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Abstract

The aim of this paper is to find an approximate solution of Burgers equation
using the Decomposition Method, which has been developed by George Adomian
[3]. The advantage of this method is to avoid simplifications and restrictions
which change the non-linear problem to mathematically tractable one, whose
solution is not consistent with physical solution. Theoretical analysis and all
calculations have been done and the results are discussed.

AMS Subject Classification: 65C20.
Key words: Burger equation, Adomian Decomposition Method, Adomian polyno-
mials.

1 Introduction

The one dimension non-linear differential equation, which is similar to the one dimen-
sion Navier-Stokes equation without the stress term, and was presented for the first
time in a paper in 1940 from Burger, is the model for the solution of Navier-Stokes
equation and is applied to laminar and turbulence flows as well. The Burger equation
was first studied by Cole [12] who gave a theoretical solution, based on Fourier series
analysis, using the appropriate initial and boundary conditions. Another theoreti-
cal solution was given by Madsen and Sincovec [13], based on the "test and trial”
method, using the appropriate initial and boundary conditions. In Benton and Platz-
man [10], are mentioned almost 35 distinct solutions of Burger equation and Agas [9]
tried to get approximate solutions of Burger equation using numerical analysis. He
tried the method of Finite Differences and the method of Lines in Finite Elements.
The problem he faced was that these methods couldn’t give solutions for big values
of the Reynolds number. He also found some problems in convergence. In this paper,
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we will find solutions using the Adomian decomposition method. This method gives
a computable and accurate solution of the problem for a small number of terms and
demands to be parallel to any modern supercomputer. The whole paper contains
five paragraphs. Each of them analyzed as follows. The first paragraph is the intro-
duction. The formulation of the problem is studied in the second paragraph. The
theoretic approach is given in the third paragraph. The determination of the Ado-
mian’s Special Polynomials is studied in the fourth paragraph. The fifth paragraph
includes the results, the diagrams and the discussions.

2 Formulation of the Problem
The equation of motion in one dimension has the following form:

@—F @—V@ (1)
ot Yor Vox2

where the first term is the linear, the second is the non-linear and the third is the
highest order term. If we define

Ju 9*u du
LtufafRua LxU—@—LU, NU—U%, (2)

where Nu represents the non-linear term, Lu is the highest order term, and Ru is the
rest of the equation, equation (1) takes the form

Ru+ Nu =vlLu.
The boundary conditions are defined as follows:
u(0,t) = u(1,t) for t =0 (3)
and the initial condition:
u(z,0) =4z (1 —2x). (4)
3 Theoretic approach
We solve equation (1) for Lyu and L,u separately and we get
Liu = vL,u — Nu, (5)

Lou=v"" (Lyu+ Nu). (6)

Let L, L and L;! be the inverse operators of Lyu and L,u respectively, given by the

form: - :/(-)dt ond L1 ://(-)dmdx. (7)
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Then operating both sides of equations (5) and (6) with the inverse operators (7) we

obtain. o2 5
B 1 u u
u= ¢+ Ly (Vaxg - ué)x) ; (8)
_1,-1 (0Ou ou
u=1,+v 1L$1<8t+u8x)’ ©))
where ¢, and v, are the solutions of the equations:
ou 0?u
e d — = 1
5 0 an 92 0 (10)

respectively. The equations (10) can be solved subjected to the corresponding initial
condition (4) and boundary conditions (3) and we obtain:

¢o =4z (1 —2z) and ¢, =0. (11)

Now, adding (8) and (9) and dividing by 2, we get the following form:
— 1 -1 aQu ou 11 ou ou
u = 2[(%"‘7/’0)"‘[% (VW—U&U)—FV L a—i—u%

L[ 1 ( 0*u  Ou 1,1 (Ou  Ou

where 1
uy = 3 (69 + 1) =20 (1 ). (13)
After that, we write the parametrized form of (12) which is:
1] 4,1 (0u ou [ 0%u ou
- S (S w4 20 W 14
u=ot Ay [” z <8t+u8m T\ Vo2 T Yo (14)

and the parametrized decomposition forms of © and Nu as

u :Z A U, (15)
n=0

us- u Z/\ ns (16)

where A,, are the Adomian’s special polynomials [1,2] to be determined. Here the
parameter A\ looks like a perturbation parameter; but actually is not a perturbation
parameter; it is used only for grouping the terms. Now substitution of (15) and (16)
into (14) gives

0 ioj AUn oo

— n _ 1 —17-1 n=0 n
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1 0? Zo ANUp oo
Lt | v > ONAL ] (17)
n=0

If we compare like-power terms of A from both sides of equation (17), and taking
under consideration that parameter A is being proved that has the unique value A =1
[7,8], we get

u = 2z(l—2x),
1 [ _ _ 8U0 _ 62UO
Ul = § -V 1L$1 ((_,% +A0) + Lt 1 (Uax2 — AQ 5
1 [ “1r—1 6’&1 -1 62U1
Uy = 5 -V La: (8t + Al) + Lt 14 812 — A1 s
1__ ..... _ ..... 6un_ ........ 82un ...........
Unpr = 5 |V .t (8t+An) + Lt (y 5 —Anﬂ ,n=0,1,2,...,1418)

Next, we proceed to determine Adomian’s special polynomials A,,.

4 Determination of Adomian’s Special Polynomials

The A,, polynomials are defined in such a way that each A,, depends only on wug, U1, ..., Uy
forn=0,1,2,...,n, ie., Ao = A(ug), A1 = Ay (ug,u1), Az = As (ug, u1,us), etc. In
order to do this we substitute (15) into (16) and we have

Nu = u% = (uo + Aur + Nug + Nuz +...) (8;0 1 /\% T )\28;2 T /\3’8;3 4. )
— uoaa()+>\< %1+ %u°>+/\2( 682+ %4‘ 2%1;°>+
A3 (uo%f’ +u % + 286 +U3aa“°) FAY(L). (19)
From (19) we conclude that the Adomian Polynomials have the following form:
A = uwom,
A = uo% + ul%a
Ay = uo%wu%ﬂtw%, (20)

Hence, the polynomial Ag has the following form:

Oug
or

Ag =up—— =4 (z — 32° + 227).. (21)
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Using (13) and Ag from (21) into the expression of u1 in (20) and then performing
the integrations with respect to t and x respectively, we have

3 4 5
u1:2[1/1<$6—:1+ico>—(u—|—a:—3x2+2x3)t . (22)
If we suggest as a solution of u an approximation of only two terms then from (13)
and (22) we have the solution

u=ug+ ui. (23)

We use Mathematica 3.0 in order to get numerical results and we use the results ob-
tained from Agas [9] in order to compare these results. The program in Mathematica
is:

u0=2x-2x"2

xu0=DJ[u0,x]

tu0=D][u0,t]

du0=D]u0,x,x]

a=Integrate[4x-4x"2-8x"2+8x"3,x,X]

b=Integrate[4n-4x+4x"2,-8x"2+8x"2-8x"3,t]

ul=Expand[1/2(b+n"-1a)]

u=Expand[u0-ul]

u/{x->.75, t->.01, n->1}

Clear[u]

5 Results, Diagrams and Discussion

¥=25 v=1
t Exact Gauss Hermite  Group Ex Decomp
0,01 0E724 0BS54 0B5S63  0BS7S 035658
005 04356 03503 03254 04206 026908
0,1 0,2751 04527 0053 02601 015971
015 01794 -0,934 -0408 01644 005033

02 0119 07553 01041 -0,05905
025 00807 -1,1234  00B57  -0,16343
#=05
t Exact Gauss Hermite  Group Ex Decomp

0,01 02184 057 09204 0518 0496567
005 0p38 05978 05933 0F386 041667

0,1 04019 01275 0z 04015 031667
015 02524 01408 02023 0z52 021667
0z 01585 0p192 01581 0,11667
026 00914 -10e842 00921 001667
¥=0,75
t Exact Gauss Hermite  Group Ex Decomp

0,01 07677 0BS18 0OBS24 08927 0,35676
005 05065 03358 03772 045815 031426
0,1 03238 08926 0046 03089 022364
015 020689 -0p0Z  -05021 01919 0,13301
02 01342 088 01192 004239
025 00892 -16243 00742 -0,04825
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0,0
0,05
0.1
0,15
02
0,25

x=0.50

0,01
005
a,1
0,15
0z
025

#=0,/5

0,01
0,05
0,1
0,15
02
0,25

v=0.1
Exact
07422
0 e
0584
05189
04681
04265

Exact
09917
09833
0,8993
08434
07889
07375

Exact
07417
07663
07882
07995

0.e02
07995

Gauss
07274
0 F453
0 5608
0,493
04362
04263

Gauss
09916
09516

0,893
0eMn7
07352
05198

Gauss
07567
0778
0,7892
0778
01649
0,206

u=1and X=07E

Herrmite
07273
0 R452
0 5592
0,4853
04213
0,3R52

Hermite
09923
09524
0,8933
0EM3
07714
07143

Herrmite
07752
07793
07934
07923
07782
07853

Group Ex Decomp

07272
05471
05671
05035
0,4531
04115

0,40563
0,35013
037075
0,351358
0,332
031263

Group Ex Decomp

05914
0,953
0,553

0,8431

07856

07372

056467
065667
054667
063667
052667
0B1667

Group Ex Decomp

0,757
07816
08035
05152
058173
05108

067371
067321
057258
0B7195
0E7133
067071
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w=01and ¥X=07E
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From the above diagrams it is obvious how powerful this method is. Using only two
terms we can obtain similar results. Of course, in some cases the present solutions
deviate from the solutions given in the table. The decomposition solution can be
further improved if more-term approximations of the solution are obtained. As far as
accurate results are concerned, computational experience has shown that they can be
obtained easily by taking half a dozen terms. In case we do not have sufficiently high
precision by using a few of the A,,, then accordingly to Rach R. [14] there are two
alternatives. One is to compute additional terms by any of the available procedures.
The second approach is to use the Adomian-Malakian ”convergence acceleration”
procedure [15]. This unique approach conveniently yields the error-damping effect of
calculating many more terms of the A,, to determine whether further calculation is
justified. The advantage of this global methodology is that it leads to an analytical
continuous approximated solution that is very rapidly convergent [2,7,8]. This method
does not take any help of linearization or any other simplifications for handling the
non-linear terms. Since the decomposition parameter in general is not perturbation
parameter, it follows that the non-linearities in the operator equation can be handled
easily and accurate solution may be obtained for any physical problem.

Acknowledgement 1 I express my deep gratitude to Pavlos Frangiadoulakis, stu-
dent of the Department of Mechanical Engineering, of Polytechnic School, of Aristotle
University of Thessaloniki, for helping me in the presentations of the above diagrams.
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