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Abstract. The paper analyses a control differential system on a cylindrical hyper-
surface in R6 or R4. This system is a model for the position of a trailer relative to
the cab which is pulling it, and therefore our results extend those of [2], [3].
§1 formulates the model problem and defines the notion of jackknifing. §2 describes
the influence of the radius of curvature of control curve upon the jackknifing. §3 refers
to trailer-truck jackknifing, explicit examples and MAPLE 6 simulations.
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1 Model of articulated bars moving

We consider two articulated bars BA and AC, like in the Fig.1, which are moving in
the following conditions:

1) B = β(t), A = α(t), t ∈ I = [0, a], BA = ᾱ(t) − β̄(t), where the curves
α, β : I → R3 are C∞;

2) ˙̄β(t) is collinear to BA, ˙̄α(t) is collinear to AC;
3) ||BA|| = constant, and the point β(0) is given.

Some problems require to model the trajectory β : I → R3 as follows. First, after
calibration, we can accept

||BA||2 = ||ᾱ(t)− β̄(t)||2 = 1. (1)
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This condition implies the relation

( ˙̄α(t), ᾱ(t)− β̄(t)) = ( ˙̄β(t), ᾱ(t)− β̄(t)). (2)

Consequently the collinearity condition

˙̄β(t) = λ(t)(ᾱ(t)− β̄(t))

is satisfied for
λ(t) = ( ˙̄β(t), ᾱ(t)− β̄(t)) = ( ˙̄α(t), ᾱ(t)− β̄(t)).

In other words, for a given curve α, the curve β must be a solution of the control
differential system

˙̄β(t) = ( ˙̄α(t), ᾱ(t)− β̄(t))(ᾱ(t)− β̄(t))

on the cylindrical hypersurface
||ᾱ− β̄||2 = 1

in R6. This control differential system is invariant with respect to the changing of
the parameter t. It implies that the speed of β is at most the speed of α.

1.1. Theorem. If the control system

˙̄β(t) = ( ˙̄α(t), ᾱ(t)− β̄(t))(ᾱ(t)− β̄(t))

holds, then the relations (1),(2) and the initial condition ||ᾱ(t0) − β̄(t0)||2 = 1 are
equivalent.

Proof. The solutions β of the differential system must satisfy the differential
equation

1
2

d
dt

(ᾱ− β̄, ᾱ− β̄) = (ᾱ− β̄, ˙̄α− ˙̄β) = ( ˙̄α, ᾱ− β̄)(1− (ᾱ− β̄, ᾱ− β̄)).

The equivalences are consequences of this equation.
This theorem reduces the problem

˙̄β(t) = ( ˙̄α(t), ᾱ(t)− β̄(t))(ᾱ(t)− β̄(t)), ||ᾱ(t)− β̄(t)||2 = 1

to the Cauchy problem

˙̄β(t) = ( ˙̄α(t), ᾱ(t)− β̄(t))(ᾱ(t)− β̄(t)), ||ᾱ(t0)− β̄(t0)||2 = 1.

Supposing ᾱ(t) = x1(t)̄i1 + x2(t)̄i2 + x3(t)̄i3, β̄(t) = y1(t)̄i1 + y2(t)̄i2 + y3(t)̄i3, the
control system and the cylindrical hypersurface can be written under the form

ẏ1 = (x1 − y1)
3

∑

i=1

ẋi(xi − yi)

ẏ2 = (x2 − y2)
3

∑

i=1

ẋi(xi − yi)

ẏ3 = (x3 − y3)
3

∑

i=1

ẋi(xi − yi)
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(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 = 1.

Remark. The relation

3
∑

i=1

(ẋi − ẏi)(xi − yi) = 0

describes a tangency (orthogonality) condition since

3
∑

i=1

ẋi(xi − yi) +
3

∑

i=1

ẏi(−xi + yi) = 0

shows that (ẋ1, ẋ2, ẋ3, ẏ1, ẏ2, ẏ3) is tangent to the cylindrical hypersurface (x1−y1)2+
(x2 − y2)2 + (x3 − y3)2 = 1 as a vector orthogonal to the normal vector field

(x1 − y1, x2 − y2, x3 − y3,−x1 + y1,−x2 + y2,−x3 + y3).

The parametrization of the cylindrical hypersurface in R6 obtained from

x1 − y1 = cos ϕ cos θ, x2 − y2 = cos ϕ sin θ, x3 − y3 = sin ϕ, θ ∈ [0, 2π], ϕ ∈ [0, π]

transforms the previous control differential system into the control differential system

θ̇ =
ẋ2 cos θ − ẋ1 sin θ

cos ϕ
, ϕ 6= π

2

ϕ̇ = ẋ3 cos ϕ− ẋ2 sin ϕ sin θ − ẋ1 sinϕ cos θ,

θ(t0) = θ0, ϕ(t0) = ϕ0.

For convenience, let γ̄(t) = ᾱ(t) − β̄(t). The previous control differential system
can be rewritten

˙̄β(t) = ( ˙̄α(t), γ̄(t))γ̄(t), ||γ̄(t)||2 = 1. (3)

The transmission angle τ between the vectors BA and AC is described by the function
f : I → R, f(t) = ( ˙̄α(t), γ̄(t)) = || ˙̄α(t)|| cos τ(t). The sign of the function f describes
the jackknifing of the articulated bars in the following sense:

- if the point A is moving forward, we say that AC and BA are jackknifed if
f(t) < 0; otherwise, we say they are unjackknifed (Fig.2); - if AC is backing up, the
above situation is reversed. Namely, AC and BA are jackknifed if f(t) > 0, and
unjackknifed otherwise (Fig.3.)
Of course, we can change the previous point of view at least in two ways:

1) the control is described by a vector field X̄ which did not vanish anywhere (the
curves α are field lines of X̄):

˙̄α(t) = X̄(α(t)), ˙̄β(t) = (X̄(α(t)), ᾱ(t)− β̄(t))(ᾱ(t)− β̄(t)), ||ᾱ(t0)− β̄(t0)||2 = 1,

and (α(t), β(t)) ∈ R6;
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2) the control differential system is replaced by a Pfaff system in R6:

dyi = (xi − yi)
3

∑

j=1

(xj − yj)dxj , i = 1, 2, 3;
3

∑

j=1

(xj0 − yj0)2 = 1.

Generalization. The linkage with two bars can be extended to a linkage with
n bars. In this sense, our research is good for snake robots consisting of n modules
(LEM = lunar excursion mobile).

2 Influence of curvature radius
of control curve α upon the jackknifing

Let us give a very important property of the control system (3).

2.1. Theorem. Suppose the radius of curvature
1
k

of the control curve α is

strictly greather than 1. If f(0) > 0, then f(t) > 0 for all t ∈ (0, a].
Alternatively: if the bar AC is moving forward and the BA ∗ AC combination is

not originally jackknifed, then it will remain unjackknifed; on the other hand, if AC
is moving backward and the BA∗AC combination is originally jackknifed, then it will
remain jackknifed.

Proof. The function f is of class C∞. We proceed by reductio ad absurdum.
Suppose the conclusion is false: then there exists t1 > 0 such that f(t1) = 0, f ′(t1) ≤
0. By hypothesis || ˙̄α(t)|| > 0 (AC does not stop). From f(t1) = 0, we obtain
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˙̄α(t1) ⊥ γ̄(t1), i.e., γ̄(t1) belongs to the normal plane of the curve α at the point
α(t1).

On the other hand, taking the derivative and using Frenet formulas we find

f ′(t) = (¨̄α(t), γ̄(t)) + ( ˙̄α(t), ˙̄γ(t)) = ( ˙̄α(t), ˙̄α(t)− ˙̄β(t)) + +(¨̄α(t), γ̄(t))

= || ˙̄α(t)||2 − ( ˙̄α(t), ˙̄β(t)) +
( ˙̄α(t)
|| ˙̄α(t)||

d
dt
|| ˙̄α(t)||+ k|| ˙̄α(t)||2N̄ , γ̄(t)

)

= || ˙̄α(t)||2 − ( ˙̄α(t), ( ˙̄α(t), γ̄(t))γ̄(t)) + k|| ˙̄α(t)||2(N̄ , γ̄(t)) +
( ˙̄α(t)
|| ˙̄α(t)||

, γ̄(t)
)

d
dt
|| ˙̄α(t)||

= || ˙̄α(t)||2 − f2(t) + k|| ˙̄α(t)||2(N̄ , γ̄(t)) +
f(t)
|| ˙̄α(t)||

d
dt
|| ˙̄α(t)||,

f ′(t1) = (1 + k(t1) cos θ(t1))|| ˙̄α(t1)||2,

where θ(t1) ∈ [0, π] is the angle between N̄(t1) and γ̄(t1). Since −1 ≤ cos θ(t1) ≤ 1,
it follows 1 − k(t1) ≤ 1 + k(t1) cos θ(t1) ≤ 1 + k(t1), and hence f ′(t1) > 0, which
contradicts f ′(t1) ≤ 0.

3 Trailer-truck jackknifing

To simplify the problem we consider the trailer-truck movement in R2. Suppose that
a cab is pulling a trailer which is 1 unit long. We represent the positions of the cab
and trailer by two vectors (Fig.4):

- the vector ᾱ(t) whose ends is at the trailer hitch on the cab,
- the vector β̄(t) whose ends is at the midpoint between the wheels of the trailer.

Given ᾱ(t), we would like to be able to predict β̄(t). Particularly, we want to know

if the truck-trailer will jackknife or we want to determine what conditions we must
impose to ᾱ(t) to prevent jackknifing (Figs. 2,3).

Let us accept that the trailer-track problem is described by the control differential
system

ẏ1 = (x1 − y1)
2

∑

i=1

ẋi(xi − yi), ẏ2 = (x2 − y2)
2

∑

i=1

ẋi(xi − yi),
2

∑

i=1

(xi − yi)2 = 1.
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The parametrization of the cylindrical hypersurface in R4 obtained from

x1 − y1 = cos θ, x2 − y2 = sin θ, θ ∈ [0, 2π] (3)

converts the previous control differential system into the control differential equation

θ̇ = ẋ2 cos θ − ẋ1 sin θ, θ(t0) = θ0. (4)

Examples with analytic solutions. Here we give our solutions for the examples
in [3].

1) Consider the cab moving forward on the straight line x1 = t, x2 = 0. The
differential equation (4) becomes

θ̇ = − sin θ, θ(0) = θ0.

If θ0 = 2π, then θ(t) = 2π, and the trailer trajectory is the straight line y1 = t−1,
y2 = 0. If θ0 = π, then θ(t) = π, and the trailer trajectory is the straight line
y1 = t + 1, y2 = 0.

Suppose θ0 6= π, 2π. Then
∫

dθ
sin θ

= −t + ln C, tan
θ
2

= Ce−t,

sin θ =
2Ce−t

1 + C2e−2t , cos θ =
1− C2e−2t

1 + C2e−2t , t ∈ R

and the trailer trajectory is the curve

y1 = t− 1− C2e−2t

1 + C2e−2t , y2 = − 2Ce−t

1 + C2e−2t , t ∈ R, C = tan
θ0

2
.

Limit cases. For C → 0, we obtain the stable limiting solution y1 = t−1, y2 = 0.
For C2 →∞, we find the unstable solution y1 = t + 1, y2 = 0.

2) Consider the cab traveling along a circle of radius r, i.e., x1(t) = r cos t, x2(t) =
r sin t, t ∈ [0, 2π]. The differential equation (4) becomes

θ̇ = r cos(θ − t), θ(0) = θ0.

Using the substitution tan
θ − t

2
= u, we find

2du
u2(−r − 1) + r − 1

= dt. But

∫

2du
u2(−r − 1) + r − 1

=



































1√
r2 − 1

ln
(r + 1)u +

√
r2 − 1

(r + 1)u−
√

r2 − 1
+ C1 for r > 1

1
u

+ C1 for r = 1

1√
1− r2

arctg
(−r − 1)u√

1− r2
+ C1 for r < 1.
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For the moment, assume r > 1. Then

(r + 1)tan
θ − t

2
+

√

r2 − 1

(r + 1)tan
θ − t

2
−

√

r2 − 1
= Ce

√
r2−1t,

tan
θ − t

2
=
−
√

r2 − 1
(

1 + Ce
√

r2−1t
)

(r + 1)
(

1− Ce
√

r2−1t
)

θ = t + 2arctan
−
√

r2 − 1
(

1 + Ce
√

r2−1t
)

(r + 1)
(

1− Ce
√

r2−1t
) ,

and the trailer trajectory is the curve

y1 = r cos t− cos θ(t), y2 = r sin t− sin θ(t).

Limit cases: For C →∞ or C → −∞, we obtain a stable limit cycle,

θ = t + 2arctan

√
r2 − 1
r + 1

, tan α =

√
r2 − 1
r + 1

, cos 2α =
1
r
, sin 2α =

√
r2 − 1

r

y1 =
√

r2 − 1 cos
(

t + 2α− π
2

)

, y2 =
√

r2 − 1 sin
(

t + 2α− π
2

)

.

For C = 0, we find the unstable (node) solution

θ = t + arctan
−
√

r2 − 1
r + 1

,

y1 =
√

r2 − 1 cos
(

t− 2α− π
2

)

, y2 =
√

r2 − 1 sin
(

t− 2α− π
2

)

.

Though it is the same orbit as the previous one, the cab-trailer combination is in a
jackknifed position initially and will remain in that position. However any deviation
from that initial position will cause the cab-trailer to wonder farther away from the
initial configuration.

Now we accept r < 1. Then

arctan
(−r − 1)tan

θ − t
2√

1− r2
=

√

1− r2t + C

θ = t + 2arctan

(√
1− r2

−r − 1
tan (

√

1− r2t) + C

)

,



194 D.Udrişte

and the trailer trajectory is the curve
{

y1 = r cos t− cos θ(t)
y2 = r sin t− sin θ(t).

For r < 1, we have no limit case. Let us take r = 1. Then

1
u

= t + C, tan
θ − t

2
=

1
t

+ C, θ = t + 2arctan
1

t + C

and the trailer trajectory is the curve

y1 = cos t−cos
(

t + 2arctan
1

t + C

)

, y2 = sin t−sin
(

t + 2arctan
1

t + C

)

, t ∈ [0, 2π].

We did not have limit cases.
Now we accept that the teoretical part of the trailer-truck problem is based on

the control differential system

ẋ1 = X1(x1, x2), ẋ2 = X2(x1, x2)

ẏ1 = (x1 − y1)
2

∑

i=1

Xi(x1, x2)(xi − yi), ẏ2 = (x2 − y2)
2

∑

i=1

Xi(x1, x2)(xi − yi)

2
∑

i=1

(xi0 − yi0)
2 = 1.

The MAPLE 6 version of this differential system is obvious. Let us now illustrate the
procedure for the following three cases:

1) X1(x1, x2) = −x2, X2(x1, x2) = x1 (trailer trajectory = circle);
2) X1(x1, x2) = 1, X2(x1, x2) = 0 (trailer trajectory = straight line);
3) X1(x1, x2) = x2, X2(x1, x2) = 1 (trailer trajectory = parabola);
The output is included in the Figs. 5-12.
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[1] Antonescu P., Udrişte D.I., Petrescu F., Antonescu O., Geometric and kinematic
synthesis of mechanisms with rotary disc-cam, The Eleventh World Congress in
Mechanism and Machine Science, Tianjin University, China, August 18-21, 2003.

[2] Tilburg D., Murray R., Sastry S., Trajectory generation for the N -trailer problem
using Goursat normal form, IEEE Transactions on Automatic Control, 40, 5
(1995), 802-819.

[3] Fossum V.T., Lewis N.G., A mathematical model for trailer-truck jackknifing,
Mathematical Modelling, Edited by Murray S. Klamkin, SIAM, Philadelphia,
1987, pp. 18-22.

Daniel Ion Udrişte
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