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Abstract

The geometry of order k ≥ 1 is presented in the author’s monograph [4].
Here, in Thessaloniki at Prof. Tsagas’s Workshop , we would to pointed out the
geometrical theory of geodesics, from the point of view of variational calculus,
in the higer order Finsler spaces.
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1 Introduction

After eighty years from the discovery of Finsler spaces, (Paul Finsler 1918), they are
known and appreciated for the theoretical reason, Engineering, Theoretical Physics,
Optimal control, Biology etc. This fact was expressed by author, in the ”Joint Summer
Research Conference on Finsler Geometry” organized by S.S.Chern at University of
Seattle (1995, [2]), as follows:

”After three quarters of a century of existence Finsler Geometry constitutes an
imposing edifice, which numerous scientists tray to understand, but without noticing
the immense scientific labor set at its foundations.”

In the same time I have emphases the importance of the extension of the notion
of Finsler space to higher order.

Sixty-five years ago A. Kawaguchi [6] and J.L.Synge gave first definition. They
have considered the integral of action I (c) of the square of fundamental function
F of the space and imposed the following condition: I (c) does not depend on the
parameterization of the curve c. Thus, the Zermelo conditions for F hold. But, for
k > 1, they lead to condition: the fundamental tensor gij of the space is degener-
ate. So the Kawaguchi-Synge theory of higher order Finsler spaces is geometrically
nonconvenient.
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In the paper [8], together with Sorin Sabau we define Finsler space of order
k, F (k)n, as a natural extension of the classical notion of Finsler space.

Therefore, in the present lecture we give: the notion of Finsler space of order≥
1, geodesics in F (k)n, variational problem, geodesics in canonical parameterization,
higher order energy and its law of conservation.

2 Preliminaries. Finsler space of order k

The concept of higher order Finsler space is a natural extension of the classical one.
Namely, a Finsler space of order k > 1 is a pair F (k)n = (M,F ) determined by a real
C∞-manifold of dimension n and a function:

F : OsckM → R

having the following properties:
a) F is of C∞-class on Ẽ = OsckM \ {0} and continuous on the null section;
b) F is positive;
c) the Hessian with the elements:

gij =
1
2

∂2F 2

∂y(k)i∂y(k)j
(1.1)

is positively defined on Ẽ .
Clearly, here (OsckM,πk,M) is the k-osculator bundle of the manifold M and

(xi, y(1)i, . . . , y(k)i) are the canonical local coordinates of the points u = (x, y(1), . . . , y(k)) ∈
E = OsckM, (i, j, h, . . . = 1, . . . , n). gij from (1.1) is a d − tensor field on Ẽ and is
called the fundamental tensor field of the space F (k)n. Of course, it follows:

rank ||gij || = n on Ẽ (1.2)

and the tensors gij are 0 − hom ogeneous on the fibre of Ẽ. Therefore we have:

£ k

Γ
gij = 0 , (1.3)

where £ k

Γ
is the operator of Lie derivative with respect to the Liouville vector field

k

Γ:
k

Γ= y(1)i ∂

∂y(1)i
+ . . . + ky(k)i ∂

∂y(k)i
. (1.4)

In the case k = 1 the previous definition gives the classical notion of Finsler space.
In the general case k ≥ 1 the existence of space F (k)n on the paracompact manifold

M is proved in the book [4].
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3 Geodesics in spaces F (k)n

Let c : t ∈ [0, 1] → (xi(t)) ∈ U ⊂ M be a smooth parametrized curve and c̃ : t ∈

[0, 1] → (xi(t),
dxi

dt
(t), . . . ,

1
k!

dkxi

dtk
(t)) ∈ π−1(U) ⊂ Ẽ its extension of order k. The

length of c, l(c) in the space F (k)n is defined by:

l(c) =
∫ 1

0

F (x(t),
dx(t)

dt
, . . . ,

1
k!

dkx(t)
dtk

)dt. (2.1)

It is known fact that l(c) essentially depends on the parameterization of the curve c.
However, the variational problem involving the functional l(c) can be studied. We
shall present it omitted proofs.

Consider the curves:

cε : t ∈ [0, 1] → (xi(t) + εV i(t)) ∈ M, (2.2)

where ε is a real number, choice such that Im cε ⊂ U, V i(t) = V i(x(t)) being a regular
vector field on the open set U restricted to the curve c. We assume that the curves c
and cε have the same endpoints c(0) and c(1) and the same osculator spaces of order
1, . . . , k − 1. This is:

V i(0) = V i(1),
dαV i

dtα
(0) =

dαV i

dtα
(1), (α = 1, . . . , k − 1). (2.3)

The length of a parameterized curve cε is the following:

l(cε) =

1∫
0

F (x + εV,
dx

dt
+ ε

dV

dt
, . . . ,

1
k!

(
dkx

dtk
+ ε

dkV

dtk
))dt. (2.1

′
)

A necessary condition that l(c) be an extremal value for the functionals l(cε) is as
follows:

dl(cε)
dε

|ε=0= 0. (2.4)

From the previous condition we derive:

dl(cε)
dε

|ε=0=

1∫
0

(
∂F

∂xi
V i +

∂F

∂y(1)i

dV i

dt
+ . . . +

1
k!

∂F

∂y(k)i

dkV i

dtk
)dt, (2.4

′
)

where:

y(1)i =
dxi

dt
, . . . , y(k)i =

1
k!

dkxi

dtk
. (2.5)

Now, setting:

I1
V (F ) = V i ∂F

∂y(k)i
, (2.6)
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I2
V (F ) = V i ∂F

∂y(k−1)i
+

dV i

dt

∂F

∂y(k)i
, . . . ,

Ik
V (F ) = V i ∂F

∂y(1)i
+

dV i

dt

∂F

∂y(2)i
+ . . . +

1
(k − 1)!

dk−1V i

dtk−1

∂F

∂y(k)i
,

we remark that I1
V (F ), . . . , Ik

V (F ) are the main invariants of the fundamental function
F. They have the properties:

Iα
V (F )(c(0)) = Iα

V (F )(c(1)) = 0, (α = 1, . . . , k). (2.6
′
)

Also, the Euler-Lagrange operator
◦
Ei applied to F give us:

◦
Ei (F ) =

∂F

∂xi
− d

dt

∂F

∂y(1)i
+ . . . + (−1)k 1

k!
dk

dtk
∂F

∂y(k)i
. (2.7)

One deduces important identities:

∂F

∂xi
V i +

∂F

∂y(1)i

dV i

dt
+ . . . +

1
k!

∂F

∂y(k)i

dkV i

dtk
(2.8)

=
◦
Ei (F )V i +

d

dt
Ik
V (F ) − 1

2!
d2

dt2
Ik−1
V (F ) + . . . +

+(−1)k−1 1
k!

dk

dtk
I1
V (F ).

Therefore, we obtain:

dl(cε)
dε

| ε=0 =

1∫
0

◦
Ei (F )V idt +

1∫
0

d

dt
{Ik

V (F ) −

− 1
2!

d

dt
Ik−1
V (F ) + . . . + (−1)k−1 1

k!
dk−1

dtk−1
I1
V (F )}dt

and using (2.6) and (2.6)
′
it follows that:

dl(cε)
dε

|ε=0=

1∫
0

◦
Ei (F )V idt.

Now, taking into account that
∫ 1

0

◦
Ei (F )V idt = 0 for any V i give us

◦
Ei (F ) = 0

and using (2.4) we have:

Theorem 1 In order that the length l(c) of the parameterized curve be an extremal
value for the functional l(cε) it is necessary that the following Euler-Lagrange equation
hold:

◦
Ei (F ) : =

∂F

∂xi
− d

dt

∂F

∂y(1)i
+ . . . + (−1)k 1

k!
dk

dtk
∂F

∂y(k)i
= 0 (2.9)

y(1)i =
dxi

dt
, . . . , y(k)i =

1
k!

dkxi

dtk
.
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The parameterized curves c : [0, 1] → M , solutions of the Euler-Lagrange equations
(2.9) are called the extremal curves of the length l(c).

4 Geodesics in the canonical parametrization

Let us consider a canonical parametrization of the curve c : t ∈ [0, 1] → (xi(t)) ∈ M .
The function t → s(t) :

s(t) =

t∫
t0

F (x(τ),
dx(τ)

dτ
, . . . ,

1
k!

dkx(τ)
dτk

)dτ, t0, t ∈ [0, 1]

is monotone, because
ds

dt
= F > 0.

So, it is invertible. We can introduce a parameter s (called natural or canonical)
with property:

F (x(s),
dx

ds
, . . . ,

1
k!

dkx

dsk
) = 1. (3.1)

Now we give:

Definition 2 The extremal curves of the lenght l(c) in the canonical parametrization
are called geodesics of the space F (k)n.

We get an extension of a very known classical result in the geometry of Finsler
spaces:

Theorem 3 In the canonical parametrization, the geodesics of the Finsler space of
order k, F (k)n, are given by the equations:

◦
Ei (F 2) = 0, y(1)i =

dxi

ds
, . . . , y(k)i =

1
k!

dkxi

dsk
(3.2)

Proof. A straightforward calculus, lead to identity:

1
2

◦
Ei (F 2) = F

◦
Ei (F ) +

dF

dt

1

Ei (F ) + . . . +
dkF

dtk
k

Ei (F ), (3.3)

where
β

Ei, (β = 1, . . . , k) are the Craig-Synge operators:

β

Ei=
k∑

α=1

(−1)α 1
α!

(
α
α − β

)
dα−β

dtα−β

∂

∂y(α)i
, β = 1, . . . , k. (3.4)

Taking into account (3.1), from (3.3) it follows: In the canonical parametrization, the

equations
◦

Ei (F ) = 0 and
◦
Ei (F 2) = 0 are the equivalent. 2

In particular, for k = 1, (3.2) reduces to:
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∂F 2

∂xi
− d

ds

∂F 2

∂yi
= 0, yi =

dxi

ds
.

These are the classical differential equations of the geodesics, in canonical para-
metrization, of a Finsler spaces.

Theorem 4 The system of differential equations of geodesics of F (k)n:

∂F

∂xi

2

− d

ds

∂F 2

∂y(1)i
+ . . . + (−1)k 1

k!
dk

dsk

∂F 2

∂y(k)i
= 0 (3.5)

y(1)i =
dxi

ds
, . . . , y(k)i =

1
k!

dkxi

dsk
,

have the following properties:

Theorem 5 10 It is autoadjoint ([9]).
20 It is invariant to the coordinates transformations on F (k)n :

x̃i = x̃i(x1, x2, . . . , xn); det
∣∣∣∣∣∣∣∣ ∂x̃i

∂xj

∣∣∣∣∣∣∣∣ <> 0,

ỹ(1)i =
∂x̃i

∂xj
y(1)j , . . . , kỹ(k)i =

∂ỹ(k−1)i

∂xj
y(1)j + . . . + k

∂ỹ(k−1)i

∂y(k−1)i
y(k)j .

(3.6)

30 It is invariant to the affine transformation of parameters s → as + b, a <> 0,
a, b ∈ R.

40 It is of the form:

gij
d2kxj

ds2k
+ φi(x,

dx

ds
, . . . ,

d2k−1x

ds2k−1
) = 0. (3.7)

Proof. For the property 1◦ we send to the Santilli’s book [9].

20 It is known that
◦
Ei (F 2) is a d-covector field. Therefore

◦
Ei (F 2) = 0 has

a geometrical meaning with respect to the coordinates transformations (3.6). But
◦
Ei (F 2) is exactly (3.5).

30 An affine transformation s → as+b, give us the transformation (x, y(1), . . . , y(k)) →
(x̃, ỹ(1), . . . , ỹ(k)), where ỹ(1)i = ay(1)i, . . . , ỹ(k)i = aky(k)i. By means of the property
of the homogeneity of the fundamental function F 2 on the fibres of OsckM it follows
that

◦
Ei (F 2) is transformed in a2k

◦
Ei (F 2). Therefore

◦
Ei (F 2) = 0 is invariant with

respect to affine transformation of parameters.
40 Since we have:

d

ds

∂F 2

∂y(k)i
= Γ

∂F 2

∂y(k)i
+

2
k!

gij
dk+1xi

dsk+1
,
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where Γ is the following operator:

Γ = y(1)i ∂

∂xi
+ 2y(2)i ∂

∂y(1)i
+ . . . + ky(k)i ∂

∂y(k−1)i

and:

y(1)i =
dxi

ds
, . . . , y(k)i =

1
k!

dkxi

dsk
,

the system of differential equations (3.7) holds. 2

Of course, from (3.7) it follows that the system of differential equations of geodesics
in the spaces F (k)n can be written in the form:

d2kxi

ds2k
+ gijφj(x,

dx

ds
, . . . ,

d2k−1x

ds2k−1
) = 0. (3.7

′
)

A theorem of existence and uniqueness for geodesics can be easily formulated. An
application of the previous theory is as follows.

The function F 2 in F (k)n is a regular Lagrangian of order k. Along a canonical
parameterized curve c the energy of order k, [6] is given by:

εk
c (F 2) = Ik(F 2) − 1

2!
dIk−1(F 2)

ds
+ . . . + (−1)k−1 1

k!
dk−1I1(F 2)

dsk−1
− F 2. (3.8)

The following formula is known, [6]:

d

ds
εk

c (F 2) = −
◦
Ei (F 2)

dxi

ds
. (3.8

′
)

Consequently, the following law of conservation holds:

Theorem 6 The energy of order k, εk
c (F 2), of a Finsler space F (k)n is conserved

along every geodesics of the Finsler space of order k, F (k)n.
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