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Abstract

In this paper the dynamical linear thermoelasticity theory of an anisotropic
and nonhomogeneous solid with microstructure having a symmetric stress tensor
(LTSMSST) is considered. A consistent set of field variables is employed, and
boundary–initial–value problems of the LTSMSST are defined. An alternative
tensorial formulation of a boundary–initial–value problem of the LTSMSST is
given. The main aim of this paper is to give some variational principles for the
LTSMSST.
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1 Introduction

As C. I. Borş noticed in [1] the asymmetry of the stress tensor in a continuum theory
is not a consequence of the presence of microstructure in the body; it is rather a
constitutive supposition. Consequently, we may conceive mathematical models of
deformable bodies with microstructure having a symmetric stress tensor T. Such
models have been constructed by C. I. Borş in [1], [2], [3]. In the present paper the
mathematical model built by C. I. Borş in [1] is considered. The basic equations,
boundary conditions, and initial values of some field variables of the LTSMSST are
given.

The solution of a boundary–initial–value problem of the LTSMSST can often also
be characterized as the function which yields a minimum value to a related functional.
The minimum of such functional is to be sought not among all functions but only
within a fairly general class of functions known as admissible processes. The class of
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admissible processes may of course change from one problem to another but usually
will include all functions satisfying some or all boundary and initial conditions of the
boundary–initial–value problem and certain continuity conditions.

One of the important mathematical applications of a variational principle is to
prove the existence of a solution of a boundary–initial–value problem of the theory
discussed in this paper, but we shall not be concerned with this aspect.

If we assume or prove by an independent method that the boundary–initial–value
problem has a solution then we can use the variational principles to construct an
approximation of this solution. The principal method for constructing such an ap-
proximation is the Ritz–Rayleigh procedure, which consists of finding a constrained
minimum of specific functional, that is, finding a minimum not among the admissible
processes but only within a particularly simple subset of admissible processes.

There is another feature of a variational principle, which is of great importance
in applications. The numerical quantity expressing the value of functional in an
admissible process is in itself of considerable interest, because it often represents a
kind of average of the solution; in fact the functional is proportional to the energy
of the physical system under investigation and we might be satisfied with finding a
reliable approximation to the value of the functional.

2 Basic Definitions and Governing Equations of the
LTSMSST

The notation and format used, for example, by Borş [1] will largely used here. In
the following we shall denote by I the time interval [0,∞), where t = 0 is the initial
moment. Let B be a bounded domain of the three–dimensional Euclidean space E3

and occupied by an undeformed continuum at the initial moment. Suppose that ∂B,
the boundary of B, is a union of a finite number of nonintersecting regular surfaces
and let n be the outward unit normal vector to ∂B. Here the term regular surface is
used in the sense of Kellogg [4]. The closure of B will be denoted by B and τ k will
be the linear space of k−order tensor functions defined on the set B × I or one of its
subsets. A point x ∈ ∂B (or a point (x, t) ∈ ∂B × I) at which n is continuous will
be called a regular point. Let Σ be a subset of ∂B. A function f will be said to be
piecewise regular on Σ × I if f is piecewise continuous on Σ × I, and in every regular
point f is continuous. The reference frame is Cartesian, repeated subscripts imply
summation and superposed dots indicate the order of time differentiation.

Definition 2.1 By an admissible process in B of the LTSMSST we understand an
ordered array of functions

p = {u, ϕ, θ, ε, κ,g,T,C, S,q} (1)
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satisfying the following smoothness conditions:
u, ϕ : B × I → τ 1; u, ϕ ∈ C2,2(B × (0, +∞));

u, ∇u,
.
u, ∇ .

u,
··
u , ϕ, ∇ϕ,

.
ϕ, ∇ .

ϕ,
··
ϕ ∈ C0,0(B × I);

(2)


θ, S : B × I → IR; θ ∈ C2,1(B × (0, +∞)), S ∈ C0,1(B × (0, +∞));

θ,∇θ,
.

θ, S,
.

S∈ C0,0(B × I);
(3)


ε, κ : B × I → τ 2; ε, κ ∈ C1,1(B × (0,+∞));

ε,
.
ε, κ,

.
κ ∈ C0,0(B × I);

a · ε[b] = b · ε[a], (∀) a,b ∈ τ1;

(4)


g : B × I → τ 1,

g ∈ C1,0(B × (0,+∞)) ∩ C0,0(B × I);
(5)


T,C : B × I → τ 2; T,C ∈ C1,0(B × (0, +∞));

T, ∇ · T, C, ∇ · C ∈ C0,0(B × I);

a · T[b] = b · T[a], (∀) a,b ∈ τ1;

(6)


q : B × I → τ 1, q ∈ C1,0(B × (0,+∞));

q, ∇q ∈ C0,0(B × I),
(7)

where: u is the displacement vector, ϕ is the microrotation field; θ = T − T0 is the
temperature difference (T0 is the absolute temperature of the natural state), ε is the
strain tensor, κ is the torsion tensor, g is the temperature gradient, C is the couple–
stress tensor, S is the entropy per unit mass, q is the heat flux vector and ∇ is the
Hamilton operator.

If we define as usually the addition of two admissible processes and the multiplication
of an admissible process by a scalar, the set A of admissible processes in B becomes
a linear space.

Definition 2.2 An external system of causes in B of the LTSMSST is the ordered
array

F = {f , t,M, c, r, h} (8)

whose components satisfy the regularity conditions:

f ,M : B × I → τ 1, f ,M ∈ C0,0(B × I); (9)
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t, c : ∂B × I → τ 1, t, c ∈ C0,0(∂B × I); (10)

r : B × I → IR, r ∈ C0,0(B × I); (11)

h : ∂B × I → IR, h ∈ C0,0(∂B × I), (12)

and t and c are piecewise regular functions on ∂B, where: f is the specific mass force,
t is the stress vector, M is the external body–couple, c is the couple stress vector, r
is the external flow of heat source and h is the heat flux vector per unit time and per
unit area of B.

Definition 2.3 By a thermoelastic process in B of the LTSMSST, corresponding
to the external system of causes F , we understand an admissible process p whose
elements satisfy:
— the geometrical equations

ε =
1
2

(
∇u + (∇u)T

)
, κ = (∇ϕ)T ; (13)

— the temperature–gradient relation

g = ∇θ; (14)

— the constitutive equations
T = A[ε] + B[κ] − θ α;

C = εB + H[κ] − θ β;

ρS = α · ε + β · κ + a θ;

(15)

— the Fourier law
q = −K[g]; (16)

— the equations of motion
∇ · TT + ρ f = ρ

··
u ,

∇ · CT + ρM = ρJ[
··
ϕ ];

(17)

— the energy equation

ρ T0

.

S + ∇ · q − ρ r = 0; (18)

— the Cauchy type relations

t(n,x) = TT (x)[n] = T(x)[n], c(n,x) = CT (x)[n]; (19)
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— the Fourier–Stokes heat flux principle

h(n,x, t) = q(x, t) · n; (20)

— the symmetry relation

a · J[b] = b · J[a], (∀) a,b ∈ τ 1; (21)

— the definite positive conditions

a · J[a] > 0, a · K[a] > 0, (∀) a ∈ IR3\{0}, (22)

where A, B, H, α, β, K are continuous differentiable functions on B while ρ, J and
c are continuous functions on B.

In the last definition A, B, H represent the elastic moduli, α is the temperature–
stress tensor, β is the temperature–couple–stress tensor, ρ is the mass density, c is
the specific heat, a = c/T0 > 0, J is the microrotation tensor, and K is the heat
conduction tensor.

The symmetry condition of the stress tensor T, specified in the last equation of
(6), implies the following symmetries of the coefficients in the constitutive equations
(15) :

u ·
(
A[U]

)
[v] = v ·

(
A[U]

)
[u]; (23)

U · A[V] = V · A[U]; (24)

U · H[V] = V · H[U]; (25)

u ·
(
B[U]

)
[v] = v ·

(
B[U]

)
[u]; (26)

u · α[v] = v · α[u]. (27)

By the symbol A[V], for example, we understand the two–order tensor

A[V] = AijklVkl ei ⊗ ej (28)

while εB means the two–order tensor

εB = Bijkl εij ek ⊗ el (29)

where ek is an unit vector of the frame Ox1x2x3, ⊗ is the notation for the tensorial
product, and a centered dot between two tensors designates their inner product.
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3 Boundary–Initial–Value Problems in B of the LTSMSST

Let us denote by Σ1, Σ2, · · · ,Σ6 subsets of ∂B having the properties:{
Σ1 ∪ Σ2 = Σ3 ∪ Σ4 = Σ5 ∪ Σ6 = ∂B;

Σ1 ∩ Σ2 = Σ3 ∩ Σ4 = Σ5 ∩ Σ6 = ∅,
(30)

where Σj , j ∈ {1, 3, 5}, stands for the closure of Σj .
We assume that the following data are specified:

1. F , an external system of causes;

2. the functions: initial displacement u0 : B → τ 1; initial rotation ϕ0 : B → τ 1;
initial velocity vector v0 : B → τ 1; angular initial velocity vector ν0 : B → τ 1;
and initial entropy S0 : B → IR, all continuous on B;

3. the surface displacement û : Σ1 × I → τ 1, a continuous function;

4. the surface traction t̂ : Σ2 × I → τ 1, a piecewise regular function;

5. the surface rotation ϕ̂ : Σ3 × I → τ 1, a continuous function;

6. the surface couple–stress vector ĉ : Σ4 × I → τ 1, a piecewise regular function;

7. the surface temperature θ̂ : Σ5 × I → IR, a continuous function;

8. the surface heat flux ĥ : Σ6 × I → IR, a piecewise regular function.

Definition 3.1 A boundary–initial–value problem in B (or a mixed problem in B)
of the LTSMSST, corresponding to the extarnal system of causes F , consists in the
problem of finding all thermoelastic processes in B that satisfy:
— the initial conditions:{

u(x, 0) = u0(x);
.
u(x, 0) = v0(x); ϕ(x, 0) = ϕ0(x);

.
ϕ(x, 0) = ν0(x); S(x, 0) = S0(x), (∀) x ∈ B;

(31)

— the boundary conditions:

u(x, t) = û(x, t), (∀) (x, t) ∈ Σ1 × I;

t(x, t) = t̂(x, t), (∀) (x, t) ∈ Σ2 × I;

ϕ(x, t) = ϕ̂(x, t), (∀) (x, t) ∈ Σ3 × I;

c(x, t) = ĉ(x, t), (∀) (x, t) ∈ Σ4 × I;

θ(x, t) = θ̂(x, t), (∀) (x, t) ∈ Σ5 × I;

h(x, t) = ĥ(x, t), (∀) (x, t) ∈ Σ6 × I.

(32)

Note that many different mixed problems in B of the LTSMSST exist, since one or
more of the surfaces Σ1, Σ2, · · · , Σ6 may be the empty set.



Variational Principles in the Linear Thermoelasticity of Solids 51

Definition 3.2 By a solution of a mixed problem in B of the LTSMSST we mean
the thermoelastic process p satisfying the initial conditions (31) and the boundary
conditions (32).

Observation 3.1 More complicated boundary–initial–value problems in B of this
theory can be introduced, possibly following the work in [5].

Definition 3.3 A kinematical, thermal and admissible process in B of the LTSMSST
is an admissible process p ∈ A that satisfies (13), (14), (15), (16) and the bound-
ary conditions (32)1, (32)3, (32)5 for the case when all surfaces Σ1, Σ3 and Σ5 are
nonempty sets.

The set K of kinematical, thermal, and admissible processes in B of the LTSMSST
is a subset of the admissible processes A. Note that K is not a linear subspace of the
linear space A.

Observation 3.2 The last condition in (31) contains the initial value of entropy,
but there is the possibility to give the initial value of temperature difference θ(x, 0) =
θ0(x). On account of (15)3, this initial values must satisfy

ρ S0(x) = α(x) · ε0(x) + β(x) · κ0(x) + a(x) θ0(x), (33)

where:

ε0(x) =
1
2

(
∇u0(x) + (∇u0(x))T

)
; κ0(x) =

(
∇ϕ0(x)

)T

.

4 Alternative Formulation of a Mixed Problem in
B of the LTSMSST

Let f , g : B × I → τ p be continuous tensorial functions. The tensors f(x, t) and
g(x, t) have the following analitical expressions:{

f(x, t) = fi1i2···ip(x, t)ei1 ⊗ ei2 ⊗ · · · ⊗ eip ,

g(x, t) = gj1j2···jp
(x, t)ej1 ⊗ ej2 ⊗ · · · ⊗ ejp

.
(34)

The inner product of the tensors in (34) is the function defined by f · g : B × I → IR
where

(f · g)(x, t) = f(x, t) · g(x, t) = fi1i2···ip(x, t) gi1i2···ip(x, t). (35)

The convolution of the tensors f and g in (34) is the function:

f ∗ g : B × I → IR; (f ∗ g)(x, t) =
∫ t

0

f(x, t − τ) · g(x, τ) dτ. (36)

We may formally replace the tensor f with one of the scalar functions i and 1 defined
by

i(x, t) = t, 1(x, t) = 1, (∀) (x, t) ∈ B × I. (37)



52 A. Crăciun

The convolution of the functions 1 and g will be denoted by g:

g(x, t) = (1 ∗ g)(x, t) =
∫ t

0

g(x, τ) dτ, (∀) (x, t) ∈ B × I. (38)

Obviously, (38) implies
.
g (x, t) = g(x, t); (1∗ .

g)(x, t) = g(x, t) − g(x, 0), (∀) (x, t) ∈ B × I. (39)

The properties of convolution are mentioned, for example, in Gurtin’s work [6].
In the proofs of some theorems we shall use the following identities [7]:

f · (∇g)T = ∇ · (f [g]) − (∇ · fT ) · g; (40)

(∇ · h) q = ∇ · (q h) − h · (∇q), (41)

where f is a second order tensor, g and h are vectorial functions and q is a scalar
one. The divergence theorem aplied both to the second order tensor f and the vector
g gives ∫

B

∇ · (f [g]) dv =
∫

∂B

fT [n] · g da. (42)

If h is a scalar function and g is a vectorial one, then the same theorem leads to∫
B

∇ · (hg) dv =
∫

∂B

g[n]h da. (43)

Definition 4.1 An external system of data in B of the LTSMSST is the ordered
array of functions

L = {F, û, t̂, ϕ̂, ĉ, θ̂, ĥ,u0, ϕ0, v0, ν0, S0}, (44)

where
F = (ρf , ρM,−ρW ), W =

1
T0

r + S0. (45)

Theorem 4.1. An element p ∈ K satisfying the boundary conditions (32)2, (32)4
and (32)6 is a solution of the mixed problem in B of the LTSMSST, corresponding to
the external system of data L in (44), if and only if the following equations hold:

i ∗ ∇ · TT + f̃ = ρu; (46)

i ∗ ∇ · CT + M̃ = J[ϕ]; (47)

S +
1

ρ T0
∇ · q = W, (48)

where 
f̃(x, t) = ρ(x)

(
(i ∗ f)(x, t) + u0(x) + tv0(x)

)
,

M̃(x, t) = ρ(x)
(
(i ∗ M)(x, t) + J(x)[ϕ0(x) + tν0(x)]

)
.

(49)
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Proof. Suppose that p ∈ K is a solution of the mixed problem in B of the LTSMSST.
Then:

i ∗
(
∇TT + ρf

)
(x, t) = ρ(x)

∫ t

0

(t − τ)
··
u (x, τ) dτ ; (50)

i ∗
(
∇CT + ρM

)
(x, t) = ρ(x)

∫ t

0

(t − τ)J(x)[
··
ϕ (x, τ)] dτ. (51)

Twice integrating by parts the right hand sides of equation (50) and equation (51),
and use of notations (49) leads to (46) and (47).

From the energy equation (18), we get

.

S +
1

ρT0
∇ · q =

1
T0

r. (52)

The convolution of (52) with the constant function 1 in (37) along with (38), (39) and
the expression of W in (45), leads to (48).

The initial conditions (31) result from (46)−(48) by the differentiation with respect
to t of relations (46) and (47), (keeping in mind the notations (45), (49)) followed by
their evaluation at t = 0.

Conversly, let us assume that p ∈ K satisfying the hypoteses of the Theorem 4.1
is given such that (46) − (48) are fulfilled and let us prove that p is a solution of
the mixed problem in B of the LTSMSST. We need to prove that p ∈ K verifies the
initial conditions (31), the motion equations (17) and the energy equation (18).

The initial conditions follow in the same way as in the first part of the theorem.
The energy equation results by the differentiation with respect to time of equation
(48) and then use of property (39)1, while the equations of motion are deduced from
(46) and (47) by the twice differentiating with respect to time and using Leibniz’s
differentiation formula for an integral depending on a parameter. 2

Theorem 4.2. The admissible process p ∈ A is a solution of the mixed problem in
B of the LTSMSST, corresponding to the external system of data in L in (44), if and
only if equations (46) − (48) as well as the equations

i ∗
(∇u + (∇u)T

2
− ε

)
= 0,

i ∗
(
(∇ϕ)T − κ

)
= 0,

i ∗ (∇θ − g) = 0;

(53)


i ∗

(
A[ε] + B[κ] − T0

c
(ρS − α · ε − β · κ) α − T

)
= 0,

i ∗
(
εB + H[κ] − T0

c
(ρS − α · ε − β · κ) β − C

)
= 0,

i ∗
(T0

c
(ρ S − α · ε − β · κ) − θ

)
= 0;

(54)

i ∗
(
K[g] + q

)
= 0; (55)
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i ∗ (û − u) = 0, on Σ1 × I,

i ∗ (t − t̂) = 0, on Σ2 × I,

i ∗ (ϕ̂ − ϕ) = 0, on Σ3 × I,

i ∗ (c − ĉ) = 0, on Σ4 × I,

i ∗ (θ̂ − θ) = 0, on Σ5 × I,

i ∗ (h − ĥ) = 0, on Σ6 × I,

(56)

are satisfied.

Proof. If p ∈ A is a solution of the mixed problem in B of the LTSMSST corresponding
to the external system of data in L in (44), then p is a thermoelastic process satisfying
the boundary conditions (32) and the initial conditions (31). From Theorem 4.1 it
results that equations (46)−(48) are satisfied. The conditions (53)−(56) are obviously
satisfied because their corresponding second factor in the convolution product is equal
to zero.

Conversly, let us suppose that p ∈ A is such that both equations (46) − (48)
and (53)− (56) are satisfied. First, from (56)2, (56)4, (56)6 and the properties of the
convolution product, it results that the boundary conditions (32)2, (32)4 and (32)6 are
fulfilled. Then, from Theorem 4.1 we deduce that p satisfies the motion equations,
the energy equation and the initial conditions. Finally, from equations (53), (54),
(56)1, (56)3, (56)5 and properties of the convolution product, we easily see that the
remaining conditions that need to be fulfilled by a solution of the mixed problem in B
of the LTSMSST are also satisfied and in this way the theorem is completely proved.
2

5 Variational Principles of the LTSMSST

Variational principles for the LTSMSST are naturally suggested by the works of
Gurtin [6], [7], Nickell and Sackman [8], Ieşan [9] and a recent one by Crăciun [10].
In these treatments of various theories of continuum, the quoted authors, using some
operational methods, explicitly introduce the initial conditions appropriate to the
problem into the field equations and governing functionals and derive alternative
characterizations of the problems. The results in this section represent an extension
of these concepts to the LTSMSST.

We shall establish a general variational principle of the LTSMSST which gener-
ates all conditions that must be satisfied by an admissible process p ∈ A in order
to be a solution of a mixed problem in B of the LTSMSST. Several special varia-
tional principles of the LTSMSST can then be derived in the same way as in [6]-[10],
depending on the extent to which certain of the requirements in the definition of a
thermoelastic process are taken to be identically satisfied. From these special cases we
shall take that of a kinematical, thermal and admissible process in B. The obtained
results essentially use three lemmas of the variational calculus presented, for example,
in [7][p.224].
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In this section we shall consider Frechet differentiable functionals defined on the
linear space A or on the set K. If Ω is a such functional, then we formally define
δ
p̃
Ω{p} on A, or on the set K, by

δ
p̃
Ω{p} =

d

dλ
Ω{p + λp̃}

∣∣∣
λ=0

, (57)

where p + λp̃ ∈ A for every real number λ, or p + λp̃ ∈ K, with certain constraints
for p̃ 6= 0. If δ

p̃
Ω{p} exists and it is equal to zero for any p̃ satisfying the above

requirements, then we write
δΩ{p} = 0. (58)

For any t ∈ I and for any external system of data L in (44) we introduce the
functional Λt{·} defined on A by (for sake of brevity, we shall leave out the arguments
x and t of the integrands)

Λt{p} =
∫

B

i ∗
(1

2
ε ∗ A[ε] + ε ∗ B[κ] +

1
2
κ ∗ H[κ]+

+
1
2a

(ρS − α · ε − β · κ) ∗ (ρS − α · ε − β · κ)−

− 1
2T0

g ∗ K[g] − 1
T0

g ∗ q − T ∗ ε − C ∗ κ
)

dv+

+
1
2

∫
B

ρ
(
u ∗ u + J[ϕ] ∗ ϕ

)
dv−

−
∫

B

((
i ∗ ∇ · TT − f̃

)
∗ u +

(
i ∗ ∇ · CT − M̃

)
∗ ϕ

)
dv−

−
∫

B

i ∗ ρ
(
S +

1
ρ T0

∇ · q − W
)
∗ θ dv+

+
∫

Σ1

i ∗ t ∗ û da +
∫

Σ2

i ∗ (t − t̂) ∗ u da+

+
∫

Σ3

i ∗ c ∗ ϕ̂ da +
∫

Σ4

i ∗ (c − ĉ) ∗ ϕ da+

+
1
T0

( ∫
Σ5

i ∗ h ∗ θ̂ da +
∫

Σ6

i ∗ (h − ĥ) ∗ θ da
)
.

(59)

Theorem 5.1. If the heat conduction tensor K is symmetric, then the admissible
process p ∈ A is a solution of the mixed problem in B of the LTSMSST, corresponding
to the external data system L, if and only if

δΛt{p} = 0, for any t ∈ I. (60)

Proof. We have to calculate δ
p̃
Ω{p} by using (57). In all these calculi we use the

definition and the properties of convolution taking into account the identities:{
ε̃ ∗ A[ε] = A[ε̃] ∗ ε = ε ∗ A[ε̃], κ̃ ∗ H[κ] = H[κ̃] ∗ κ = κ ∗ H[κ̃],

ϕ̃ ∗ J[ϕ] = J[ϕ̃] ∗ ϕ = ϕ ∗ J[ϕ̃], g̃ ∗ K[g] = g ∗ K[g̃] = K[g] ∗ g̃;
(61)
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t̃ = T̃T [n] = T̃[n], c̃ = C̃T [n]; h̃ = q̃ · n; (62)

∫
B

(
∇ · T̃T

)
∗ u dv =

∫
∂B

t̃ ∗ u da −
∫

B

T̃ ∗ (∇u)T dv,∫
B

(
∇ · C̃T

)
∗ ϕ dv =

∫
∂B

c̃ ∗ ϕ da −
∫

B

C̃ ∗ (∇ϕ)T dv,∫
B

(∇ · q̃) ∗ θ dv =
∫

∂B

h̃ ∗ θ da −
∫

B

q̃ ∗ (∇θ) dv.

(63)

By using (57), (59) and (61) − (63), after a straightforward calculation one obtains

δ
p̃
Λ{p} =

∫
B

i ∗
(
A[ε] + B[κ] − 1

a
(ρS − α · ε − β · κ) α − T

)
∗ ε̃ dv+

+
∫

B

i ∗
(
εB + H[κ] − 1

a
(ρS − α · ε − β · κ) β − C

)
∗ κ̃ dv+

+
∫

B

i ∗ ρ
(1

a
(ρS − α · ε − β · κ) − θ

)
∗ S̃ dv−

−
∫

B

i ∗ 1
T0

(
K[g] + q

)
∗ g̃ dv −

∫
B

(
i ∗ ∇ · TT + f̃ − ρu

)
∗ ũ dv−

−
∫

B

(
i ∗ ∇ · CT + M̃ − ρJ[ϕ]

)
∗ ϕ̃ dv−

−
∫

B

i ∗ ρ
(
S +

1
ρ T0

∇ · q − W
)
∗ θ̃ dv+

+
∫

B

(∇u + (∇u)T

2
− ε

)
∗ T̃ dv+

+
∫

B

((∇ϕ)T − κ) ∗ C̃ dv +
1
T0

∫
B

(∇θ − g) ∗ q̃ dv+

+
∫

Σ1

i ∗ (û − u) ∗ t̃ da +
∫

Σ2

i ∗ (t − t̂) ∗ ũ da+

+
∫

Σ3

i ∗ (ϕ̂ − ϕ) ∗ c̃ da +
∫

Σ4

i ∗ (c − ĉ) ∗ ϕ̃ da+

+
1
T0

( ∫
Σ5

i ∗ (θ̂ − θ) ∗ h̃ da +
∫

Σ6

i ∗ (h − ĥ) ∗ θ̃ da
)
.

(64)

If p ∈ A is a solution of the mixed problem in B of the LTSMSST from (64) and
Theorem 4.2 it results that

δ
p̃
Λt{p} = 0, (∀) t ∈ [0, +∞) i (∀) p̃ ∈ A, (65)

therefore (60) is satisfied.
Conversly, let us suppose that (60) is fulfilled. This means that (65) is also true.

We choose
p̃ = {ũ,0, 0,0,0,0,0,0, 0,0} (66)
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so that ũ ∈ C∞,∞(B × I) vanishes on the set (N ∩ B) × [0, +∞) together with all
its spatial derivatives, where N is a neighbourhood of the boundary ∂B. With this
choice of p̃, (60) becomes∫

B

(
i ∗ ∇ · TT + f̃ − ρu

)
∗ ũ dv = 0 0 ≤ t < +∞. (67)

Because (67) must be true for any ũ in the class C∞,∞(B × [0,+∞)) which vanishes
near the boundary of the region B, by using the first Lemma in [7] we deduce (46).

Analogous, by choosing in succession p̃ in the forms:

p̃ = {0, ϕ̃, 0,0,0,0,0,0, 0,0}; p̃ = {0,0, θ̃,0,0,0,0,0, 0,0};
p̃ = {0,0, 0, ε̃,0,0,0,0, 0,0}; p̃ = {0,0, 0,0, κ̃,0,0,0, 0,0};

p̃ = {0,0, 0,0,0, g̃,0,0, 0,0}; p̃ = {0,0, 0,0,0, T̃,0,0, 0,0};

p̃ = {0,0, 0,0,0,0,0, C̃, 0,0}; p̃ = {0,0, 0,0,0,0,0,0, S̃,0};
p̃ = {0,0, 0,0,0,0,0,0, 0, q̃},

(68)

where the functions ϕ̃, θ̃, ε̃, κ̃, g̃, T̃, C̃, S̃, q̃ (in the class C∞,∞(B×I)) are such that
they vanish on the set (N ∩ B) × [0, +∞) along with their spatial derivatives (where
N is a neighbourhood of the boundary ∂B) we respectively obtain the relations: (47);
(48); (54)1; (54)2; (55); (53)1; (53)2; (54)3; (53)3.

In tis way, (65) reduces to∫
Σ1

i ∗ (û − u) ∗ t̃ da +
∫

Σ2

i ∗ (t − t̂) ∗ ũ da+

+
∫

Σ3

i ∗ (ϕ̂ − ϕ) ∗ c̃ da +
∫

Σ4

i ∗ (c − ĉ) ∗ ϕ̃ da+

+
1
T0

( ∫
Σ5

i ∗ (θ̂ − θ) ∗ h̃ da +
∫

Σ6

i ∗ (h − ĥ) ∗ θ̃ da
)

= 0,

(69)

for any t ∈ [0,+∞) and for any p̃ ∈ A, where the functions t̃, c̃ and h̃ are given by
(62). By successively choosing the admissible process p̃ in (69) in the forms (66), (68)1,
(68)2, (68)6, (68)7, (68)9, taking into account (62) and using the other two lemmas in
[7], we see that p also satisfies relations (56). These results, together with Theorem
4.2, prove that the admissible process p ∈ A with property (65) satisfies the equations
of motion, the constitutive equations, the geometrical equations, the Fourier law, the
boundary conditions and the initial one. This means that the admissible process p
satisfying equation (60) is a solution of the mixed boundary in B of the LTSMSST
and thus the theorem is proved. 2

Theorem 5.2. Let K be the set of kinematical, thermal and admissible process in B
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of the LTSMSST. For any t ∈ [0, +∞), we define the functional Φt{·} : K → IR,

Φt{p} =
1
2

∫
B

i ∗
(
T ∗ ε + C ∗ κ − ρS ∗ θ +

1
T0

q ∗ g
)

dv+

+
∫

B

(1
2
ρ(u ∗ u + J[ϕ] ∗ ϕ) − F̃ ∗ U

)
dv−

−
∫

Σ2

i ∗ t̂ ∗ u da −
∫

Σ4

i ∗ ĉ ∗ u da − 1
T0

∫
Σ6

i ∗ ĥ ∗ θ da

(70)

for all p = {u, ϕ, θ, ε, κ,g,T,C, S,q} ∈ K. Then

δ Φt{p} = 0 (0 ≤ t < +∞) (71)

at p ∈ K if and only if p is a solution of the mixed problem in B of the LTSMSST.

Proof. Let p ∈ K and p̃ ∈ A be so that

p + λ p̃ ∈ K, (∀) λ ∈ IR. (72)

The condition (72) is true if and only if p̃ satisfies the constitutive equations, the
geometrical equations, vanishing initial conditions and homogeneous boundary con-
ditions on the sets Σ1 × I, Σ3 × I and Σ5 × I.

After a simple calculation, we find

δ Φt{p} = −
∫

B

(
i ∗ ∇ · TT + f̃ − ρu

)
∗ ũ dv−

−
∫

B

(
i ∗ ∇ · CT + M̃ − ρJ[ϕ]

)
∗ ϕ̃ dv−

−
∫

B

i ∗ ρ
(
S +

1
ρ T0

∇ · q − W
)
∗ θ̃ dv+

+
∫

Σ2

i ∗ (t − t̂) ∗ ũ da +
∫

Σ4

i ∗ (c − ĉ) ∗ ϕ̃ da+

+
1
T0

∫
Σ6

i ∗ (h − ĥ) ∗ θ̃ da,

(73)

for any t ∈ [0, +∞), for any p ∈ K and for any p̃ ∈ A satisfying (72). The rest of the
proof of this theorem is similar to the proof of the previous one. 2
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s.Ia, f.1 (1981) 177-184.



Variational Principles in the Linear Thermoelasticity of Solids 59
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[10] Crăciun, I. A., Variational Principles for the Linear Theory of Piezoelectric Mi-
cropolar Thermoelasticity in the Case of a Quasistatic Electric Field, Bull. Pol.
Acad. Sci., Tech. Sci., Vol. 44, 3 (1996) 243-254.

Author’s address:

Ana Crăciun
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