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Abstract

In this paper we define the harmonic wavelet solutions of the fundamental
equations of acoustic linear waves in isotropic media. The solution, given for
the most general values of the physical constant, is parametrized by the scale
(or level) factor of wavelets. In doing so, at each level some more details are
added in order to give a finer model of the evolution.
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1 Introduction

The propagation of linear transverse acoustic waves in isotropic media, in presence
of mechanical relaxation phcenomena [11, 6, 7, 14] is considered from the point of
view of the wavelet theory. The velocity and the attenuation of the waves have been
investigated in [11], where the authors show the relations between the complezr wave
number K and the angular frequency w. This attenuation of the wave was considered
(2] also as a localization in time, leading to a search for a suitable localized bases able
to represent evolution. In this sense wave propagation is interpreted as a superposition
of “small range” waves in the space of the physical variable (time). Moreover since the
wave solution, classicaly, takes into account some complex functions, the basic “small”
wave must be a complex function. This suggests us to apply as investigation tool of
wave propagation, the harmonic wavelets [13], which are complex bases of wavelet
functions. In other words, the wavelet solution of the acoustic waves in isotropic
media is obtained as superposition of harmonic wavelets. Since each wavelet family,
as well as the harmonic wavelets, depends on two parameters: the scale (level or
resolution) factor and the translation factor, the wavelet solution can be investigated
at various levels giving, as a function of the scale, various approximate solution. The
approximation is not intended from numerical point of view but from modeling, in
the sense that we propose a method to visualize, at each scale, the wave propagation.
According the wavelet theory the lower scale gives the coarse approximation. The
model will improve increasing the scale, where more details are present.
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In the following, we compute the harmonic wavelet sclutions of the fundamental
equations of the theory of acoustic waves in isotropic media, showing that the trans-
verse waves, obtained in [11], are harmonic wavelet solutions at the coarsest level.
Harmonic wavelets [13, 12] have an exact analytical expression allowing us to give
the exact expression for the connection coefficients (see also [2]), so that, using the
Galerkin-Petrov method, we obtain the harmonic wavelet solution of the acoustic
waves in isotropic media.

The fundamental equations of the propagation of transverse acoustic waves in
isotropic media reduce to a couple of equations in the displacement and on the scalar
stress function. The wavelet solution, which in general depend on the physical con-
stant will depend also on the level of resolution. At the level N = 0, the time harmonic
solution coincides with the transverse (harmonic) wave solution [2, 11]. We will give
also the general form of the solution at the reolution level N = 1, and in a special
case, fixing the values of the many involved parameters the propagation is explicitly
performed.

2 Preliminary remarks

The theory of acoustic wave propagation in isotropic continuous media, based on the
non-equilibrium thermodynamics (see e.g. [9, 10, 11, 14]), is studied. We assume
that, in the linear approach, the components of the strain tensor e.s are related to
the components of the displacement u, = ua(zg), (o, 8 = 1,2,3), by the equation

1 [Oua | Oug
el =g (S:I:ﬁ T Bxa) ' (1)

and the stress field 7,5 reduces to (see e.g. [2, 11])

def —Pg 0 _ T
g =2 | 0 =P 0
T 0 —P(}

with Py = constant and 7 = 7(z, 1), (z = z1).
We restrict ourselves to transverse propagation so that the displacement

uz = Af(Kz,wt), u; =ups =0 (A4,k,w complex constants), (2)

is a function of a single coordinate. There follows, from (1), that the only unvanishing
components of the strain tensor are A :

€13 = €31 = 197

13 = €31 = 5o
so that the fundamental equations of the transverse waves propagation in the isotropic
medium are [2, 11]
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being p the constant mass density. This system is a set of two coupled equationsg in
the unknown functions f(z,t) (transverse displacement) and 7(z,t) (scalar stress).

The rehological (constant) coefficients Rg))o, RE%O, RE?)I, Régz, which depend o
the material, cannot be given arbitrarily, in fact, due to some stability considerations
the following inequalities [11] ’

R(“'}

205 B, 20, 2 s0, B, 50,

(d)1 (d)2 2
(e) (1) ple) (© o(r) (e)
Rigy = Riajofia)2 205 Rig Rigyg — Rigo 20,

must hold.
It has already been shown [11] that the function

f(Kz,wt) = ¢ikz—wt) (5)

fulfills the system (3) and describes transverse waves. At the same time the fuc-
tions e**, depending on the frequency w, are orthonormal bases functions, therefore
as a generalization of (5) we will consider in the next sections some more general
orthonormal functions which includes (5) as a special case.

3 Time harmonic wavelets

Based on a generalization of the so-called Shannon wavelets, the time harmonic
wavelets are the complex valued functions [12, 13]

entiy
11,}:(:) déf 2—71/2\1,(2171 . k) — 9—n/2 Z e—2m i s(t—k/2") (6)

s=2n
with n,k € N UO, or alternatively [13]
ami(2"t—k) _ p2mi(2"t—k)

27i(2nt — k) ’

€

U(2" — k) =

so that the real part is a combination of “sinc” functions. They are defined in the time
interval (—o0, +oc) with slow decay in time (see Fig. 1), but their Fourier transforms
U7 (w) are disjoint rectangle functions:

~ 1/(2n+17r) 2n+17r <w< 2n+2ﬂ.
by — 1 :
Silw) = { 0 , elsewhere ,

with compact support at each frequency, so that they seems to be an efficient tool
for separating frequencies (such as in the wave propagation). More in general, we can
consider harmonic wavelets based on the interval [0,2~™), with fixed m € N U {0},

R |
n () def 9-n/2 Z e-z"‘”n i s(t—k/2™)

s=2"

?
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with period 2~™ and dyadic intervals (k2=™, (k + 1)2™] , k € Z. So that it might
be possible to reconstruct functions defined in intervals shorter than 1.

Harmonic wavelets have an exact analytical expression and are infinitely differen-
tiable functions, so that from (6), the first and second derivatives are:

n+1'_1
(AR et 2 sk
& = =0 322“ j g Rt
) | (7)
n+1_l
d2@n(¢) - : "
_o—=n/2+2 2_—27 i s(t—k/2")
dz 9-n/ 522“ ws‘e TS .

Fig. 1 exhibits real (thick line) and imaginary (thin line) part of the harmonic
wavelets U9(t), Pi(t), ¥3(t), ¥i(t) (first column, from top to bottom) and their
corresponding first (second column) and second derivatives (third column).

Harmonic wavelets form an orhogonal set of independent periodic functions locally
concentrated at the values k/2", (k,n € Z), with unit period, i.e. based on the unit
interval [0, 1].

3.1 Connection coefficients

Harmonic wavelets are periodic functions thus we restrict to the unit interval [0, 1]
and there we assume as scalar product

ooy /0 F(BaDat |

where the bar stands for the complex conjugate.
From the definition (6) and the equations (7), it easily follows for the linear con-
nection coefficients (see also [12]), applying the Plancherel-Fubini theorem

nm de d n Tm
yom L wp(t), TR (D))

kh T
gEil gl

1
- _2—(n+m)/2+1 i TFS/ 6211' H [[r—s)z—(h/?""—k}2“)]dt
5 e

s=2" r=2m

so that the unvanishing components of the connection coefficients are those for which
n =m.
Since

1
/ 62'” i fdl’ = 650 R
0
with d Kronecker symbol, there follows

gn Y _jlamitl g

,Y;t;n = _2—(n+m]/2+1 Z Z i T e-27r i {h{2"’«—k/2“)6m :

g—"n e L
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and explicitly,

p R |
. _nl=n . -
nm _ =21=" 4 Z gad HElh k}drs g i SR Wy 8
Yen = s,r=2" ( )
0 s B %= om.

In particular, taking into account that £ =0,...,2" -1, A=0,...,2™ — 1, we have
T ==2r1i ,

and up to n = m = 3, the (first order) connection coefficients are the matrices

-1 1
o= e ().

22 _ -1 - ‘
Ta = M g a4 =4 1
1 i -1 —i

vis = (237)A, where A is the matrix of lines

. g 3 ;R ; -1 -1
i w
-1,—1€e4 ", 1 —1¢e3 ’l‘ea""—-l’e'-%‘“
""i 1 - — %
‘ = _ m — 7 ; =
ke T TteT b mre T 4 s -l
-1 - ; -1
-1, —/—, —it,—t1e*" 1, —-1e+ " i, -
e ™ e’j—w
-1 - = 3 i
s b —poi=iliw @Y =DEF 7, §
g x ec?™®
i . = . LA T
!eﬁ‘i 1'{’ ,e—i-ﬂ’ 4] }y *?
[ Hi -1 i
m w
—1e 4 ,z,e;‘.-r, 1,e+“,—z,—-ze* |
. DAL o - 3 - 1 i
1, =124 ,z,e;,‘.-,,,—1,‘:_,+-,r,-~t,—=elT
g o . B 5 -1 -1 :
—ted " 1, —1e 37 1, T —L, —/——— 1.
AR Tl es T

With the exception of 793, all the connection coefficients matrices are singular, in
the sense that det ||y77|| = 0.
Analogously, we have, for the connection coefficients of the second derivative,

nm de d2 n m
kh </ (s TE(), TR (2) =
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[N
wn
o

2n+1_1 2m+1_1

= —9—(n+m)/2+2 Z z rsle=27 i (h/27 ——k/2"‘}6”

g=2n =2

and explicitly

gntl
= —ol=n_ i (h—
nm _ —2%-ng E R (A k)érs , = m, (9)
kh = s r=2"
0 o ¥ B .

With a simple computation we obtain, in the interval [0, 1] the value
I = —dnm,

and, at the first three scale levels, the singular matrices
-1 1
= (7 1)

=] =g 1 1
) -1 -1 1

1 -1 =z
—g 1 1 =1

22 = (1267)

I'3%. = (5507)B, where B is the matrix of lines

i - -3 i - 1

-1, —e* 7, —1,—e 3 7T 1, —e" 4 T, 3, -7 7
-e%", -1, —e* ", =1, —e;“'TL“, i, =™ =%, j§
Vs T il el - e T e~
e LI R P —e+”, -1, —e 3 "1
1, g g X = ] —etT —q, g A

It can be easily checked that for h, k greater than n = m, the connection coeffi-
cients have the periodic properties

nn ST nn — TN
'Yn-f-r n+s Irs Fn+r n+4s — rrs ] (T:S P n) v
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4 Time harmonic wavelet solutions

We restrict to the unit time interval [0, 1] and we assume as a wavelet generalization of
the solution (5) the following function depending on the (scale) level of approximation
N <o

2N 1271

ug = fz,t) = Y Y Br(z)¥p(t) (10)

n=0 k=0

with U (t) given by (6). There follows that when N = 0, we have from (6),
f(z,t) = ABY(x)W3(t) = ABY(z)e~2 i =

so that (10) coincides with (5), in the particular case

ﬁb( ) 2 imT , (11)

we finally recover equation (5) by a scaling of the variables: f(z,t) — f(Kz,wt).
The level N = 0 of harmonic wavelets coincides with the classical harmonic solution.
However at the next levels, essentially finer, the approximation scheme will add more
detailed information on the wavelet solution representation.

We propose, as approximate solution of (3), at the resolution N, the time harmonic
wavelet series:

2N 1271 - .
f@t) = 3 3 (BF@%O+ 8 @TO)
< P! (12)
(z,t)

3, 2, (n}.-‘(:c)'llﬂ(m 'ﬁ;:(:c)@:(t)) :

\ n=0 k=0

I

Taking into account the orthogonality property of the harmonic wavelets with the
corresponding coniugate functions, system (3) becomes

[ Zj Br(z dtg TR(t) =Y ap(z)LR(t)
n,k
R{;}o S np(2) ¥R + an(x)%w;:(t) = Ko S AP0
n,k

L.

€ an d n
+R(: D BR (@) VR + R(Gy) Zﬁk dtgtp HORS

\ n,k
in the two sets of unknown functions 8} (z) and np(z) withn =0,...,2¥ -1, k =
0,...,2" — 1 and, for short, the dot stands for the derivative with respect to z and
2N 12" =1

Z — z Z . An equivalent system must be considered for the corresponding tilde
n.k n=0 k=0
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and the orthonormality of wavelets it is (for ¢ in the interval [0, 1])

( 3 BR @R = i (z)

m,h
( ) )
¢ (;}onk T z :7? T)Ven = R(;)oﬁk (z)+ (13)

+R‘;’,1 Z e (a: e + R{9,) D B (z)rEm
m.h

Thus we obtam a linear (ﬁrst order) ordinary differential system for A7 (z), ni(z)

(and analogously for 8 }(z), n ¥ (z)) whose general solution depends on the initial con-
ditions and is parametrized by the physical constant parameters p, Rmo, Rg:t}}o' Rgi)l ; Rg;))z
and by the geometrical constant coefficients v ,Tin".

4.1 Harmonic wavelet solution at the level N =0

At the lowest resolution level (N =0 = n =k =0), it is 759 = —271 ,T'J = 47 so
that, if we denote by

a=dmp, b= R —27i, c= R - 2miR{) +47R(S), (14)
we have, from (13), the following equations
d
af = Eg" (n=mg ,8 =53)
15
L 8 (15)
7? - dI ’
with a solution given by
B(z) = Ae*™K= | p(z) = A@mi)=Ke*™ke | k2 _om1 L (16)

b be
and the coefficients a, b, c are related to the the medium by (14).

Thus, assuming 87 (z) =8 {(z) ,n5(z) =7 i+ (z), the time harmonic wavelet solu-
tion of (3) at the level N = 0 and with the time scaling t — wt, is
ug(z,t) = Ae?mKe2wt) (g 4) = A(zwi)gxezﬂff“ziu” , (17)

which coincides with the harmonic wave solution already described in [11, p.368).

4.2 Harmonic wavelet solution at the level N =1
At the resolution level N =1=n =0,1, kK =0,1,2, it follows from (13)

2mM =1
pZ > BRI = 0P (z)

m=0 h=0
J 1 2™-1 )
RoR(2) + Y > @il = R AL (z)+ (18)
m=0 h=0

2™ ~1 2™ ~]

1 1
+RG, > O Ar@nr + RO S S ATy

\ m=0 h=0 m=0 h=0
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Since, according to (8),(9) it is 7" =0, n # m and I'}}* =0, n # m, we can define
the following matrices:

Y= @ %, L=T% 6Tk

being & the direct sum of matrices,

W 0 0 & 0 0
y=10 7 v |, I'=[ 0 Tg L4 |,
0o W & o rif ri
or explicitly:
—2mi 0 0 —47 0 0
yi= 0 —-571  5mi W i — 0 —26r 26w
0 omi  —omi 0 26m —267

The unknown functions might be represented by the components of the two vectors:

0 0
def def
1 Uh

so that system (18) can be written as

dn
g = —
prp o
) = g9 98 pe 4B (© dﬁ

or, using the identity matrix I, and defining
-1
A (BT + R v+ BE,T) (R +7)

we have the linear system

dn _

G = PP
dg

a-:-; = A‘q

With the definitions

def (7 def (0 pI
v (3). M2 (37%)

the solution, for the wavelet coefficients, is given by the following Cauchy problem

dy ;
{ B (19)
1!(“) = Un .
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A simple computation, gives the eigenvalues of the matrix M:

M=X=0,=-2/7up, M=2y7pu, As =-2V131 v, ¢ =2V/137 v

o (27r +iR{),) ks
~27R(§)| +4miR{S), — iR(3), o
| des (IOﬁ i 8;0)
\—10n RS, + 52miR{S), —iR(),

: (20)
In general, the eigenvalues A3 ¢ are complex values, and distinct when u # v # 0
(being p # 0); they are real if u, v € R 1 e., taking into account the constraints (4),
it should be R{S), = 0, R )R - R
for the Hooke media [11, 14].

(d)o = =0,sothat p=v = —p/R(dn, like e.g.

By using the Putzer method, the solution can be written as

T

m=2

where
P(M)E T (M - Ad)
k=1
and ry(z), r2(z) ,... ,re(z) are scalar functions given by
d d
"-7'1 = )\1?‘1 g'r—g = /\gi‘"g + 7 ﬁ = AGTG + Ty
dz ; dz y o dz
T (O) = 1 TQ(O) = [ Te (0) = 0.

(21)

Fig. 2 exhibits a surface of the (real) part of the wavelet solution at the level
N =1 of the transverse wave u (left) and the corresponding evolution of the stress
component 7 (right), with ¢; =2, ¢co =0, c3 =4, cs =4, cs =1, ¢ =1, p=
1, kpp = 2,k = 10, being the frequency normalized with respect the unit interval of
-
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According to (20), the solutions of (21) are

r(z) = 1,
re(z) =
(@) = —(1-e VT _2uvaa)/(4ptn)
re(z) = —(e_z“ﬁz-eg“ﬁz+4pﬁx)/(16p377%),
rs(z) = [—2eVI37e )3 /m+13e2#VT2y? (uy/m—vV/137) +
< b o13e26VFE2 (47 40 /TE) -
- 2p (p?-130%) V7 (-1+2vV137z) ]/ (416 ud 02 (p2 — 1302) 75/2)
re(z) = [169 (-—e‘?“ﬁz+62“ﬁ:) V3 T
_ (_e—zudﬁ?z+ezv 137::) w3 V37
+ 52uv (42 —1302) mz|/ (108164343 (42 - 1347) 7°)

\

There follows, that the general solution of (19) is

6
y=T+z M)y, + (Z :"m(m)P““l(M)) Yo -
m=3

where, taking into account (20),

P}(M)=M", P*(M)=M"(M +2 7 pl), P*(M) = M*(M® -4 7 42I) ,

P3(M) = M*(M? —4 7 pi2I)(M +2 V13 7 v]) ,

2_(pT A 0
M_( 0 pAF)'

being

=f 2 (z) ,np(z) =7 (), with a suitable scaling of the variables, the

Assuming S7( )
u(z,t) of the velocity is

z)
component u3(z,t)
u(r,t) = BY(Kz)(T(wt) + TY(wt)) + By (Kz) (Td(wt)+
+ Tgwt)) + B (Kz) (T (wt) + Tl (wt)) ,
and analogously for 7 we have,
rz,t) = nd(Kz) (T3(wt) + T3(wt) + mb(Ke) (Th(wt)+
+ Ty(wt)) + i (Kz) (L (wt) + Ti(wt)) -

Of course the solutien depends on the physical parameters, expressed by p and v.
For instance, assuming pu = ky ¢ ,v =k, ©, (km ,kn € R), and simplifying the
dependence on w, K, the real part of the displacement is

sin2wtcosbt
2mt(2¢t — 1)

u(z,t) = [c1(4t = 1) + (c3 +cq)(2t — 1) cos 2k /7 2+
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-+ (cs+c5)cos2knv137r:r.] :

being ¢; ,c2 ,¢3 ,¢4 ,C5, C constant of integration, and the scalar stress component
is

_ P - : -
r(z,t) = T RO TS [2V7Tka(2t = 1)(c3 + ca)sin2 VT km z

—V137 km(cs + cg)(sin8 7t — sin4mt)sin2 V137 ky x] .

As can be seen from Figure 2, the evolution in time, both of the displacement
(wave propagation) and of the stress component, is represented by a superposition of
wavelets, which add more details at each level of the approximation. This method
allows us to modelling wave propagation by focusing on the role played by each level
of approximation on the resulting evolution. Moreover the localization of wavelets
would be an expedient tool for the analysis of the propagation of solitary waves. This
approach could be considered, for instance, as a suitable tool for the investigation of
an initial profile (solitary wave) localized in space and with a fast decay (say within
t < 1), also in presence of some nonlinearities (see e.g. [1, 4, §]).

400 75000 |

1A

T LT |

i@ﬂ

A

=4 ~75000 |

Fig. 1
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