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Abstract

In the present paper we investigated the quantum chaos according to a paper
of Arik and Karaka, where they have founded, by using a generalized quadratic
oscillator, more different kinds of quadratic q - oscillator with a solvable spec-
trum. For the case where the real parameter satisfy a specific relation we obtain
also a SUq(2) deformed algebra. From eq. (14) which describes chaos for spe-
cial values of the parameter q and γ, we obtain a closed periodic solution for
the harmonic oscillator. Finally we study the quatric commutation relation

A2
(
A+

)2 − Q
(
A+

)2
A2 = 1 with positive and for the case of the harmonic

oscillator we obtain a successive spectrum.
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A few years ago Arik and Karaka [1] have formulated some known algebras in forms
of generalized oscillators. The above authors, except of the SU(2) Lie-algebra and
the SUq(2) deformed Lie-algebra founded by using a generalized quadratic oscillator,
formed more different kinds of quadratic q-oscillators with a solvable spectrum. All
the above cases are special cases of the generalized commutation relation

α(AA+)2 + βA+AAA+ + γ
(
A+A

)2 + δ
(
AA+

)
+ εA+A + J = 0, (1)

which characterizes the quadratic oscillator.. The parameters α, β,. . ., J are real
numbers.

By using the bosonization method [2] for the annihilation and cration operators
A, A+, i.e.:

A = f(n̂ + 1)a, A+ = a+f(n̂ + 1), (2)

where a, a+, a+a = n̂ are the usual Boson operators and f(n̂ + 1) is the structure
function, we obtain:

AA+ = (n̂ + 1) f2(n̂ + 1) = Ln̂+1, A+A = n̂f2 (n̂) = Ln̂. (3)

Editor Gr.Tsagas Proceedings of The Conference of Applied Differential Geometry - General Rela-
tivity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 2000, 68-75
c©2002 Balkan Society of Geometers, Geometry Balkan Press



Some remarks on the quadratic q-oscillator 69

The commutation relation (1) takes the form

α L2
n+1 + βLnLn+1 + γL2

n + δLn+1 + εLn + J = 0. (4)

The above difference equation coincides exactly with the difference equation (18)
of [1].

From eq. (4) we have:

Ln+1 =
1
2α

[
−(βLn + δ) ±

√
(β2 − 4αγ)L2

n + 2(βδ − 2αε)Ln + δ2 − 4αJ
]
. (5)

In the following we put

(β2 − 4αγ)L2
n + 2(βδ − 2αε)Ln + δ2 − 4αJ = (kLn + βµ)2 (6)

and we obtain

κ2 = β2 − 4αγ, κµ = βδ − 2αε, µ2 = δ2 − 4αJ, (7)

with the condition (
β2 − 4αγ

) (
δ2 − 4αJ

)
= (βδ − 2αε)2 , (8)

or

J =
ε(βδ − αε) − γδ2

β2 − 4αγ
, β2 − 4αγ 6= 0. (9)

Then, the eq. (5) yields

Ln+1 =
1
2α

(±κ − β) Ln +
1
2α

(±µ − δ) . (10)

For
q =

1
2α

(±κ − β) , ν =
1
2α

(±µ − δ) (11)

and for suitable values for the different parameters α, β, ...ε , the solution of (10) is
the following

Ln = ν
qn − 1
q − 1

(12)

and forms the deformed SUq(2) Lie-algebra with the parameters (α, β,. . ., ε).
The commutation relation

AA+ = 1 + qA+A − γ
(
A+A

)2
, γ > 0 (13)

is of interest, as it leads to the difference equation

Ln+1 = 1 + qLn − γL2
n (14)

which, according to [1] coincides with the difference equation of Verhultz [3] for q = r
and γ = r

L and describing the population growth. The difference equation (14) can
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not be solved in forms of elementary functions and it has chaotic behavior for large
r.

First we will study the equation (14) for special values of the parameters q and
γ and we obtain a closed periodic solution. Second we can apply the perturbation
method for small values of q for the calculation of the eigenvalues of the corresponding
harmonic oscillator.

For the first case we put
Ln = Sn + σ. (15)

Substituting (15) in (14) we obtain

Sn+1 = (q − 2σγ)Sn − γS2
n, (16)

γσ2 − (q − 1)σ − 1 = 0, (17)

σ =
(q − 1) ± ∆

2γ
, with ∆2 = (q − 1)2 + 4γ (18)

and eq. (16) takes the form

Sn+1 = (1 ∓ ∆) Sn − γS2
n. (19)

For Sn =
(1 ∓ ∆)

γ
Tn the above equations yield

Tn+1 = (1 ∓ ∆)Tn (1 − Tn) (20)

and for ∆ = ∓ 3, the relation (18) is written

γ =
9
4
− (q − 1)2

4
> 0. (21)

The logistic map (20) for 1 ∓ ∆ = 4 takes the form

Tn+1 = 4Tn(1 − Tn) (22)

with the solution [4]:

Tn =
1
2

(
1 − cos 2n cos−1 (1 − 2T0)

)
, (23)

Sn =
2
γ

(
1 − cos 2n cos−1 (1 − 2T0)

)
, (24)

Ln =
q + 2
2γ

+
2
γ

(
1 − cos 2n cos−1 (1 − 2T0)

)
(25)

with the initial condition L0 = 0 we obtain

2T0 = −q + 2
4γ

(26)
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and the solution (25) takes the form

Ln =
q + 2
2γ

+
2
γ

(
1 − cos 2n cos−1

(
1 +

q + 2
4

))
. (27)

The corresponding annihilation and cration operators A, A+ are

A =

√[
q + 2
2γ

+
2
γ

(
1 − cos 2n̂+1 cos−1

(
1 +

q + 2
4

))]
1

n̂ + 1
a, ((28))

or

Ap = ap

√[
q + 2
2γ

+
2
γ

(
1 − cos 2n̂+1 cos−1

(
1 +

q + 2
4

))]
1

n̂ + 1
. (29)

According to Jannussis et all [5] for the q-deformed oscillators exists a scale factor
between the operators A, A+ and x, p i.e.

x =
1
2

√
h̄(q + 1)

mω
(A + A+) , p = − i

2

√
h̄mω(q + 1) (A − A+) (30)

and the Hamiltonian of the harmonic oscillator takes the form

H =
p2

2m
+

m

2
ω2x2 =

h̄ω

4
(q + 1) (AA+ + A+A), (31)

or

H =
h̄ω

4
(1 + q)

[
q + 2
2γ

+
2
γ

(
1 − 2n̂+1 cos−1

(
1 +

q + 2
4

))
+

q + 2
2γ

(
1 − 2n̂ cos−1

(
1 +

q + 2
4

))]
. (32)

The energy eigenvalues are the following

En =
h̄ω(q + 1)

9 − (q − 1)2

[
q + 2

2
+ 2

(
1 − cos 2n+1 cos−1

(
1 +

q + 2
4

))
+

q + 2
2

+ 2(1 − cos 2n cos−1

(
1 +

q + 2
4

)]
(33)

with the restriction
9 > (q − 1)2 . (34)

For n = 0, we obtain the ground state, i.e.e

E0 =
h̄ω

2
q + 1

9 − (q − 1)2

[
q + 2 + 4 (1 − cos 2) cos−1

(
1 +

q + 2
4

)]
(35)

and satisfy the generalized uncertainty principle [5,6)]

(∆x) ∆p) ≥ h̄′

2
, (36)
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where

h̄′ = h̄
q + 1

9 − (q − 1)2

[
q + 2 + 4 (1 − cos 2) cos−1

(
1 +

q + 2
4

)]
. (37)

For the second case we consider the equation (14) and we put −γ = λ i.e. eq. (14)
yields

Ln+1 = 1 + qLn + λL2
n. (38)

By using the perturbation method for small values of λ the solution has the form

Ln = L(0)
n + λL(1)

n + λ2L(2)
n + · · · + λκL(k)

n + · · · . (39)

Substituting (39) in (38) we obtain

L
(0)
n+1+λL

(1)
n+1+λ2L

(2)
n+1+λ3L(3)

n +· · · ≡ 1+q
(
L(0)

n + λL(1)
n + λ2L(2)

n + λ3L(3)
n + · · ·

)
+

+λ

[
(L(0)

n )2 + λ 2L(0)
n L(1)

n + λ2

(
2L(0)

n L(2)
n +

(
L(0)

n

)2
)]

. (40)

From the above relation we have the following recursion equations:

L
(0)
n+1 − qL(0)

n = 1 with L(0)
0 = 0, (41)

L
(1)
n+1 − qL(1)

n =
(
L(0)

n

)2

, (42)

L
(2)
n+1 − qL(2)

n = 2L(0)
n L(1)

n , (43)

L
(3)
n+1 − qL(3)

n = 2L(0)
n L(2)

n +
(
L(0)

n

)2

. (44)

After some computations, the solution of the (41) - (44) are the following

L
(0)
n+1 =

qn+1 − 1
q − 1

, with L
(0)
0 = 0, (45)

L
(1)
n+1 = qn−1+

qn

(q − 1)2

[
q2 qn−1 − 1

q − 1
− 2(n − 1) +

1
qn

qn−1 − 1
q − 1

]
, with L

(1)
0 = 0, L

(0)
1 = 1,

(46)

L
(3)
n+1 = 2qn+1

n∑
`=2

L
(0)
` L

(2))
`

q`
, , with L

(2)
0 = 0, L

(2)
1 = 0, L

(2)
2 = 0, (47)

L
(3)
n+1 = qn+1

n∑
`=3

2L
(0)
` L

(2))
` + (L(1)

` )2

q`
, with L

(3)
0 = 0, L

(3)
1 = 0, L

(3)
2 = 0, L

(3)
3 = 0.

(48)
Working in the same way we can calculate the coefficients L

(k)
n+1 for k = 4, 5, . . ..

Based on the above results we will calculate in a forthcoming paper the first, second
(and so on) order harmonic oscillator eingenvalues on in terms of the parameter λ.
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In the sequel we will study the following commutation relation

A2
(
A+

)2 − Q
(
A+

)2
A2 = 1. (49)

According to the relation (2) and after some computations, the commutation re-
lation (49) takes the form

(n + 2) (n + 3) f2 (n + 2) f2 (n + 3) − n (n + 1) f2 (n + 1) f2 (n) = 1. (50)

For
Ln+1 = (n + 1) f2 (n + 1) , (51)

eq.(50) yields
Ln+2Ln+3 − QLnLn+1 = 1. (52)

Our problem in this case is the determination of the coefficient Ln from the so-
lution of the equation (52) with the requirement that the operators A,A+ to be the
annihilation and the creation operator correspondingly.

For the solution of the nonlinear recursion equation (52) we consider the following
initial conditions: L0 = 0, L1 = 1 and L2 = c, where the parameter c 6= 0,∞ and
positive.

From eq. (52) for n = 0 we obtain

L2L3 = cL3 = 1 or L3 =
1
c
. (53)

Also for n = 1, 2, 3, 4, 5....... in a successive way we obtain the coefficients L4, L5, .....
i.e.

L0 = 0,
L1 = 1,
L2 = c,

L3 =
1
c
,

L4 = c (1 + Qc) ,

L5 =
1 + Q

c (1 + Qc)
,

L6 =
c (1 + Qc)

(
1 + Q + Q2c

)
1 + Q

,

L7 =
(1 + Q)

(
1 + Q + Q2

)
c (1 + Qc) (1 + Q + Q2c)

,

L8 =
c (1 + Qc)

(
1 + Q + Q2c

) (
1 + Q + Q2 + Q3c

)
(1 + Q) (1 + Q + Q2)

,

L9 =
(1 + Q)

(
1 + Q + Q2

) (
1 + Q + Q2 + Q3

)
c (1 + Qc) (1 + Q + Q2c) (1 + Q + Q2 + Q3c)

, (54)

L10 =
c (1 + Qc)

(
1 + Q + Q2c

) (
1 + Q + Q2 + Q3c

) (
1 + Q + Q2 + Q3 + Q4c

)
(1 + Q) (1 + Q + Q2) (1 + Q + Q2 + Q3)

,
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L11 =
(1 + Q)

(
1 + Q + Q2

) (
1 + Q + Q2 + Q3

) (
1 + Q + Q2 + Q3 + Q4

)
c (1 + Qc) (1 + Q + Q2c) (1 + Q + Q2 + Q3c) (1 + Q + Q2 + Q3 + Q4c)

,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .
From the solution (51) we obtain the structure function f (n̂ + 1) i.e.

f (n̂ + 1) =

√
Ln̂+1

n̂ + 1
(55)

and the operators A,A+ take the forms

A =

√
Ln̂+1

n̂ + 1
a, A+ = a+

√
Ln̂+1

n̂ + 1
(56)

and the following relations are valid:

A |n〉 =
√

Ln |n − 1〉 , A+ |n〉 =
√

Ln+1 |n + 1〉 , (57)[
A, A+

]
= Ln̂+1 − Ln̂,

{
A,A+

}
= Ln̂+1 + Ln̂. (58)

Therefore the eigenvalues of the harmonic oscillator will have the form

En =
h̄ω

2
(Ln+1 + Ln) . (59)

For n = 0 we have the ground state

E0 =
h̄ω

2
, (60)

which coincides exactly with the ground state of the simple harmonic oscillator. In
the sequel for n = 1, 2, . . . we have:

E1 =
h̄ω

2
(c + 1) , (61)

E2 =
h̄ω

2

(
1
c

+ c

)
, (62)

E3 =
h̄ω

2

(
c (1 + Qc) +

1
c

)
, (63)

E4 =
h̄ω

2

(
1 + Q

c (1 + Qc)
+ c (1 + Qc)

)
, (64)

. . . . . . . . . . . . . . . . . . . . . .

From the above relations becomes evident the need of the existence of the positive
constant c , which plays the role of a scale factor and permits the calculation of the
coefficients Ln.

The case c = 1 performs physical interest inasmuch leads in closed solution, i.e.

L2n =
Qn − 1
Q − 1

= [n] for n = 0, 1, 2, 3 . . . (65)
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L2n−1 = 1 for n = 1, 2, 3 . . . (66)

and with the corresponding values for the case of the harmonic oscillator eq. (59)
which are of the form

E0 =
h̄ω

2
, (67)

E2n = E2n−1 =
h̄ω

2
([n] + 1) for n = 1, 2, 3 . . . . (68)

From the above results we see that the ground state is non degenerate and all the
excited states are twice degenerate, i.e. E1 = E2, E3 = E4, . . . .

Also the of physical interest is the case Q = 1 with the eigenvalues

E0 =
h̄ω

2
, (69)

E2n = E2n−1 =
h̄ω

2
(n + 1) . (70)

From all we know from the existing literature we can mention that the study of the
commutation relation (49) has been done for the first time, inasmuch we have proved
the existence of the annihilation and creation operators A,A+ and furthermore we
have found the eigenvalues of the harmonic oscillator H = p2

2m + m
2 ω2x2 . In a future

paper we will study physical applications of the above results.
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