
Optimal receiver of solar power station

Constantin Udrişte, Cornel Călin and Ionel Ţevy

Abstract. This paper applies the geometric dynamics to describe optimal shape of
structures used to couple a transmitter or receiver to a medium in which waves can
propagate.
Section 1 recalls the laws of regular reflection. Section 2 analyses the optimal shape
receiver for classical reflection on a spherical mirror. Section 3 describes the optic
geometric dynamics using an optic vector field and an adapted Fermat principle.
Section 4 shows that a mirror of revolution and a nonholonomic mirror (collection
of wires) accept holonomic optimal receivers. Section 5 shows that Tzitzeica mirror
and canonical nonholonomic mirror (collection of wires) accept only nonholonomic
optimal receivers (collection of wires). Section 6 visualizes the abstract objects and
processes that are connected directly with the theory developed in Sections 2-5, with
emphasis on optic geometric dynamics, using MAPLE 6-7 routines.
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1 Preliminaries

By reflection we understand a deviation of the direction of radiant flux taking place
entirely within or at the surface (mirror) of a single optical medium. Interfaces,
between two media, belonging to class C1 produce regular reflections. In order to
apply geometric dynamics to optical problems we need class C2.

Laws of Regular Reflection. The incident and reflected rays are:
(1) in a normal plane to the surface;
(2) on the same side to the surface;
(3) at congruent angles with the normal.
If we denote by ~s the incident ray (versor), by ~n the unit normal vector to the

mirror and by ~r the reflected ray (versor), then

~r = ~s− 2(~s, ~n)~n.

Of course, ~r is a versor field on the mirror. Traditionally, we accept that the paths of
the reflected light rays are semi-striaght lines starting on the mirror in the direction ~r.
This point of view separates the mirrors into two classes: planar mirror who produces
parallel reflected rays and non-planar mirrors who produce non-parallel reflected rays.
Generally, to build an optimal shape receiver associated to a non-planar mirror is
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strongly dependent on the shape of the mirror. This problem has simple solutions
only for particular mirrors (example, parabolic mirror).

To avoid such problems, we reformulate the Fermat principle saying that the light
rays are field lines, starting on the mirror, of a vector field who extend ~r to a domain
in space. These field lines did not intersect. Also, some practical mirrors produce
practical optimal shape receivers.

All our theory can be applied to any structure (antenna) used to couple a trans-
mitter or receiver to a medium in which electromagnetic waves can propagate. These
structures range in form from simple straight lines, used either singly or in arrays,
to quasioptical devices employing mettalic mirrors or dielectric lenses. Particularly,
optimal multiple wire antennas must be part of a nonholonomic surface.

2 Optimal Receiver for Classical Reflection
on a Spherical Mirror

A spherical mirror has an axial symmetry. For that reason it is enough to judge in
the plane xOy. Then the mirror is a part of the circle

x2 + y2 = R2, x ≥ R√
2
.

and the family of reflected rays (straight lines) is

x−R cos t
cos 2t

=
y −R sin t

sin 2t
.

Reasons regarding the cosinus effect on the intensity of solar radiation show that
the optimal shape receiver must be selected using as profiles the orthogonal trajec-
tories of this family of straight lines. Such curves are described by the algebraic
differential system















x−R cos t
cos 2t

=
y −R sin t

sin 2t
1

cos 2t
= − 1

y′(x) sin 2t

We look for solutions of the type














x(t) = ϕ(t) cos 2t + R cos t

y(t) = ϕ(t) sin 2t + R sin t

z′(t) cos 2t + y′(t) sin 2t = 0,

with the unknown function ϕ. We find,

ϕ′(t) + R sin t = 0
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and hence
ϕ(t) = R(C + cos t).

Finally, the orthogonal trajectories is the family of curves

x(t)
R

= (c + cos t) cos 2t + cos t

y(t)
R

= (c + cos t) sin 2t + sin t
, t ∈

[

0,
π
4

]

Since
{

x(−t) = x(t)

y(−t) = −y(t)

each curve in this family is symmetric with respect to Ox.
The significant points of these curves are

x(0) = R(c + 2), y(0) = 0

x
(

±π
4

)

=
R√
2
, y

(

±π
4

)

= ±R(c +
√

2)

To obtain the shape of orthogonal trajectories we need the derivatives

x′(t)
R

= −(2c + 3 cos t) sin 2t

y′(t)
R

= (2c + 3 cos t) cos 2t
, t ∈

[

0,
π
4

]

.

If |c| ≤ 3
2
, then x′(t) = y′(t) = 0 for t∗ = ± arccos

(

−2c
3

)

. Also t∗ ∈
(

0,
π
4

)

iff

c ∈
(

−3
2
,− 3

2
√

2

)

. Then is maximum point for y and minimum point for x. We have

cos t = −2C
3

, whence c + cos t = −1
2

cos t =
c
3
; cos 2t =

8c2

9
− 1; sin t = ±

√

1− 4c2

9
;

sin 2t = ±4c
3

√

1− 4c2

9
. We obtain

x(t∗) =
(

8c3

27
− c

)

R; y(t∗) = ±
(

1− 4c2

9

)
3
2

R

and the table of variation

t 0 t∗ () π/4
x′(t) 0 − 0 +
x(t) R(c + 2) ↘ x(t∗) ↗ R/52
y′(t) + 0 − 0
y(t) 0 ↗ y(t∗) ↘ R(c +

√
2)
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The length of the receiver curve as function of c ∈
(

−3
2
,− 3

2
√

2

)

is given by

l(c) = R
∫ π/4

0
|2c + 3 cos t|dt.

Since

l′(c) = 4 arccos
(

−2c
3

)

− π
2

= 0,

has the solution

c1 = −3
4

√

2 +
√

2 = −1, 385819299,

with l′′(c1) > 0, the value c is a minimum point for the length.
Implicitly, it appears another idea to select the optimal profile as the curve corre-

sponding to the value c1.
On the other hand, for a spatial spherical mirror, the surfaces that are orthogonal

to relected rays are obtained by the rotation around Ox of the previous curves. The
best receiver is the surface of minimum area,

S(c) = 2πR2
∫ π/4

0
[(c + cos t) sin 2t + sin t]|2c + 3 cos t|dt.

Using MAPLE 7 routines we find:
int( ((c+cos(t))*sin(2*t)+sin(t))*(2*c+3*cos(t)), t );
int(((c+cos(t))*sin(2*t)+sin(t))*(2*c+3*cos(t)) , t=0..Pi/4 );
minimize(−11/6 ∗ c ∗ sqrt(2) + 15/8 + c2 + 16/3 ∗ c, c = −2..2, location = true);
−889/72 − 11/6 ∗ (11/12 ∗ sqrt(2) − 8/3) ∗ sqrt(2) + (11/12 ∗ sqrt(2) − 8/3)2 +

44/9∗sqrt(2), {[{c = 11/12∗sqrt(2)−8/3},−889/72−11/6∗ (11/12∗sqrt(2)−8/3)∗
sqrt(2) + (11/12 ∗ sqrt(2)− 8/3)2 + 44/9 ∗ sqrt(2)]};

evalf(11/12*sqrt(2)-8/3);
c1 = -1.370304235.

3 Optic Geometric Dynamics

Let us consider a mirror σ like a part of a holonomic surface in R3 of class C2 whose
unit normal vector field is ~n. If ~s is the versor of incident ray, then

~r = ~s− 2(~s, ~n)~n

is the versor of reflected ray. Then ~r appears like a vector field on σ. Any vector
field ~U(X, Y, Z) of class C1 extending ~r to a domain of R3, in the sense ~U |σ = λσ~r, is
called optic vector field. The field lines of ~U are described by the first order differential
system

dx
dt

= X(x, y, z),
dy
dt

= Y (x, y, z),
dz
dt

= Z(x, y, z).
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This system and the Riemannian (Euclidean) structure δij of the space produce the
Lagrangian energy density

2L =
(

dx
dt
−X(x, y, z)

)2

+
(

dy
dt
− Y (x, y, z)

)2

+
(

dz
dt
− Z(x, y, z)

)2

,

of least squares type (see [10],[11]). Let us accept that the path of a light ray moving
in an inhomogeneous 3-dimensional medium is an extremal of the functional (adapted
Fermat principle)

∫ t2

t1
L(x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t))dt.

These extremals are solutions of Euler-Lagrange equations

d2x
dt2

=
(

∂X
∂y

− ∂Y
∂x

)

dy
dt

+
(

∂X
∂z

− ∂Z
∂x

)

dz
dt

+
∂f
∂x

d2y
dt2

=
(

∂Y
∂x

− ∂X
∂y

)

dx
dt

+
(

∂Y
∂z

− ∂Z
∂y

)

dz
dt

+
∂f
∂y

d2z
dt2

=
(

∂Z
∂x

− ∂X
∂z

)

dx
dt

+
(

∂Z
∂y

− ∂Y
∂z

)

dy
dt

+
∂f
∂z

,

where
2f = X2 + Y 2 + Z2

is the optic density of energy.
Every nonconstant trajectory of this dynamical system which has the constant

total energy

2H =
(

dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2

− f

is a reparametrized geodesic of the Riemann-Jacobi-Lagrange manifold

(D \ E , gij = (H+ f)δij , N i
j = Γi

jkyk − (rot~U)i
j)

(rot~U)i
j = δih(rot~U)jh, i, j, h = 1, 2, 3

E = the set of zeros of ~U.

The set of all trajctories splits in three parts: optic lines (for H = 0), trajectories
with positive energy (for H = const > 0), trajectories with negative energy (for H =
const < 0).

A similar theory can be developed when the mirror σ is a part of a nonholonomic
surface (collection of curves) in R3 whose unit normal vector field

~n = (n1(x, y, z), n2(x, y, z), n3(x, y, z))
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is of class C1 and determines the Pfaff equation

n1(x, y, z)dx + n2(x, y, z)dy + n3(x, y, z)dz = 0.

In this case
~U(x, y, z) = λ(x, y, z)~r(x, y, z), ~r = ~s− 2(~s, ~n)~n.

The previous extremals are trajectories of a geodesic motion in a gyroscopic field
[10], [11], i.e., a motion produced by ∇f and rot~U .

4 Holonomic Optimal Receiver
Mirror of Revolution
Nonholonomic Ox-Symmetric Mirror

We accept that the paths of light rays are field lines of the optic vector field ~U(X,Y, Z)
that start on the (holonomic or nonholonomic) reflectant surface (mirror). As field
lines starting from different points, these paths did not intersect (compare with the
situation of a plane mirror when the reflected rays are semi-straight lines).

The cosinus effect on the intensity of solar radiation imposes that the optimal
shape of the receiver in a Solar Power Station is a (holonomic) surface where the
reflected rays (field lines of optic vector field ~U) fall down perpendicular (see [2]).
According to known theory [10], such a surface (orthogonal to field lines) exists iff
the optic vector field is biscalar, i.e., (~U, rot~U) = 0 or ~U = λgrad F . In this case the
Pfaff equation

X(x, y, z)dx + Y (x, y, z)dy + Z(x, y, z)dz = 0

has a general solution
F (x, y, z) = c

consisting from a family with one parameter of (holonomic) surfaces orthogonal to
field lines of ~U .

Let us show that any reflectant surface of revolution produces a biscalar optic
vector field. Any surface of revolution has an implicit Cartesian equation of the form

y2 + z2 − 2h(x) = 0,

with h of class C2. Consequently

~n =
(−h′, y, z)√

h′2 + 2h
,

and, without loss of generality, we can accept ~s = (1, 0, 0). These produce the reflected
ray

~r =
(

1− 2h′2

h′2 + 2h
,

2h′y
h′2 + 2h

,
2h′z

h′2 + 2h

)
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and by extension to a domain of R3 we obtain the optic vector field

~U =
(

1− 2h′2

h′2 + 2h
,

2h′y
h′2 + 2h

,
2h′z

h′2 + 2h

)

Since two collinear vector fields have the same orbits (images of field lines) and the
same family of surfaces or family of curves orthogonal to orbits, we replace ~U by the
potential vector field

X(x, y, z) =
2h(x)− h′2(x)

2h′(x)
, Y (x, y, z) = y, Z(x, y, z) = z.

In this case the differential system

2h′(x)dx
2h(x)− h′2(x)

=
dy
y

=
dz
z

has the general solution (field lines, reflected rays)

y2 = C1 exp
(∫

h′(x)dx
2h(x)− h′2(x)

)

, z2 = C2 exp
(∫

h′(x)dx
2h(x)− h′2(x)

)

.

Also the Pfaff equation

2h(x)− h′2(x)
2h′2(x)

dx + ydy + zdz = 0

has the general solution (family of surfaces of revolution)

y2 + z2 +
∫

2h(x)− h′2(x)
h′2(x)

dx = c.

Giving a suitable point, we find the equation of the optimal shape receiver.
Particularly, for a sphere of radius R with the center at origin, we have:
- function h,

h(x) =
R2 − x2

2
;

- reflected vector field,

~r =
(

1− 2x2

R2 ,
−2xy
R2 ,

−2xz
R2

)

;

- optic vector field,

X(x, y, z) =
R2 − 2x2

−2x
, Y (x, y, z) = y, Z(x, y, z) = z;
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- paths of reflected light rays (field lines),

2x2 − c1y2 = R2, 2x2 − c2z2 = R2;

- family of optimal shape receivers,

R2 ln
x
R
− x2 − y2 − z2 = c3.

Using the canonical parametrization of the sphere, and imposing the values of angles
to obtain a true mirror, we find c1 < 0, c2 < 0. Consequently the path of reflected
light rays are intersections of two elliptical cylinders.

The optimal shape receiver is a surface of revolution obtained by revolving the
curve

y2 + x2 −R2 ln
x
R

= c

around Ox. This surface can be seen like a ”cylindrical” surface with axis Ox and
variable radius

Rc =
√

y2 + z2 =
√

c + R2 ln
x
R
− x2

The constant c is determined by the condition [2]

Rc(x0) = 8.10−3R,

where x0 = R/
√

2 is the critical point of Rc (maximum point of Rc). It follows

Rc

R
=

√

ln
x
R
− x2

R2 + 1.653564

Taken
x
R
∈ [0.55, 0.80], Fig.2 gives the graph of the function

Rc

R
and Fig.3 describes

the shape of the Receiver.
Let us show that the nonholonomic mirror ydz − zdy +

√

y2 + z2dx = 0 accepts
holonomic optimal receiver. Of course this mirror is symmetric with respect to Ox
since the symmetry y → −y, z → −z does not modify the previous Pfaff equation.
We find

~s = (1, 0, 0), ~n =

(

1√
2
,

−z
√

2(y2 + z2)
,

y
√

2(y2 + z2)

)

~r =
(

0,
z

y2 + z2 ,
−y

y2 + z2

)

X(x, y, z) = 0, Y (x, y, z) = z, Z(x, y, z) = −y.

Consequently:
- paths of reflected light rays (field lines),

x = c1, y2 + z2 = c2;

- family of optimal receivers,

zdy − ydz = 0 or y = c3z (family of planes)
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5 Nonholonomic Optimal Receiver
Tzitzeica Mirror
Canonical Nonholonomic Mirror

Suppose the optical vector field ~U is not a biscalar field, i.e., (~U, rot~U) 6= 0. Then the
Pfaff equation

X(x, y, z)dx + Y (x, y, z)dy + Z(x, y, z)dz = 0

defines a nonholonomic surface (collection of curves orthogonal to field lines). Conse-
quently, there are reflectant (holonomic or nonholonomic) surfaces whose associated
optimal receiver is a nonholonomic surface.

An example is the Tzitzeica mirror of equation xyz = 1. Indeed, in this case

~s = (1, 0, 0), ~n =
(yz, xz, xy)

√

y2z2 + x2z2 + x2y2
,

~r =
(

1− 2y2z2

y2z2 + x2z2 + x2y2 ,
−2z

y2z2 + x2z2 + x2y2 ,
−2y

y2z2 + x2z2 + x2y2

)

,

X(x, y, z) = x2(y2 + z2)− 1
x2 , Y (x, y, z) = −2z, Z(x, y, z) = −2y.

rot(X, Y, Z) =
(

0,
2
y

+
2x
z3 ,

−2
y
− 2x2

y3

)

.

The Pfaff equation
(

x2(y2 + z2)− 1
x2

)

dx− 2zdy − 2ydz = 0

has as solutions only curves, and their family (nonholonomic surface) is the optimal
receiver.

Let us show that the canonical nonholonomic mirror zdx − dy = 0 produces a
non-biscalar optic vector field. It follows

~s = (1, 0, 0), ~n =
(

z√
1 + z2

,
−1√
1 + z2

, 0
)

~r =
(

1− z2

1 + z2 ,
2

1 + z2 , 0
)

X(x, y, z) = 1− z2, Y (x, y, z) = 2, Z(x, y, z) = 0

rot(X, Y, Z) = (0,−2z, 0).

Consequently:
- paths of reflected light rays (field lines),

z = c1, 2x + (1− z2)y = c2;

- optimal shape receiver, (1− z2)dx + 2dy = 0 (nonholonomic surface).
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6 MAPLE 6 and MAPLE 7 Simulations

T := plot([(−1.385819299+cos(t))∗cos(2∗t)+cos(t), (−1.385819299+cos(t))∗sin(2∗
t) + sin(t), t = −Pi/4..P i/4]);

C := implicitplot(x2 + y2 = 1, x = 0.4..1, y = −1..1);
a6 := implicitplot(x ∗ sin(Pi/3) − y ∗ cos(Pi/3) − sin(Pi/6) = 0, x = 0.4..1, y =

−1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a7 := implicitplot(x ∗ sin(−Pi/3) − y ∗ cos(−Pi/3) − sin(−Pi/6) = 0, x =

0.4..1, y = −1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a8 := implicitplot(x ∗ sin(Pi/5)− y ∗ cos(Pi/5)− sin(Pi/10) = 0, x = 0.4..1, y =

−1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a9 := implicitplot(x ∗ sin(−Pi/5) − y ∗ cos(−Pi/5) − sin(−Pi/10) = 0, x =

0.4..1, y = −1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a10 := implicitplot(y − sin(−Pi/10) = 0, x = 0.4..1, y = −1..1,
title=‘INCIDENT STRAIGHT LINE‘,color=black);
a11 := implicitplot(y + sin(−Pi/10) = 0, x = 0.4..1, y = −1..1,
title=‘INCIDENT STRAIGHT LINE‘,color=black);
a12 := implicitplot(y − sin(−Pi/6) = 0, x = 0.4..1, y = −1..1,
title=‘INCIDENT STRAIGHT LINE‘,color=black);
a13 := implicitplot(y − sin(Pi/6) = 0, x = 0.4..1, y = −1..1,
title=‘INCIDENT STRAIGHT LINE‘,color=black);
display({T,C,a6,a7,a8,a9,a10,a11,a12,a13},axes=boxed,scaling=constrained,
title=‘FIG.1.OPTIMAL SHAPE RECEIVER FOR CLASSICAL REFLECTION‘);

plot(sqrt(ln(u)− u2 + 1.653564), u = 0.55..0.80,
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title = ‘FIG.2.GRAPHOFFUNCTIONRc/R‘);

implicitplot(ln(x)− x2 − y2 + ln(2) + 1/4 = 0, x = 0.4..1, y = −1..1,
title=‘FIG.3. OPTIMAL SHAPE RECEIVER FOR OPTIC VECTOR FIELD‘);

implicitplot3d(x*sin(2*t)-y*cos(2*t)-sin(t)=0,x=0..1,
y=-1/sqrt(2)..1/sqrt(2),t=-Pi/4..Pi/4,grid=[30,30,30],
title=‘FIG.4. SURFACE SWEPT OUT FAMILY OF STRAIGHT LINES‘);
implicitplot3d(2 ∗ (x2) ∗ (sin(t))2 − (2 ∗ (cos(t))2 − 1) ∗ y2 − (sin(t))2 = 0, x =

0..1, y = −1/sqrt(2)..1/sqrt(2), t = −Pi/4..P i/4, grid = [30, 30, 30],
title=‘FIG.5. SURFACE SWEPT OUT BY FAMILY OF ELLIPSES‘);
a1 := implicitplot(ln(x)− x2 − y2 + ln(2) + 1/4 = 0, x = 0.4..1, y = −1..1,
title=‘RECEIVER‘,color=red);
a2 := implicitplot(2∗(x2)∗(sin(Pi/6))2−(2∗(cos(Pi/6))2−1)∗y2−(sin(Pi/6))2 =

0, x = 0.4..1, y = −1..1,
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Optimal receiver of solar power station 159

title=‘REFLECTED ELLIPSE‘,color=green);
a3 := implicitplot(2 ∗ (x2) ∗ (sin(−Pi/6))2 − (2 ∗ (cos(−Pi/6))2 − 1) ∗ y2 −

(sin(−Pi/6))2 = 0, x = 0.4..1, y = −1..1,
title=‘REFLECTED ELLIPSE‘,color=green);
a4 := implicitplot(2∗(x2)∗(sin(Pi/10))2−(2∗(cos(Pi/10))2−1)∗y2−(sin(Pi/10))2 =

0, x = 0.4..1, y = −1..1,
title=‘REFLECTED ELLIPSE‘,color=green);
a5 := implicitplot(2 ∗ (x2) ∗ (sin(−Pi/10))2 − (2 ∗ (cos(−Pi/10))2 − 1) ∗ y2 −

(sin(−Pi/10))2 = 0, x = 0.4..1, y = −1..1,
title=‘REFLECTED ELLIPSE‘,color=green);
a6:=implicitplot(x*sin(Pi/3)-y*cos(Pi/3)-sin(Pi/6)=0,x=0.4..1,y=-1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a7:=implicitplot(x*sin(-Pi/3)-y*cos(-Pi/3)-sin(-Pi/6)=0,x=0.4..1,y=-1 ..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a8:=implicitplot(x*sin(Pi/5)-y*cos(Pi/5)-sin(Pi/10)=0,x=0.4..1,y=-1.. 1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a9:=implicitplot(x*sin(-Pi/5)-y*cos(-Pi/5)-sin(-Pi/10)=0,x=0.4..1,y=- 1..1,
title=‘REFLECTED STRAIGHT LINE‘,color=blue);
a10:=implicitplot(y-sin(-Pi/10)=0,x=0.4..1,y=-1..1,
title=‘INCID ENT STRAIGHT LINE‘,color=black);
a11:=implicitplot(y+sin(-Pi/10)=0,x=0.4..1,y=-1..1,
title=‘INCID ENT STRAIGHT LINE‘,color=black);
a12:=implicitplot(y-sin(-Pi/6)=0,x=0.4..1,y=-1..1,
title=‘INCIDE NT STRAIGHT LINE‘,color=black);
a13:=implicitplot(y-sin(Pi/6)=0,x=0.4..1,y=-1..1,
title=‘INCIDEN T STRAIGHT LINE‘,color=black);
a14 := implicitplot(x2 + y2 = 1, x = 0.4..1, y = −1..1, title = ‘CIRCLE‘);
display({a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14 },
axes=boxed,scaling=constrained,
title=‘FIG.6. PROJECTION OF REFLECTION ON SPHERICAL MIRROR
FOR OPTIC VECTOR FIELD‘);

f := (1/2) ∗ (R12 + R22);
contourplot(f,x=0.4..1,y=-1..1,
title=‘FIG.7.CONSTANT LEVEL SETS OF OPTIC DENSITY OF ENERGY‘);

f := (1/2) ∗ (R12 + R22);
diff(f,x);
diff(f,y);
with(DEtools):
DE1:={diff(x(t),t2) = diff(f, x)(t), diff(y(t), t2)=diff(f,y)(t)};
DEplot(DE1,[x(t),y(t)],t=-100..100,[[x(0)=cos(Pi/6),y(0)=sin(Pi/6),
D(x)(0)=-1,D(y)(0)=-1],
[x(0)=cos(Pi/6),y(0)=sin(Pi/6),D(x)(0)=-1,D(y)(0) =1]],x=0.1..1,y=-1..1,
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scene=[x(t),y(t)],obsrange=true,
title=‘FIG.8. OPTIC GEOMETRIC DYNAMICS‘,
linecolor=red,stepsize=.00001,iterations=1000);

with(plots): fieldplot( [diff(f,x),diff(f,y)],x=0.4..1,y=-1..1,
title=‘FIG.9. OPTIC FORCE‘);

R1:=q1-0.5*(1/q1); R2:=q2; f := (1/2) ∗ (R12 + R22);
with(DEtools):
H := 1/2 ∗ (p12 + p22)− f ; hamiltoneqs(H);
H, t=-100..100, {[-0.1,.1,-0.4,0.4,0.1]}:
poincare(%, stepsize=.05,iterations=5);
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poincare(%%,stepsize=.05,iterations=5,scene=[p2,q2]);
F2 := poincare(H,t=-100..100, {[0,.1,-0.4,0.4,0.1]
},stepsize=.1,iterations=4,
scene=[p1=-1.5..1.5,q1=0.4..1,q2=-1..1],3):
F2;
ics10 := generateic(H, {t = 0, p2 = 1, q1 = 0.6, q2 = 0, energy = 10}, 1):
F3b := poincare(H, t = 0..20, ics10, stepsize = .01, iterations = 4,
scene=[p2,q2,q1],3): (See Figs. 10, 11, 12)

Conclusions. 1) The reformulation of Fermat principle as optic geometric dy-
namics justifies and clarifies better the optic phenomena. Since this reformulation
means a Lorentz-Udrişte World-Force Law 10], [11], this theory can be applied to any
emission and capture of ”signals”.



Optimal receiver of solar power station 163

2) The optimal structure used to couple a transmitter or receiver to a medium in
which wawes can propagate can be realized as apart of a holonomic surface or as a
part of a nonholonomic surface (collection of wires).
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