Recent advances in the theory of transfer operators arising in statistical mechanics

Gabriela Ileana Sebe

Abstract. We first make explicit the analytic properties of transfer operators due to Mayer and Ruelle that generalize the classical Perron-Frobenius operator. The purpose of this paper is to give and discuss two generalizations of them. We mostly focus on the analysis of what we call generalized Mayer-Ruelle operators depending on two complex parameters.

Mathematics Subject Classification 2000: 11K50, 49G10, 70G60.
Key words: Perron-Frobenius operator, Mayer-Ruelle operator, spectral properties.

1. Introduction

Statistical mechanics problems motivated the consideration of a class of functional operators - transfer operators - due to Mayer ([5], [6]) and Ruelle [9]. This class of operators including as a special case the Perron-Frobenius operator is the basic ingredient, well-developed in dynamical systems theory [1].

This paper surveys the main properties of Mayer-Ruelle operators and gives two generalizations of them.

The analytic properties of transfer operators associated to continued fractions have been investigated by Mayer and Roepstorff in a series of papers ([3], [4], [7], [8]) that provide the technical background for the functional analysis aspects of our paper.

2. The main properties of transfer operators

Let $D_1 = \{ z \in \mathbb{C} | |z - 1| < 3/2 \}$ and consider the collection $A_\infty(D_1)$ of all holomorphic functions in D_1 which are continuous in \bar{D}_1; $A_\infty(D_1)$ is a Banach space under the supremum norm

$$||f|| = \sup_{z \in \bar{D}_1} |f(z)|, \ f \in A_\infty(D_1).$$

The transfer operators of Mayer-Ruelle are defined by

$$R_s f(z) = \sum_{i \in \mathbb{N}_+} \frac{1}{(z+i)^s} f\left(\frac{1}{z+i}\right), \ z \in \bar{D}_1,$$
for s a complex number satisfying $\text{Re } s > 1$ and $f \in A_\infty(D_1)$. It is easy to check that R_s is a bounded linear operator on $A_\infty(D_1)$. R_s is nuclear of order 0, and thus has a discrete spectrum.

For $s = 2$, R_s has the same analytical expression as the Perron-Frobenius operator $P_\lambda = P$ of τ under λ

$$P f(x) = \sum_{i \in \mathbb{N}_+} \frac{1}{(x + i)^2} \left(\frac{1}{x + i} \right)^2, \quad f \in L^1, \ x \in [0, 1],$$

where λ is the Lebesgue measure on I and τ is the continued fraction transformation on I defined as

$$\tau(x) = \begin{cases} \frac{1}{x} - \left[\frac{1}{x} \right] & \text{if } x \neq 0 \\ 0 & \text{if } x = 0, \end{cases}$$

(here $[\cdot]: \mathbb{R} \to \mathbb{Z}$ is the greatest integer function).

In what follows we give without proofs the most important properties of the Mayer-Ruelle operator R_s for $s > 1$, which generalize those of P. For proofs we refer the reader to Mayer ([5], [6]), Flajolet and Vallée [2].

Theorem 1. Let s be real, strictly greater than 1. Then the following results hold.

(i) The operator $R_s: A_\infty(D_1) \to A_\infty(D_1)$ has a positive dominant eigenvalue λ_s which is simple and strictly greater in absolute value than all other eigenvalues. The corresponding eigenfunction $g_s \in A_\infty(D_1)$ is strictly positive on $\bar{D}_1 \cap \mathbb{R} = \left[-\frac{1}{2}, \frac{5}{2} \right]$.

(ii) The map $s \mapsto \lambda_s$ defines on $(1, \infty)$ a strictly decreasing and logconcave function with

$$\lim_{s \to 1} \lambda_s = \infty, \ \lambda_{s=2} = 1, \ \lim_{s \to \infty} \frac{\log \lambda_s}{s} = \log \frac{\sqrt{5} - 1}{2}.$$

Moreover, $\lambda_{s+u} \leq \left(\frac{\sqrt{5} - 1}{2} \right)^u \lambda_s$, $u \in \mathbb{R}_+$.

(iii) There exists a linear functional l_s on $A_\infty(D_1)$ with $l_s(g_s) = 1$ and $l_s(f) > 0$ for any $f \in A_\infty(D_1)$ such that $f|_{[-1/2, 5/2]} > 0$. If Π_{1s} denotes the projection defined as $\Pi_{1s} f = l_s(f) g_s$, $f \in A_\infty(D_1)$, then $R_s = \lambda_s \Pi_{1s} + T_{0s}$ with $\Pi_{1s} T_{0s} = T_{0s} \Pi_{1s} = 0$. Hence

$$R^n_s = \lambda_s^n \Pi_{1s} + T^n_{0s}, \ n \in \mathbb{N}_+.$$

(iv) The spectral radius ρ_s of the linear operator $T_{0s}: A_\infty(D_1) \to A_\infty(D_1)$ is strictly smaller than λ_s, and for any $f \in A_\infty(D_1)$ such that $f|_{[-1/2, 5/2]} > 0$ we have

$$\frac{R^n_s f(z)}{\lambda_s^n l_s(f) g_s(z)} = 1 + O \left(\left(\frac{\rho_s}{\lambda_s} \right)^n \right)$$

as $n \to \infty$, where the constant implied in O is independent of $z \in \bar{D}_1$.

Recent advances in the theory of transfer operators

141
(v) There exists \(\varepsilon = \varepsilon(s) > 0 \) such that for any \(t \in \mathbb{C} \) satisfying \(|s - t| \leq \varepsilon \) the dominant spectral properties of \(R_s : A_\infty(D_1) \to A_\infty(D_1) \) transfer to \(R_t : A_\infty(D_1) \to A_\infty(D_1) \): quantities \(\lambda_t, \rho_t, g_t, l_t \) (thus \(\Pi_{1t} \)) and \(T_{0t} \) can be defined to represent the dominant spectral objects associated with \(R_t \), and all of them are analytical with respect to \(t \). Moreover, let \(a \in (\rho_s/\lambda_s, 1) \). For any \(f \in A_\infty(D_1) \) such that \(f_{[-1/2,5/2]} > 0 \) we have

\[
\frac{R^n_s f(z)}{\lambda^n_t(f) g_t(z)} = 1 + O(a^n)
\]

as \(n \to \infty \), where the constant implied in \(O \) is independent of \(z \in D_1 \) and \(t \) satisfying \(|s - t| \leq \varepsilon \), but depends on \(a \), \(f \) and \(s \). Finally, \(\rho_s + iu < \rho_s \) for \(u \in [-\varepsilon, \varepsilon] \), \(u \neq 0 \).

The Mayer-Ruelle operators enjoy better properties when they operate on suitable Hilbert spaces.

Let \(\text{Re} s > 1 \). Consider the collection \(H^{(s)} \) of functions \(f \) which are holomorphic in the half-plane \(\text{Re} z > -\frac{1}{2} \), bounded in any half-plane \(\text{Re} z > -\frac{1}{2} + \varepsilon, \varepsilon > 0 \), and can be represented in the form

\[
f(z) = \int_{\mathbb{R}_+} e^{-zu}(s^{-1}/2)m'(du), \quad \text{Re} z > -\frac{1}{2},
\]

where \(m' \) is the measure on \(\mathcal{B}_{\mathbb{R}_+} \) with density

\[
\frac{dm'}{du} = \left\{ \begin{array}{ll}
1 & \text{if } u > 0 \\
0 & \text{if } u = 0,
\end{array} \right.
\]

for some \(\varphi \in L^2_{m'}(\mathbb{R}_+) \) the Hilbert space of \(m' \)-square integrable functions \(\varphi : \mathbb{R}_+ \to \mathbb{C} \) with inner product \((\cdot, \cdot)_{m'} \) defined as

\[
(\varphi, \psi)_{m'} = \int_{\mathbb{R}_+} \varphi \psi^* dm', \quad \varphi, \psi \in L^2_{m'}(\mathbb{R}_+)
\]

and norm

\[
||\varphi||_{2,m'} = \left(\int_{\mathbb{R}_+} |\varphi|^2 dm' \right)^{\frac{1}{2}}, \quad \varphi \in L^2_{m'}(\mathbb{R}_+).
\]

Introducing the inner product

\[
(f_1, f_2)_{(s)} = (\varphi_1, \varphi_2)_{m'},
\]

where \(\varphi_i \) is associated with \(f_i, i = 1, 2 \), by (1), \(H^{(s)} \) is made a Hilbert space with norm

\[
|f|_{(s)} = ||\varphi||_{2,m'}, \quad f \in H^{(s)},
\]

where \(f \) and \(\varphi \) are again associated by (1).
Theorem 2. Let \(\text{Re} s > 1 \). Then the following results hold.

(i) The linear operator \(R_s \) takes boundedly \(H^s \) into itself.

(ii) For any \(f \in H^s \) we have
\[
R_s f(z) = \int_{\mathbb{R}_+} e^{-zu} K_s \varphi(u) u^{(s-1)/2} m'(du), \quad \text{Re} z > -\frac{1}{2},
\]
where \(K_s : L^2_{m'}(\mathbb{R}_+) \rightarrow L^2_{m'}(\mathbb{R}_+) \) is a symmetric integral operator defined as
\[
K_s \varphi(u) = \int_{\mathbb{R}_+} J_{s-1}(2\sqrt{uv}) \varphi(v) m'(dv), \quad \varphi \in L^2_{m'}(\mathbb{R}_+), \quad u \in \mathbb{R}_+.
\]
Here \(J_{s-1} \) is the Bessel function of order \(s - 1 \) defined as
\[
J_{s-1}(u) = \frac{(-1)^k}{k! \Gamma(k + s)} \left(\frac{u}{2} \right)^{2k}, \quad u \in \mathbb{R}_+.
\]

Hence \(R_s : H^s \rightarrow H^s \) can be diagonalized in an orthonormal basis of \(H^s \). Moreover, if \(s \in \mathbb{R} \), then \(R_s \) is self-adjoint and its spectrum is real.

(iii) The spectra of the operators \(R_s : A_\infty(D_1) \rightarrow A_\infty(D_1) \), \(R_s : H^s \rightarrow H^s \) and \(K_s : L^2_{m'}(\mathbb{R}_+) \rightarrow L^2_{m'}(\mathbb{R}_+) \) are identical. Hence, for \(s \in \mathbb{R} \), these spectra are all real.

3. A first generalization

For any subset \(M \) of \(\mathbb{N}_+ \) define
\[
R_M f(z) = \sum_{i \in M} \frac{1}{(z + i)^s} f \left(\frac{1}{z + i} \right), \quad z \in \mathbb{D}_1,
\]
whatever \(s \in \mathbb{C} \) with \(\text{Re} s > 1 \) and \(f \in A_\infty(D_1) \). Clearly, \(R_M \) is a bounded linear operator on \(A_\infty(D_1) \), hence a nuclear one of trace-class, which coincides with \(R_s \) when \(M = \mathbb{N}_+ \). Now, for an arbitrarily fixed \(k \in \mathbb{N}_+ \), let \(M_i, 1 \leq i \leq k \), be subsets of \(\mathbb{N}_+ \) and write \(M = (M_1, \ldots, M_k) \). Consider the linear operator \(R_M : A_\infty(D_1) \rightarrow A_\infty(D_1) \) defined as
\[
R_M f(z) = R_{M_k} \circ \cdots \circ R_{M_1},
\]
which is nuclear of trace-class, too.

The operators \(R_M \) for various \(M \) control the dynamics of continued fraction expansions of irrationals subject to periodical constraints. Their spectral properties are entirely similar to those of \(R_s \).

4. A second generalization

This generalization has been motivated by the study of the transformation
\[
z \mapsto \frac{1}{z} - \left[\text{Re} \frac{1}{z} \right], \quad 0 \neq z \in \mathbb{C},
\]
which extends to the complex domain the continued fraction transformation \(\tau \) defined in Section 2. For a detailed account we refer the reader to [10].

Let \(D_2 = \{ z | |z - 1| < 5/4 \} \) and consider the collection \(B_\infty(D_2) \) of all functions \(F \) which are holomorphic in \(D_2^2 \) and continuous in \(\bar{D}_2^2 \). Under the supremum norm

\[
|F| = \sup_{(z,w) \in D_2^2} |F(z,w)|,
\]

\(B_\infty(D_2) \) is a Banach space. Then, for any \((s,t) \in \mathbb{C}^2 \) with \(\text{Re}(s + t) > 1 \), a linear bounded operator \(R_{s,t} : B_\infty(D_2) \to B_\infty(D_2) \) is defined by

\[
R_{s,t}F(z,w) = \sum_{i \in \mathbb{N}_+} \frac{1}{(z + i)^s(w + i)^t} F\left(\frac{1}{z + i}, \frac{1}{w + i}\right)
\]

for any \(F \in B_\infty(D_2) \) and \((z,w) \in D_2^2 \). The spectral properties of \(R_{s,t} \) which is positive and nuclear of trace-class, are strongly related to those of \(R_{s+t+2\ell, l} \), \(\ell \in \mathbb{N} \).

Theorem 3. For any \((s,t) \in \mathbb{C}^2 \) with \(\text{Re}(s + t) > 1 \), \(\text{Re}(s) \geq 1 \) and \(\text{Re}(t) > -1 \) the following results hold.

(i) The operator \(R_{s,t} : B_\infty(D_2) \to B_\infty(D_2) \) has a unique dominant eigenvalue \(\lambda_{s,t} \) which is equal to the dominant eigenvalue \(\lambda_{s+t} \) of \(R_{s+t} \). The corresponding eigenfunction \(G_{s,t} \) of \(R_{s,t} \) is defined by

\[
G_{s,t}(z,w) = \int_0^1 \beta_{t,s}(y) g_{s+t}(z + (w - z)y) dy,
\]

where \(g_{s+t} \) is the eigenfunction of \(R_{s+t} \) and \(\beta_{t,s} \) is the classical density \(\beta \)

\[
\beta_{t,s}(y) = \frac{\Gamma(s+t)}{\Gamma(s)\Gamma(t)} y^{t-1}(1-y)^{s-1};
\]

moreover, \(G_{s,t} \) satisfies \(G_{s,t}(z, z) = g_{s+t}(z) \). The adjoint operator \(R_{s,t}^* \) has a dominant eigenfunction \(G_{s,t}^*(f) = g_{s+t}^*(f) \), for all \(F \in B_\infty(D_2) \) whose diagonal function is \(f \). If \(\Pi_{s,t} \) denotes the projection on the dominant eigensubspace, \(\Pi_{s,t} = g_{s+t}^* \otimes G_{s,t}, \) then \(R_{s,t} \) has the representation \(R_{s,t} = \lambda_{s+t} \Pi_{s,t} + T_{s,t} \), where \(\Pi_{s,t} \circ T_{s,t} = T_{s,t} \circ \Pi_{s,t} = 0 \). Hence, for any \(F \in B_\infty(D_2) \) we have

\[
R_{s,t}^n F(z,w) = \lambda_{s+t}^n g_{s+t}^*(f) G_{s,t}(z,w) + T_{s,t}^n F(z,w),
\]

for all \((z,w) \in D_2^2 \) and \(n \in \mathbb{N}_+ \).

(ii) The spectral radius \(\rho_{s+t} \) of the linear operator \(T_{s+t} \) is strictly smaller than \(\lambda_{s+t} \).
Recent advances in the theory of transfer operators

(iii) Let \(a \in (\nu_{s+t}, 1) \), where \(\nu_{s+t} = \frac{\rho_{s+t}}{\lambda_{s+t}} < 1 \). Moreover,

\[
\nu_{s+t} = \frac{1}{\lambda_{s+t}} \max(\lambda_{s+t+2}, \rho_{s+t}).
\]

For any \(F \in B_\infty(D_2) \) such that \(F\|_{[-1/4, 9/4]} > 0 \) we have

\[
\frac{R_{s+t}^n F(z, w)}{\lambda_{s+t}^n} = g_{s+t}^n(f)G_{s,t}(z, w)(1 + O(\|F\|a^n))
\]

as \(n \to \infty \), where the constant implied in \(O \) is independent of \((z, w) \in D_2^2 \), but depends on \(a \).

Proof. Since, by Theorem 1 (ii), the map \(s \mapsto \lambda_s \) defines a strictly decreasing function of \(s \), it follows that \(\lambda_{s+t} \) is the dominant eigenvalue and \(\nu_{s+t} \) satisfies (4).

With the change of variable \(u = z + (w - z)y \) in (2), we get the expression of \(G_{s,t} \)

\[
G_{s,t}(z, w) = \frac{\Gamma(s + t)}{\Gamma(s)\Gamma(t)} \int_\gamma g_{s+t}(u) \frac{(u - z)^{t-1}(w - u)^{s-1}}{(w - z)^{s+t-1}} \, du,
\]

where \(\gamma \) is the interval \([z, w]\). Now, let \(\tilde{h}(z) \) be the holomorphic function that coincides with \(\sqrt{|h'(z)|} \) on \(D_2 \), for any homography of depth 1, \(h(z) = h_i(z) = \frac{1}{1 + z}, i \in \mathbb{N}_+ \).

If \(F \) is defined by (6), to obtain \(R_{s,t}F \) we evaluate the expression

\[
\frac{\tilde{h}(z)^s \tilde{h}(w)^t}{|h(w) - \tilde{h}(z)|^{s+t-1}} \int_\delta f(u) [u - h(z)]^{t-1} [h(w) - u]^{s-1} \, du,
\]

for any simple path \(\delta \) that links \(h(z) \) to \(h(w) \). Put \(\delta = h(\gamma) \), where \(\gamma \) is a simple path that links \(z \) to \(w \). Using the change of variable \(u = h(r) \) in (7) and relations \(du = h'(r)dr = -\tilde{h}(r)^2dr, h(a) - h(b) = -\tilde{h}(a)\tilde{h}(b)(a - b) \), for any \(a \) and \(b \), we can rewrite (7) as

\[
\frac{1}{(w - z)^{s+t-1}} \int_\gamma \tilde{h}(r)^{s+t} f \circ h(r)(r - z)^{t-1}(w - r)^{s-1} \, dr.
\]

If \(F \) is defined by (6), we get

\[
R_{s,t}F = \frac{\Gamma(s + t)}{\Gamma(s)\Gamma(t)} \int_\gamma R_{s+t}^n(f)(r) \frac{(r - z)^{t-1}(w - r)^{s-1}}{(w - z)^{s+t-1}} \, dr.
\]

If \(f \) is the eigenfunction of \(R_{s+t} \) relative to eigenvalue \(\lambda \), then \(F \) is the eigenfunction of \(R_{s,t} \) relative to \(\lambda \). Since \(R_{s+t}^nF(z, z) = R_{s+t}^n(f)(z) \), it is clear that \(G_{s,t}^* \) is expressible in terms of \(g_{s+t}^* \).

(iii) The proof is similar to that of (iv) in Theorem 1. \(\square \)
References

Gabriela Ileana Sebe,
University Politehnica of Bucharest, Department of Mathematics I,
Splaiul Independenței 313, RO-77206 Bucharest, Romania,
Email: gisebe@mathem.pub.ro