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Abstract. The present paper is a first attempt towards implementing the Moving
Least Squares (MLS) method within the frame of linear thermoelasticity. It presents
the equations of the linear thermoelasticity, and the main features of the MLS method.
The MLS method is used to solve a one-dimensional problem in the context of un-
coupled linear thermoelasticity, and an algorithm for implementing numerically this
method is proposed. Finally, a numerical example is proposed and the exact solution
is compared with the approximate one.
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§1. Introduction
Presently, there are some numerical methods such as: smooth particle hydrody-

namics, reproducing kernel particle methods, hp-clouds, and element free Galerkin
that are of great importance in numerical modelling of mechanical phenomena. Their
main advantage consists in the fact that these methods are mesh free, i.e. they don’t
use a mesh in order to assemble the system of equations. Mesh free methods are of
great interests in the study of problems that involves discontinuous fields, such as
crack problems or phase changes, and adaptive refinement.

Recently, there have been developed a couple of methods concerning the idea
of coupling between EFG (Element Free Galerkin)-FEM (Finite Element Method).
These methods are also of great interest in applied mechanics, because they can reduce
considerably the computational cost. Pure FEM methods are primarily used by the
engineers, because are more common, but the advantages of meshless methods are
not to be negligible.

§2. Basic equations
Let D be a bounded domain in the three dimensional Euclidian space. Suppose

that the domain D is filled by an isotropic and homogenous medium. As in [6], the
basic equations of equilibrium of the linear thermoelasticity are:

the equilibrium equations:
tji,j + ρ0fi = 0 on D, (2.1)

the energy equation:
qi,i = - s on D, (2.2)
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the constitutive equations:

tij = 2µεij + λεkkδij − βθδij (2.3)

qi = kθ,i (2.4)

the strain-displacement relations:

εij = ui,j + uj,i on D, (2.5)

where ui are the components of the displacement vector, tij are the components of
the stress tensor, εij are the components of the strain tensor, fi are the components of
the specific body force, s is the specific heat supplied, θ is the temperature measured
from a constant reference temperature θ0, λ, µ, β, k are constants, characteristic of
the material. We attach the following boundary conditions:

ui = ui on Γu, tjinj = ti on Γt (2.6)

θ = θ on Γθ, qini = q on Γq, (2.7)

where ui,ti,θ,q are continuous functions given on the specified boundary parts, and
Γu

⋃

Γt = Γθ
⋃

Γq = ∂D, Γu
⋂

Γt = Γθ
⋂

Γq = Φ. Thus the boundary value problem
is to find ui, θ which satisfy (2.1)-(2.5) and the boundary conditions (2.6) and (2.7).
After some computations, we obtain the following equations:

µ ui,jj + (λ + µ)uj,ji + ρ0fi = βθ,i (2.8)

kθ,ii = −s. (2.9)

We consider the transformed boundary conditions attached to these equations:

ui = ui on Γu, λur,rni + µ(ui,j + uj,i)nj = ti + βθ ni on Γt (2.10)

θ = θ on Γθ, kθ,ini = q on Γq (2.11)

In the remainder of this paper we will consider the corresponding one-dimensional
problem on the domain 0 ≤ x ≤ 1:

u,xx +b = cθ,x, (2.12)

kθ,xx = −s (2.13)

where b = 1
λ+2µf1, c = 1

λ+2µβ. In the following we will uncouple the problem; we
will first solve the thermal problem: find θ which satisfies (2.13) and the boundary
conditions:

θ = θ on Γθ, kθ,xn = q on Γq (2.14)

Afterwards, we shall solve the mechanical problem: find uwhich satisfies (2.12) and
the boundary conditions

u = u on Γu, u,xn = t n on Γt, (2.15)

where t = t+βθ
λ+2µ . In order to impose essential boundary conditions, a couple of

methods have been developed [1], [4]. In the following we will use the Lagrange
multipliers method. We consider the following weak forms for our problem ([1]):
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I. The thermal problem: let the trial functions θ(x) ∈ H1 and the Lagrange
multipliers l ∈ H0

for all test functions δϕ(x) ∈ H1 and δl ∈ H0. If we have:

1
∫

0

kδϕT
,xδθ,xdx−

1
∫

0

δϕT sdx− δϕT q|Γq − δ lT (θ − θ)|Γθ − δϕT l|Γθ = 0, (2.16)

then (2.13) is satisfied together with the boundary conditions (2.14), where H1 and H2

denote Hilbert spaces of degree one and zero. A detailed discussion about these Hilbert
spaces can be found in [3].

II. The mechanical problem: let the trial functions u(x) ∈ H1 and the La-
grange multipliers m ∈ H0for all test functions δv(x) ∈ H1 and δ m ∈ H0. If we
have

1
∫

0

δvT
,xu,xdx−

1
∫

0

δvT (b− cθ,x)dx− δvT t|Γt − δ mT (u− u)|Γu − δvT m|Γu = 0 (2.17)

then (2.12) is satisfied together with the boundary conditions (2.15). The next section
presents the fundamentals of the MLS method for our particular one-dimensional case.

§3. MLS Aproximants

We further consider the domain Ω= [0, 1] discretized by a set of 11 evenly spaced
nodes. In the theory proposed in [7], related to classical elasticity, each node has a
corresponding ‘nodal parameter’: uI associated with it. It was shown that in general
uI 6= u(xI). In the present theory, besides the parameter uI that characterizes the me-
chanical behaviour at each node, we will consider the parameter θI that characterizes
the thermal behaviour at each node. As we shell see, in general θI 6= θ(xI).

Let’s consider the approximations uh(x) and θh(x) as polynomials of order m with
non-constant coefficients ([7]):

uh(x) =
m

∑

i=1

pi(x)ai(x) = pT (x)a(x) (3.1)

θh(x) =
m

∑

i=1

pi(x)bi(x) = pT (x)b(x), (3.2)

where m represents the number of terms in the base, pi(x) are the basis functions
(usually monomials), ai(x) and bi(x) are their coefficients. For example, in an one
dimensional space:

pT (x) = (1, x). (3.3)
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As a remark, it is possible to introduce singular functions in the basis as well. It was
shown [3] that any function included in the basis could be reproduced exactly by an
MLS approximation. This fact is very useful in the study of domains with cracks.

The unknown parameters ai(x)and bi(x), at a given point, are to be determined
by minimizing the differences between the local approximation at that point and the
nodal parameters: ui and, respectively θi. Let the nodes whose support include x,
be numbered locally from 1 to n. The functional to be minimized are the following
weighted, discrete L2 norms:

J1 =
n

∑

I=1

w(x− xI)
[

pT (xI)a(x)− uI
]2

(3.4)

J2 =
n

∑

I=1

w(x− xI)
[

pT (xI)b(x)− θI
]2

, (3.5)

where n is the number of nodes in the neighborhood of x for which the weight function
w(x−xI) 6= 0, uI and θI are nodal values at x = xI . In the calculus from the remainder
of this paper we take w as a cubic spline weight function

w(x− xI) = w(r) =















2
3 − 4r2 + 4r3 for r ≤ 1

2

4
3 − 4r + 4r2 − 4

3r3 for 1
2 < r ≤ 1

0 for r > 1.

(3.6)

More details about the choice of the weight function can be found in [1]. For the sake
of completeness, we will review the main steps in the determining the functional forms
for θ. Minimizing the functional J2 with respect to b(x), we obtain the following set
of linear equations

A(x)b(x) = B(x)θ(x)orb(x) = A−1(x)B(x)θ(x), (3.7)

where

A(x) =
n

∑

I=1

w(x− xI)p(xI)pT (xI)and (3.8)

B(x) = [w(x− x1)p (x1) , w(x− x2)p (x2) , w(x− xn)p (xn)] (3.9)

θT (x) = [θ1, θ2, ...θn]. (3.10)

Substituting (3.7) into (3.2), we obtain the following form for the MLS approximants:

θh(x) =
n

∑

I=1

ΨI(x)θI , (3.11)

where the shape functions ΨI(x) are

ΨI(x) =
m

∑

j=0

pj(x)(A−1(x)B(x))jI . (3.12)
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In the same way, ([7]) we can obtain the following expressions for the displacement:

uh(x) =
n

∑

I=1

ΨI(x)uI , (3.13)

where the shape functions ΨI(x)are given by (3.12).

As it was very well pointed out in [7], [1], the shape functions are not real inter-
polants, because the Kronecker’s delta criterion is not satisfied: ΨI(xJ) 6= δI J .

§4. Numerical implementation

Let us first solve the thermal problem (2.16). Thus, let’s consider the approximate
solution θ and the test function δϕ of the form given in (3.11). After some elementary
computations, we obtain the following system of linear algebraic equations

(

M N
NT 0

) (

θ
l

)

=
(

b
r

)

(4.1)

where,

MIJ =

1
∫

0

kΨT
I,xΨJ,xdx (4.2)

NIJ = −ΨK |ΓθI (4.3)

gI = ΨIqx|Γq +

1
∫

0

ΨIsdx, rK = −θK . (4.4)

To assemble these equations, we should integrate over the domain using Gauss quadra-
ture. First we will determine the quadrature points, and second, the domain of influ-
ence of the nodes is determined ([7]). Then, the shape functions are computed and
the equations (4.1) are assembled.

In order to solve the mechanical problem (2.17), we will consider the approximate
solution uand the test function δv of the form given in (3.13). As before, after some
elementary computations, we obtain the following system of linear algebraic equations

(

P Q
QT 0

)(

u
m

)

=
(

d
e

)

(4.5)

where,

PIJ =

1
∫

0

ΨT
I,xΨJ,xdx (4.6)

QIJ = −ΨK |ΓuI (4.7)
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dI = ΨItx|Γt +

1
∫

0

ΨI(b− cθ,x)dx, eK = −uK . (4.8)

The equations (4.5) are to be assembled like (4.1), using Gaussian quadrature.

§5. Numerical example

In this section we implement the MLS method: consider a one-dimensional bar
of unit length subjected to a body force of magnitude x and to a specific heat of
magnitude x. Assume that the displacement of the bar is fixed at the left end, and
the right end is traction free. Moreover, suppose that the temperature is constant on
the left end and the heat flux is null at the right end. The bar has constant cross
sectional area of unit value. This problem was also studied for a pure mechanical case
in [7]. Thus, the thermal problem can be written:

kθ,xx + x = 0 x ∈ (0, 1) (5.1)

θ(0) = 0 (5.2)

θ,x(1) = 0. (5.3)

The exact solution to (5.1)-(5.3) is given by

θ(x) =
1
k

(

1
2
x− 1

6
x3

)

. (5.4)

In order to compute the MLS solution of the thermal problem, one would have to
follow the steps described in the previously, taking s = x, θ = 0, q = 0. We will take
k = 1 and c = 1 in the calculus. The mechanical problem can be written

u,xx + x− cθ,x = 0 x ∈ (0,1) (5.5)

u(0) = 0 (5.6)

u,x(1) = 0. (5.7)

As previously, substituting (5.4) in (5.5), we obtain the following exact solution of
the problem (5.5)-(5.7):

u(x) = − c
36k

x4 − 1
6
x3 +

c
4k

x2 −
(

7
18

c− 1
2

)

x (5.8)

The MLS solution is obtained, like for the thermal problem; we have to assembly
the equation (4.5), computing the equations (4.6)-(4.8). In Fig.1 we can compare the
exact solution with the MLS solution for the thermal problem. In Fig. 2 we can
compare the exact solution with the MLS solution for the mechanical problem. We
can see that the errors in the approximation for the thermal problem are negligible;
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Fig. 1 Temperature vs. position

Fig. 2 Displacement vs. position
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for the mechanical problem there are some grater errors, and so we can conclude that
the method provides a better solution for the thermal problem.

§6. Conclusions
This paper proposes the implementation of MLS method in linear thermoelastic-

ity. This numerical method has been implemented in elasticity [5], since 1977. In
1995, the method was further developed by a great number of scientists, who pro-
posed new meanings and interpretations. Meshless methods have to be developed in
the future, especially regarding the computational cost which presently is too high.
At this stage, the optimum way of implementing these methods is coupling with FEM.
This paper represents the first step in implementing MLS in thermoelasticity. It is
presented the case of linear uncoupled thermoelasticity, and an algorithm for numer-
ical implementation was proposed as well. Finally the exact solution was compared
to the approximate one and the errors were discussed.
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