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Abstract

In §1 we consider a certain weak pseudo-Riemannian Beyl-type metric on a
space-time manifold M and its associated Berwald-type nonlinear connection N
on TM . For TM endowed with an (h, v)-metric structure, we outline the proce-
dure of obtaining the canonic N -connection, its d-torsions and curvatures. In §2
we apply a Finslerian perturbation of Beil type to the weak metric, which yields
a pseudo-Riemann - Finslerian (h, v)−metric structure on TM and determine
the Einstein equations of the obtained model. This standpoint can provide the
possibility of producing gravitational waves using two electromagnetic fields. In
§3 and §4 are determined the equations of the stationary curves and of their
deviations. Their analytic solutions are derived, and the special cases of h− and
v−paths are emphasized.
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1 Introduction

In a recent work, P.C.Stavrinos [21] introduced the concept of gravitational waves in
a Finsler space. The study was extended by the authors in the framework of vector
bundles endowed with (h, v)−metrics introduced by R.Miron, and M.Anastasiei [14],
[16] and the one of osculator spaces Osck(M) of higher-order geometries [13], [15] for
the case k = 1. Thus, an initial deformed gravitational model produced the FWDM
and CWDM models for General Relativity [5] on the tangent bundle (TM, π,M) of
a given space-time M .

Editor Gr.Tsagas Proceedings of The Conference of Applied Differential Geometry - General Rela-
tivity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 2000, 7-22
c©2002 Balkan Society of Geometers, Geometry Balkan Press



8 V. Balan, P.C. Stavrinos and K. Trenčevski

In this work we study the geometrical structure of an (h, v)−metric produced
by a Beil-type deformation of a weak pseudo-Riemannian metric γij defined on a
real 4-dimensional differentiable manifold M . The weakness of the gravitational field
is expressed by the decomposition of the metric γij into the flat Minkowski metric
nij = diag(−1, 1, 1, 1) and a small perturbation ε

(1)
ij (x) [5], [21], [22]

γij(x) = nij + ε
(1)
ij (x), (1)

where εij = ε
(1)
ij is a symmetric tensor field with |ε(1)

ij (x)| << 1. Throughout the
paper, the indices are raised in the linearized approach via the flat metric nij , e.g.,
εrs = nrinsjεij . This permits to consider the linearized version of a given model of
General Relativity, in which the symmetric tensor field ε

(1)
ij propagates in the weak

pseudo-Riemannian gravitational field γij .
In our case, both the weak perturbation and the Finslerian deformation originate

in the Beil Finslerian fundamental function defined on the tangent bundle [9]

F (x, y) = [(nij + λbibj)yiyj ]1/2, (2)

where λ ∈ R , the 1-form {bi(x, y)} is 0-homogeneous by y and we denoted by (xi, ya)
the local coordinates in a chart Ũ ⊂ TM . Then F provides the Finsler metric tensor
field

ε̃ij(x, y) =
1
2
(∂2F 2/∂yi∂yj) = nij + λb̃ib̃j + λ(bsy

s)(∂b̃i/∂yj). (3)

with b̃i = ∂(bsy
s)/∂yi. If one considers the case when b̃i satisfies the relation

∂b̃i/∂yj = 0 ⇔ (∂2bs/∂yi∂yj)ys + ∂bi/∂yj + ∂bj/∂yi = 0, (4)

i.e., is position-independent, a somewhat tedious but straightforward computation
shows, using the first equality of (3), that in this case the fundamental function (2)
satisfies bi = bi(x) = b̃i(x). Hence, in case that (4) holds, the Finsler space is pseudo-
Riemannian. Then we may consider the weak Beil-type perturbation of n given by

γij(x) = nij + bi(x)bj(x). (5)

Then, the canonic non-linear connection on TM provided by γij(x) is

Na
i (x, y) = γa

jby
b, (6)

where γi
jk are the Christoffel symbols of the metric; this produces on X (Ũ) the local

adapted basis
{δi = ∂i − N b

i ∂b, ∂̇a}i,a=1,4 ≡ {δβ}β=1,8, (7)

with ∂i = ∂
∂xi and ∂̇a = ∂

∂ya , as well as the dual local basis

{di = dxi, δa = δya = dya + Na
j dxj}i,a=1,4 ≡ {δβ}β=1,8. (8)
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Throughout the paper, the Latin indices i, j, k, . . . , a, b, c, . . . run in the range 1, 4,
while the Greek ones α, β, γ, . . ., in the range 1, 8.

The Finslerian deformation of the weak metric γij considered in the next section
will provide a certain (h, v)−metric on TM . Generally, given a (h, v)−metric on the
tangent bundle (TM, π,M) [14],

G = gij(x, y)dxi ⊗ dxj + hab(x, y)δya ⊗ δyb, (9)

this provides a canonical N−connection D, with the coefficients

{Li
jk, L̃a

bk, C̃i
ja, Ca

bc} ≡ {Γα
βγ}

explicitely given by [14]

Li
jk = 1

2gis(δ{jgsk} − δsgjk), L̃a
bk = ∂̇bN

a
k + 1

2hac(δkhbc − hc{d∂̇b}N
d
k )

C̃i
ja = 1

2gih∂̇agjh Ca
bc = 1

2had(∂̇{bhdc} − ∂̇dhbc),
(10)

which preserves the h−v splitting produced by N , is metrical, h− and v− symmetrical,
and depends on N and G only.

Its torsion tensor field T ∈ T 1
2 (TM) has the coefficients

T κ
β α = Γα

[βκ] + Bα
[βκ], T (δα, δβ) = T κ

β αδκ, (11)

where we denoted τ[αβ] = ταβ −τβα and where the non-holonomy coefficients B γ
α β are

defined by [δα, δβ ] = B γ
α βδγ . The h, v−splitting of T provides the torsion N−tensor

fields [14]

T i
jk = diT (δk, δj) = Li

[jk], Ra
kl = δaT (δl, δk) = δ[lN

a
k],

P i
ja = diT (∂̇a, δj) = C̃i

ja, P a
bk = δaT (δk, ∂̇b) = ∂̇bN

a
k − L̃a

bk,

Sa
bc = δaT (∂̇c, ∂̇b) = Ca

[bc],

(12)

Similarly, the curvature tensor field R ∈ T 1
3 (TM) of the N−connection D has the

coefficients given by

R α
β γθ = δ[θ−α

βγ] + −φ
β[γ−

α
φθ] + −α

βφB
φ
γθ, R(δα, δβ)δγ = R λ

γ βαδλ, (13)

and its h, v−splitting of R provides the curvature N−tensor fields

R i
j kl = diR(δl, δ‖)δ| = δ[lL

〉
|‖] + L〈

|[‖L
〉
〈l] + ♥C〉

|aR
a
‖l (14)

R̃ a
b kl = δaR(δl, δ‖)∨∂b = δ[l

♥La
b‖] + ♥Lc

b[‖
♥La
cl] + Ca

bcR
c
‖l

P i
j kc = diR(∨∂c, δ‖)δ| = ∨∂cL

〉
|‖ − (δ‖♥C

〉
|c + L〉

〈‖
♥C〈
|c − L〈

|‖
♥C〉
〈c −

♥Lb
c‖
♥C〉
|b) + ♥C〉

|bP
b
‖c

P̃ a
b kc = δaR(∨∂c, δ‖)∨∂b = ∨∂c

♥La
b‖ − (δ‖Ca

bc + ♥La
d‖C

d
bc −

♥Ld
b‖C

a
dc − ♥Ld

c‖C
a
db) + Ca

bdP
d
‖c

S̃ i
j bc = diR(∨∂c, ∨∂b)δ| = ∨∂[c

♥C〉
|b] + ♥C〈

|[b
♥C〉
〈c]

S a
b cd = δaR(∨∂d, ∨∂c)∨∂b = ∨∂[dCa

bc] + Ce
b[cC

a
ed].
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These geometrical objects are basic for infering the Einstein equations of the linearized
deformed models defined in the following section.

2 The Beil - Finslerian deformed weak model

The Beil-type deformation of the weak metric γij is produced by a Finslerian pertur-
bation of the pseudo-Riemannian gravitational field γij , which leads to the generalized
Finslerian metric [21]

fij(x, y) = γij(x) + ε(2)
ij(x, y) = ηij + ε

(1)
ij (x) + ε̃ij(x, y), (15)

where the Beil-type Finslerian perturbation ε(2)
ij(x, y) coincides with the Finslerian

metric tensor field ε̃ in (3), assumed to satisfy the condition |ε(2)
ij(x, y)| ¿ 1 in order

that fij be non-degenerate. Moreover, the tensor

ε∗ij(x, y) = ε
(1)
ij (x) + ε̃ij(x, y) (16)

provides a weak Finslerian perturbation of the Minkowski metric nij , and vanishes
iff γij is flat. This point of view permits us to consider (h, v)−metric v−Finslerian
or v−Lagrangian approaches. Note that for ε̃ij one can consider the Finsler metric
tensors provided by different physically significant choices for bi(x, y) in (2) [9], like

ba ∈

{
ya

sbyb
,

Aby
bsa

sbvb
,

√
ybybsa

sbyb
,

yby
bsa

(sbyb)2
,

ya√
ybyb

,
Aby

bya

(sbyb)2

}
, (17)

where Aa(x) and sa(x) are vectors to be specified and ya = ε̃aby
b. From the physi-

cal point of view, the weak Finslerian gravitational field fij appears as a Finslerian
perturbation ε∗ij of a Minkowski space-time (M,nij). A pseudo-Riemannian weak
gravitational field can constitute a first order perturbation of the Minkowski space-
time. Although the Beil metric can be applied for the strong gravity acting at the
hadronic level, here we deal with the Beil-type deformation of the weak metric γij .
This is produced, in the classical point of view, by the interaction of two electromag-
netic potentials bi(x), bj(x). By the predictions of the conventional general relativity,
when an electromagnetic (e.m.) wave passes through an electromagnetic field, it pro-
duces a gravitational wave of the same frequency. This gravitational wave, when
propagating through another electromagnetic field, creates an e.m. wave [20].

We considered in (15) the perturbation ε̃ij within the geometrical framework de-
veloped by R.G.Beil [9]. But valid models seem to provide as well the Kaluza-Klein
ansatz or the one of the Randers-type Yang-Mills theory [7], [8]; in these cases the
Finslerian perturbation of the pseudo-Riemannian metric is provided by the electro-
magnetic field, or by a gauge or spinor extension of the pseudo-Riemannian gravita-
tional field. In each of this models, the original pseudo-Riemannian model appears
as a limiting case. Hence the correspondence principle between the Finslerian and
pseudo-Riemannian structures depends basically on the type of the generalized Finsler
or Lagrange space associated to the deformed metric.
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Note that the deformed metric fij(x, y) is of Finsler type itself, providing on
TM a particular case of a generalized Lagrange structure GLn = (M,fij) in the
sense of R.Miron [14]. Then one might consider the almost Hermitian model of GLn,
given by the N−lift of fij to TM and by the canonic adapted complex structure

J ∈ End(X (M)) having locally the associated matrix [J ] =

(
0 −I4

I4 0

)
. This yields

an almost Kahler structure, which is Kahler in case that ε
(1)
ij = const. and ε̃ij(x, y) =

ε̃ij(y), i.e., when bi(x) = bi = const and the Finsler metric is Minkowski.

As an alternative approach which we follow hereafter, we build on TM the (h, v)−
metric provided by the two adjusted components n + ε(1) and ε(2) = 1

F 2 ε̃ of the weak
Finslerian metric (15),

G = (nij + bi(x)bj(x)) dxi ⊗ dxj + ε(2)
ab(x, y)δya ⊗ δyb, (18)

with

ε(2)
ij(x, y) =

1
F 2(x, y)

ε̃ij(x, y) =
1

F 2(x, y)

(
nij + λb̃ib̃j + λ(bsy

s)(∂b̃i/∂yj)
)

,

where in view of preserving the dimensionality in the directional variables, the Beil
metric ε̃ij(x, y) is scaled by the conformal factor F−2(x, y). We call the metric struc-
ture (TM,G), the Beil-Finslerian deformed weak model (B-FDWM).

We note that though the deformation of type

f̃ij(x, y) = γij(x) + ε
(1)
ij (x) +

1
F 2(x, y)

ε̃ij(x, y)

is nolonger proper Finslerian (due to the lack of 0-homogeneity in the last term), the
adjusted lift G on TM satisfies this property.

In particular, if ε(2) depends on y only, then G is a pseudo-Riemann - locally
Minkowski (h, v)−metric, and the gravitational field of this space is called weak
Riemannian-locally Minkowski gravitational field. In the linear approach, the Christof-
fel symbols γi

jk of the weak metric γij will take the linearized form γ̄i
jk given by ([21],

[5])

γ̄i
jk =

1
2
nis(∂{jεsk} − ∂sεjk) =

1
2
nis(b{jk}bs + b[sk]bj + b[sj]bk) ≈ γi

jk, (19)

where we denote τ{ij} = τij + τji and bsj = ∂jbs. The nonlinear connection is also
approximated by the weak nonlinear connection

N̄a
i = εa

iby
b =

1
2
nac(b{i0}bs + b[s0]bi + b[si]b0) ≈ Na

i , (20)

where the null index denotes the transvection with y.
We also note that in particular, if b = bi(x)dxi is a potential 1-form with bi = ∂ib,

then
γ̄i

jk = εibjk, N̄a
i = εabj0, (21)
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where εi = 1 − 2δi
1, i = 1, 4.

For obtaining the Einstein equations of the deformed model, we set first the fol-
lowing

Lemma 1. a) The coefficients of the canonic linear N−connection D of the
linearized B-FDWM are

Li
jk = L̃i

jk = γ̄i
jk ≈ γi

jk, C̃i
ja = 0; Ca

bc =
1
2
ε̃adCdbc, (22)

where Cabc = ∂̇aε̃bc is the Cartan tensor field associated to ε̃ij.
b) The N−fields of torsion of the linearized B-FDWM are null

T i
jk = 0, C̃i

ja = 0, P a
kb = 0, Sa

bc = 0, (23)

except the curvature d-tensor field of N ,

Ra
jk = r a

c jkyc =
1
2
nis

(
bs∂

2
[k0(bsbj]) + ∂2

[js(b0bk])
)

. (24)

c) The N−fields of curvature of the linearized B-FDWM are

R i
j kl = r i

j kl, R̃ a
b kl = r a

b kl, P i
j kc = 0,

P̃ a
b kc = −(δkCa

bc + γ̄a
dkCd

bc − γ̄d
{bkCa

dc})

S i
j bc = 0, S̃ a

b cd = Cs
b[dC

a
c]s,

where r i
j kl is the linearized weak curvature,

r i
j kl = ∂[lγ̄

i
jk] =

1
2
nis(∂2

[ljεsk] + ∂2
[ksεjl]) =

=
1
2
nis(bs∂

2
[ljbk] + ∂[lbs · ∂jbk]+

+∂jbs · ∂[lbk] + b[k∂2
l]jbs + ∂2

[ks(bjbl])).

(25)

In the linearized potential case, the horizontal curvature simplifies:

r i
j kl =

1
2
nis∂[lbs · ∂jbk].

By straightforward computation, the hh−Ricci N−tensor field and the horizontal
scalar of curvature are [5]

Rij ≡ R k
i jk = r k

i jk = rjk = 1
2 (2εij + ∂2

ijε − ∂2
{jsε

s
i}),

R = r = 2ε − ∂2
ijε

ij ,
(26)

where ε = nijεij , and ”2” denotes the d’Alambertian

2 = −∂2
00 + ∂2

11 + ∂2
22 + ∂2

33 ≡ −∂2
tt + ∂2

xx + ∂2
yy + ∂2

zz.
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In the considered model, we have

Lemma 2. a) The Ricci N−tensor fields of the linearized B-FDWM are

Rij = 1
2εs[bs∂

2
[sibj] + ∂[sbs · ∂ibj]+

+∂ibs · ∂[sbj] + b[j∂
2
s]ibs + ∂2

[js(bibs])];

Pjb ≡ P k
j kb = 0 P̃bk ≡ P̃ d

b kd = −(δkCa
ba − εd

bkCa
da)

Sab ≡ S d
a bd = Ce

a[dC
d
b]e,

(27)

In the linearized potential case we have

rjk =
λ

2
εi(∂ibi · ∂jbk − ∂kbi · ∂jbi).

b) The Ricci scalars of curvature of the linearized B-FDWM are

R = 1
2εiεj

[
bi∂

2
[ijbj] + ∂[ibi · ∂jbj] + ∂jbi · ∂[ibj] + b[j∂

2
i]jbi + ∂2

[ji(bjbi])
]
,

S = Ce
b[dC

d
c]eε̃

bc,
(28)

and in the linearized potential case we have

r =
εiεj

2
(
bjk[kbj] + b[jkbjk]

)
,

where we denoted bijk = ∂2
jkbi = ∂3

ijkb.

Theorem 1. The Einstein equations of the linearized B-FDWM are

Rij − 1
2 (R + S)nij ≡ 1

2 (2εij + ∂2
ijε − ∂2

{jsε
s
i}) − nij(R + S) =

= κTij

Sab − 1
2 (R + S)ε̃ab ≡ Ce

a[dC
d
b]e −

1
2 ε̃ab(R + S) = κTab

P̃jb ≡ 0 = −κTjb,

Pbk ≡ −(δkCa
ba − εd

bkCa
da) = κTbk,

(29)

where Tij , Tab, Tjb, Tbk are the energy-momentum N−tensor fields, and κ is a con-
stant.
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Theorem 2. The conservation laws for the Einstein equations of the linearized
B-FDWM are

εi

2
(2εij + ∂2

ijε − ∂2
{jsε

s
i})|i−

−δij(R + S)ε̃ac(δjC
b
cb − γ̄d

cjC
b
db)|a = κ

(
εiTij |i + εaTaj|a

)
,

ε̃ca
(
Ce

a[dC
d
b]e −

1
2 ε̃ab(R + S)

)
|
c

= κ
(
εiTib|i + εcTcb|c

)
,

(30)

where |i and |
a

are respectively the h− and the v−covariant derivations of N−tensor
fields induced by the N−connection ∇.

3 The stationary curves of the linearized B-FDWM

Let c : I = [a, b] ⊂ R → TM be a smooth curve, such that its image lies in a chart
Ũ ⊂ TM ,

c(t) = (xi(t), ya(t)) ≡ (yα(t)),∀t ∈ I,

and let D be a linear N−connection on TM .

Definitions. a) We shall call the covariant velocity field and respectively the
covariant force on the curve c, the fields defined on c by

V = Vαδα, Vα =
δyα

dt

F =
DV
dt

= Fαδα, Fα =
δVα

dt
+ Γα

βκVβVκ, α = 1, 8,

(31)

b) We shall say that c is a stationary curve with respect to D iff F = 0 along the
curve.

c) The curve c is called h−curve, if πv(V) = 0, and v−curve, if πh(V) = 0, where
by πh and πv we denote respectively the h− and v−projectors of the canonic splitting
induced by N . If a h-/v-curve satisfies also the extra condition F = 0, then it is
called h-/v-path, respectively.

In applications, the covariant force determines the non-linear connection. E.g., for
the covariant force Fα = Eα

β yβ , with Eαβ = b[αβ] a Beil-type field, the corresponding
non-linear connection is

Na
j = γa

ijy
j − Ea

j . (32)

In the linearized approach, the h−paths project onto geodesics of M , and are solutions
of the Volterra-Hamilton-type second-order differential system

dya

dt
+ Na

j (x(t), y(t))
dxj

dt
= 0

d2xi

dt2
+ Li

jk(x(t), y(t))
dxj

dt

dxk

dt
= 0, a, i = 1, n (n = 4),

(33)
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which in the linearized B-FDWM rewrites as the first-order system
dyi

dt
= −γ̄i

jk(x(t)) · yj(t)zk(t),
dxi

dt
= zi(t)

dzi

dt
= −γ̄i

jk(x(t)) · zj(t)zk(t), i = 1, n.

(34)

The equations of motion described above can physically interpret the gravitational
interaction caused by electromagnetic fields. The system (33) with the unknowns
xi = xi(t), yi = yi(t), zi = zi(t), i = 1, n provides for initial conditions

xi(0) = xi
0, yi(0) = yi

0, zi(0) = zi
0,

a Cauchy problem which is tractable numerically (e.g., using a Runge-Kutta type
algorithm). Note that in the case of Beil type weak non-linear connection by (32),
the above system takes the form

dya

dt
+ εa

jkyjyk = Ea
j (x)yj , a = 1, n. (35)

Moreover, in the analytic case of the linearized B-FDWM, the coefficients of the
system (34) decompose in Taylor series

γ̄i
jk = f i

[u]jkxu, (36)

where we denoted [u] = (u1, . . . , un) ∈ N
n
, x = (x1, . . . , xn), xu = (x1)u1 · (x2)u2 · . . . ·

(xn)un , and consequently (34) rewrites

dxi

dt
− zi(t) = 0,

dyi

dt
+ f i

[u]jkxuyjzk = 0,

dzi

dt
+ f i

[u]jkxuzjzk = 0, i = 1, n.

(37)

We remark that (37) is of the type

dxi

dt
+ Ai

[u][v][w]x
uyvzw = 0,

dyi

dt
+ Bi

[u][v][w]x
uyvzw = 0,

dzi

dt
+ Ci

[u][v][w]x
uyvzw, i = 1, n,

(38)

with the coefficients

Ai
[u][v][w] = −δ

[0]
[u]δ

[0]
[v]δ

〈i〉
[w],

Bi
[u][v][w] = f i

[u]jkδ
〈j〉
[v] δ

〈k〉
[w] ,

Ci
[u][v][w] = f i

[u]jkδ
[0]
[v]δ

〈jk〉
[w] ,

(39)
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where we denoted

[0] = (0, . . . , 0), 〈j〉 = ej , 〈jk〉 = ej + ek, j, k ∈ 1, n,

and ej = (0, . . . , 0, 1, 0, . . . , 0), with 1 on the j−th position. Then applying the general
theory described in [25], we obtain the following

Theorem 3. The analytic solutions of the system (34) are given by

xi =
∞∑

m=0

(−t)m

m!
Pm
〈i〉[0][0][u][v][w]a

ubvcw

yi =
∞∑

m=0

(−t)m

m!
Pm

[0]〈i〉[0][u][v][w]a
ubvcw

zi =
∞∑

m=0

(−t)m

m!
Pm

[0][0]〈i〉[u][v][w]a
ubvcw, i = 1, n

(40)

where a = x(0), b = y(0), c = z(0) ∈ R
n
, P 0

[α][β][γ][u][v][w] = δ
[u]
[α]δ

[v]
[β]δ

[w]
[γ] and

Pm+1
[α][β][γ][u][v][w] =

d

dt
Pm

[α][β][γ][u][v][w] +
∑

[η],[µ],[ν]∈N

Pm
[η][µ][ν][u][v][w]·

·

(
n∑

s=1

αsA
s
[η]−[α]+〈s〉,[µ]−[β],[ν]−[γ]+

(41)

+
n∑

s=1

βsB
s
[η]−[α],[µ]−[β]+〈s〉,[ν]−[γ]+

+
n∑

s=1

γsC
s
[η]−[α],[µ]−[β],[ν]−[γ]+〈s〉

)
, m ∈ N.

Remark that for the linearized case system (34), the recurrence relation above be-
comes

Pm+1
[α][β][γ][u][v][w] =

d

dt
Pm

[α][β][γ][u][v][w]+

+
n∑

s=1

(
αsP

m
[α]−〈s〉,[β][γ]+〈s〉,[u][v][w]+

+
∑

[η]∈N

βsf
s
[η]−[α],jk · Pm

[η],[β]+〈j〉,[γ]+〈k〉,[u][v][w]+

+
∑

[η]∈N

γsf
s
[η]−[α],jk · Pm

[η],[β],[γ]+〈j〉+〈k〉,[u][v][w]

)
.

(42)

Regarding the v−paths of the linearized B-FDWM, these coincide with the v−paths
of the Finsler space (M,F (x, y)), with F 2 = ε(2)

ab(x, y)yayb, and any v−path c : I ⊂
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R → TM, c(t) = (xi
0, y

a(t)) is a solution of the second-order differential system

d2ya

dt2
+ Ca

bc(x0, y(t))
dyb

dt

dyc

dt
= 0. (43)

In the analytic case, a similar approach as for h−paths can be applied to this system
as well. Since we have x(t) = x0 = const, the coefficients of the system decompose in
Taylor series

Ci
jk = gi

[u]jkyu, (44)

and hence (43) rewrites

dyi

dt
− zi(t) = 0,

dzi

dt
+ gi

[u]jkyuzjzk = 0, i = 1, n, (45)

Note that this is of the type

dyi

dt
+ Ai

[u][v]y
uzv = 0,

dzi

dt
+ Bi

[u][v]y
uzv = 0, i = 1, n (46)

with the coefficients

Ai
[u][v] = −δ

[0]
[u]δ

〈i〉
[v] , Bi

[u][v] = gi
[u]jkδ

〈jk〉
[v] , i = 1, n. (47)

Theorem 4. The analytic solutions of the system (43) are given by

yi =
∞∑

m=0

(−t)m

m!
Pm
〈i〉[0][u][v]a

ubv

zi =
∞∑

m=0

(−t)m

m!
Pm

[0]〈i〉[u][v]a
ubv, i = 1, n,

(48)

where a = y(0), b = z(0) ∈ R
n
, P 0

[α][β][u][v] = δ
[u]
[α]δ

[v]
[β] and

Pm+1
[α][β][u][v] =

d

dt
Pm

[α][β][u][v] +
∑

[η],[µ]∈N

Pm
[η][µ][u][v] · (49)

·
n∑

s=1

(αsA
s
[η]−[α]+〈s〉,[µ]−[β] + βsB

s
[η]−[α],[µ]−[β]+〈s〉), m ∈ N.

It is worthy to note that in the linearized case (34), the recurrence relation (49)
becomes much simpler,

Pm+1
[α][β][u][v] =

d

dt
Pm

[α][β][u][v] +
n∑

s=1

(
αsP

m
[α]−〈s〉,[β]+〈s〉,[u][v] + (50)

+
∑

[η]∈N

βsP
m
[η],[β]−〈s〉+〈j〉+〈k〉,[u][v]

)
, m ∈ N.
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4 Deviation of stationary curves in the linearized
B-FDWM

Let now c : I1 × I2 ⊂ R
2
→ Ũ ⊂ TM be a family of stationary curves, having t as

arc-length parameter, and u the deviation parameter [19], [10],

c(t, u) = (xi(t, u), ya(t, u)) = (yα(t, u)) ∈ Ũ , ∀(t, u) ∈ I1 × I2.

where Ũ ⊂ TM is an open domain. Then let Z = Zαδα be the deviation vector field,
given by

Zi = ∂uxi, Za = ∂uya + Na
i ∂uxi,

and let V = Vαδα be the velocity vector field, where

Vi = ∂tx
i, Va = ∂ty

a + Na
i ∂tx

i.

For any vector field W = Wαδα, defined on the family of curves Im(c), we can
consider the partial covariant derivatives

δtWα = ∂tWα + Γα
βγWβVγ , δuWα = ∂uWα + Γα

βγWβZγ . (51)

The equations of deviations of the family with respect to the connection D characterize
the tidal force Z, and have the form ([1], [5], [6])

δ2
t Zα + δtT α = ρα + δuFα, α = 1, 2n, (52)

where we denoted T α = T α
β γVβZγ and ρ α = R α

β γλVβZγVλ. These equations can be
rewritten as

∂2
t Zα + Xα

γ ∂tZγ + Y α
γ Zγ + Lα = 0, α = 1, 2n, (53)

where
Xα

γ = (T α
βγ + 2Γα

γβ)Vβ , Lα = −δuFα

and

Y α
γ = δt[(T α

βγ + Γα
γβ)Vβ ] + (T α

σβ + Γα
βσ)Γβ

γµVσVµ−

−R α
β γλVβVλ, α, γ = 1, 2n.

Then, denoting {ξA}A=1,4n = {Zα, ∂tZβ} and {LA}A=1,4n = {0, ∂uFα} as 4n−column
vectors, and considering the 2n × 2n−matrices X and Y of entries Xα

γ and Y α
γ re-

spectively, the system (53) rewrites in matrix form

∂tξ + Pξ + L = 0 ⇔ ∂tξ
A + PA

B ξB + LA = 0, A = 1, 4n, (54)

where P =
[

0 −I2n

Y X

]
. Denoting by {ξA(0)} = {Zα(0), ∂tZβ(0)} the initial condi-

tion column 4n−vector, we define the subsequent vectors

QA,m = {Qα,m
1 , Qβ,m

2 }, m ∈ N
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inductively as follows: QA,0 = ξA(0), i.e., Qα0
1 = Zα(0), Qβ0

2 = ∂tZβ(0), and

QA,m+1 = ∂tQ
A,m + PA

B QB,m + LA, A = 1, 4n, m ∈ N,

i.e. 
Qα,m+1

1 = ∂tQ
α,m
1 − Qα,m

2 ,

Qβ,m+1
2 = ∂tQ

β,m
2 + Y β

γ Qγ,m
1 + Xβ

γ Qγ,m
2 − ∂tF

β , α, β ∈ 1, 2n, m ∈ N.

Applying the procedure described in [26] for systems of nonhomogeneous PDE in the
special case when the number of variables is 1, we finally obtain

Theorem 5. The analytic solution of the system of PDEs (54) is given by

ξA =
∞∑

m=0

(−t)m

m!
QA,m, A = 1, 4n

and as consequence the solution of (52) is

Zα =
∞∑

m=0

(−t)m

m!
Qα,m

1 , α = 1, 2n.

Remark also that the equations (52) split

δ2
t Zi + δtT i = ρi + δuF i, δ2

t Za + δtT a = ρa + δuFa, (55)

and hence for paths these considerably simplify. E.g., if c is an h-path, (55) become

δ2
t Zi + δtT i = ρi, δ2

t Za + δtT a = 0. (56)

The equations of deviations of paths presented above are particular cases of the ones
in ([4], [1], [5], [6]), of the extended Finslerian case developed in [19]. Alternatively,
the study of deviation of geodesics for the Finslerian case n+ε(1)+ε(2) was performed
in [21], [23].

Conclusions. The weak pseudo-Riemannian gravitational model was extended
by considering a Beil–type deformation of the weak pseudo-Riemannian metric γij of
the 4-dimensional base space M which provides an (h, v)−metric on TM . The con-
sidered model fits in the general theory of (h, v)−metric structures on vector bundles
developed in [14], [16], [17], [5], [4]. In this framework, the explicit Einstein equa-
tions and the equations of stationary curves and of their deviations were determined
for the canonic linear N−connection, with the Berwald-type nonlinear connection N
considered in linearized approach. The ability of revelation of the gravitational waves
in these spaces is possible under the study of the weak field, since the wave vectors
of the weak field theory are intrinsically incorporated in spaces in which the elements
depend on the position and the direction.

Acknowlegment. The authors express their gratitude to Prof. R.G.Beil for the
valuable remarks on the current topic.
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