplex spanned by f1(x), ..., fn(x).

Then any maximum point for F and F̃ , respectively, is a Pareto point for f.

These two examples show that there are a lot of possibilities to construct such
”weighted”, real valued auxiliary functions, in order to obtain many Pareto points for
a given multi-valued function f . But is it possible to obtain all the Pareto points by
this method ? At least for the following particular but important case, the answer is
affirmative.

Theorem 2. Let M be a differentiable manifold and a continuous function f :
M → Rn. Let x0 be a fixed (local) Pareto point for f.

Then there exists a function F as above with x0 as a (local) maximum point.
Proof. Let x0 be a (local) Pareto point for the function f . We define the functions

Gi : M → R, i = 1, n, by

Gi(x) = − | f i(x) − f i(x0) | +f i(x) − f i(x0)

(we denoted by | y | the absolute value of y).
We define now the weighted function F : M → R, by

F (x) =
n∑

i=1

Gi(x)

one can easily see that x0 is a (local) maximum point for F . 2
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Conclusions. The ”duality” between Pareto points of multi-valued functions f
and maximum points of associated ”weighted”, real valued functions F may be further
investigated; it is difficult to consider all the associated functions F (an huge infinity),
so it would be interesting to find a (finite ?) ”minimal” set of such functions which
provide all the Pareto points for a given function f .
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