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Abstract. In this paper we address the following question: find the exact expres-
sion for the secular Rayleigh’s wave equation in a homogenius and isotropic medium
defined on a half space. Using Cardan’s formula and taking advantage of Maple pro-
cedures we get an expression for these roots which are functions of the Poisson’s ratio
of the material under study. We show that above a critical value for this ratio, the
structure of the solutions change and instead of having three real roots, the solutions
will develop complex behavior.
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1 Introduction

Rayleigh surface waves are of particular importance in seismology, acoustic, geophysics
and electronics applications. Resolution of Rayleigh wave equation has been the
subject of intensive studies([4,5,6,8]), which was discovered as late as the 19th century
([1] Rayleigh, 1887). The condition of propagation and the existence of Rayleigh
waves has been predicted theoretically along times ago. In the following we will study
the Rayleigh waves in a homogeneous and isotropic half-space with free boundary
conditions. The solutions of the secular Rayleigh wave equation give the velocity of the
waves in medium. The real roots determine the condition of the surface propagation
however the physical meaning of the complex roots is still under study. In this paper
we will solve the Rayleigh wave equation in function of the Poisson ratio of the medium
and study the properties of the roots in order to understand their behaviour near the
critical Poisson ratio. The section 2 is devoted to the mathematical solution and in
the section 3 we present the displacement component in the medium.

2 The Rayleigh wave equation

We place ourselves in the ideal situation where we consider an isotropic, homogeneous
and linearly elastic medium which fills the half-space defined by y ≥ 0. We work in
a Cartesian coordinate system OXY Z. The equation describing the displacement
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vector U of an infinitesimal element in a medium as function of time is a linear
elastodynamic equation (we neglect in this equation the volume forces which are not
relevant in this context ):

ρ
∂2U
∂t2

− µ ∆U− (λ + µ) ∇(div U) = 0 (2.1)

The symbols ∇ = −−→grad and ∆ = ∇2 stand for gradient and Laplace operators
respectively; ρ is the medium density (mass density), λ and µ are the Lame constants
of the isotropic material.

Y

Z
X

Schematic representation of Rayleigh wave scattering

The displacement component vector can be presented as

U = Ul + Ut = ∇φ +−→rot ψ (2.2)

With Ul = ∇φ = −−→grad φ, Ut = −→rot ψ, and φ, ψ are defined as the scalar and the
vector potentials respectively.

Substituting (2.2) into (2.1) leads to the two independent equations

ρ
∂2Ul

∂t2
− (λ + 2µ) ∆Ul = 0, (2.3)

ρ
∂2Ut

∂t2
− µ ∆Ut = 0. (2.4)

The equation (2.3) describes the propagation of longitudinal waves, and (2.4) describes
the propagation of transversal waves.

The Rayleigh wave propagates in the positive direction along the border of the
half-space represented by the x-axis. Writing the explicit form of Ul,t we find that
the potentials φ, ψ are solutions of the ordinary wave equations

∂2φ
∂x2 +

∂2φ
∂y2 − cl

2 φ = 0; (2.5)

∂2ψ
∂x2 +

∂2ψ
∂y2 − ct

2 ψ = 0, (2.6)
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where cl and ct are wave numbers corresponding to longitudinal and transversal waves,
defined by

cl = ω
√

ρ
λ + 2µ

, ct = ω
√

ρ
µ

.

We look for solutions propagating in the x-axis direction and with amplitude depend-
ing only on y:

φ(x, y, t) = F (y) ei(cx−ωt), ψ(x, y, t) = G(y) ei(cx−ωt),

with c representing the phase velocities on the surface. Substituting the explicit
expressions of φ and ψ into (2.5) and (2.6), we get

∂2F (y)
∂y2 = (c2 − cl

2) F (y), (2.7)

∂2G(y)
∂y2 = (c2 − ct

2) G(y). (2.8)

The above equations for F (y), G(y) are linear differential equations. We will take
the negative exponent solution, which is the physical solution in opposite the positive
one which assume that the wave is increasing exponential in function of y - and this
cannot be a realistic situation,

φ(x, y, t) = Al e[−
√

c2−cl
2y+i(cx−ωt)],

ψ(x, y, t) = At e[−
√

c2−ct
2y+i(cx−ωt)].

With Al, At arbitrary constants, we assume that c2 > c2
l and c2 > c2

t (or c2 > c2
t > c2

l ),
and i2 = −1.

From (2.2) we obtain

U = Ul + Ut = −−→grad φ + ∆ψ =

= (∂φ
∂x −

∂ψ
∂y ) ex + (∂φ

∂y + ∂ψ
∂x ) ey,

where ex, ey are based vectors. The displacement components Ux, Uy are given by

Ux =
∂φ
∂x

− ∂ψ
∂y

, Uy =
∂φ
∂y

+
∂ψ
∂x

.

Using Hook’s law in elastic solids:

σij = aijkl εkl, (2.9)
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the stress components σxx, σyy, σxy are given by

σxx = λ
(

∂2φ
∂x2 + ∂2φ

∂y2

)

+ 2µ
(

∂2φ
∂x2 − ∂2ψ

∂x∂y

)

= (λ + 2µ)
(

∂2φ
∂x2 + ∂2φ

∂y2

)

− 2µ
(

∂2φ
∂y2 + ∂2ψ

∂x∂y

)

σyy = λ
(

∂2φ
∂x2 + ∂2φ

∂y2

)

+ 2µ
(

∂2φ
∂y2 + ∂2ψ

∂x∂y

)

= (λ + 2µ)
(

∂2φ
∂x2 + ∂2φ

∂y2

)

− 2µ (∂2φ
∂x2 − ∂2ψ

∂x∂y )

σxy = µ (2 ∂2φ
∂x∂y + ∂2φ

∂x2 − ∂2ψ
∂y2 )

Using the boundary conditions

σyy(x, y = 0, z, t) = σxy(x, y = 0, z, t) = 0,

and substituting the expressions of φ and ψ in these conditions we get the following
system containing the arbitrary constants Al and At:

{

c2 λ
2µ Al − (c2 − cl

2)(1 + λ
2µ ) Al + ic

√
c2 − ct

2 At = 0

2ic
√

c2 − cl
2 Al + (2c2 − c2

t ) At = 0.
(2.10)

The non-trivial solutions lead to the condition:

4c2
√

c2 − cl
2
√

c2 − ct
2 − (2c2 − ct

2)2 = 0. (2.11)

The polynomial form of the above equation is

η6 − 8η4 + 8(3− 2ξ2)η2 − 16(1− ξ2) = 0. (2.12)

The above equation is called the Rayleigh wave equation, where η = ct
c and ξ = cl

ct
, and

c, cl, ct are defined as the wave numbers for phase velocities of surface, longitudinal
and transversal waves respectively.

The velocity c at which Rayleigh waves propagate over an isotropic and elastic
surface defined on the half-space y ≥ 0 is the root of the equation (2.12).

After this change of variables we have

η2 = θ =
(ct

c

)2
, ξ2 = α =

(

cl

ct

)2

.

We obtain an equivalent equation of third degree in θ:

θ3 − 8θ2 + 8(3− 2α)θ − 16(1− α) = 0. (2.13)

Using Cardan’s formula and taking advantage of MAPLE procedures, we get a formula
for the θ, where we have three solutions which can be pure real, pure imaginary or
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complex depending on the value of the Poisson ratio ν. The first root is given by

θ1 = 2
3

3

√

(−17 + 45α + 3
√

33− 186α + 321α2 − 192α3)

− 3
2

( 8
9−

16
3 α)

3
√

(−17+45α+3
√

33−186α+321α2−192α3)
+ 8

3 .

This root then describes the pure Rayleigh surface wave θR = θ1. The phase velocity
c of Rayleigh waves is obtained as

c =
ct√
θR

.

In a number of papers (e.g. [3]), an approximation of this root depending on Poisson’s
ratio ν is given using Bergmann’s formula ([2]):

θR = θ1 ≈
0.87 + 1.12ν

1 + ν
. (2.14)

In our approach we provide the exact expressions of these roots. It is straightforward
to express θ or η as a function of Poisson’s ratio ν via

α = ξ2 =
(

cl

ct

)2

=
1− 2ν

2(1− ν)
.

Unfortunately, this has not a simple form as the approximate expression of θ1 (2.14),

θR = θ1 = 2
3 [−17 + 45

2
1−2ν
1−ν + 3

2

√

−−15+63ν−48ν2+96ν3

(−1+ν)3 ]
1
3

− 2
3

8
9−

8
3

1−2ν
1−ν

[−17+ 45
2

1−2ν
1−ν + 3

2

√

−−15+63ν−48ν2+96ν3

(−1+ν)3
]
1
3

+ 8
3 .

The Poisson coefficient is in the range 0 ≤ ν ≤ 0.5 for a physical material, while
the real root θ1 = θR is discontinuous for α = 1

6 or ν = 2
5 - as we can see in the

following expression and in Figure 2:

θR(ν =
2
5
) =

2
3
(4− 3

√
19).

Substitution of the critical value α = 1
6 into the Rayleigh equation (12) yields to

θ3 − 8θ2 +
64
3

θ − 40
3

= 0.

This has three roots, namely

2
3
(4− 3

√
19),

1
3

3
√

19(1− i
√

3) +
8
3
,

1
3

3
√

19(1 + i
√

3) +
8
3
.
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Root θR of the Rayleigh equation versus Poisson’s ratio ν.

The exact critical value of Poisson’s ratio ν∗ is defined by

ν∗ = −11(77293+7296
√

114)
1
3 +(77293+7296

√
114)

2
3−455

85(77293+7296
√

114)
1
3 +(77293+7296

√
114)

2
3−455

≈ 0.2630821.

Similar expressions hold for the other roots; we present their analytical expressions.
The complex roots of the Rayleigh wave equation are generally considered as insignif-
icant. The formulas for the other roots are

θ2 = θ1
2 + i θ2

2,

where

θ1
2 = − 1

3
3

√

(−17 + 45α + 3
√

33− 186α + 321α2 − 192α3)

+ 3
4

( 8
9−

16
3 α)

3
√

(−17+45α+3
√

33−186α+321α2−192α3)
+ 8

3 ,

θ2
2 =

√
3

2 [ 23
3

√

(−17 + 45α + 3
√

33− 186α + 321α2 − 192α3)+

+ 3
2

( 8
9−

16
3 α)

3
√

(−17+45α+3
√

33−186α+321α2−192α3)
]

and a simple value is again adopted for α = 1
6 or ν = 2

5 :

θ2(α =
1
6
) =

1
3
[8 + 3

√
19 + i

√
3 3
√

19].

The third root θ3 is given by
θ3 = θ1

3 + i θ2
3,
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with

θ1
3 = − 1

3
3

√

(−17 + 45α + 3
√

33− 186α + 321α2 − 192α3)

+ 3
4

( 8
9−

16
3 α)

3
√

(−17+45α+3
√

33−186α+321α2−192α3)
+ 8

3 ,

θ2
3 = −

√
3

2 [ 23
3

√

(−17 + 45α + 3
√

33− 186α + 321α2 − 192α3)

+ 3
2

( 8
9−

16
3 α)

3
√

(−17+45α+3
√

33−186α+321α2−192α3)
]

and a simple value is again adopted for α = 1
6 or ν = 2

5 :

θ3(α =
1
6
) =

1
3
[8 + 3

√
19− i

√
3 3
√

19].

Root θR of the Rayleigh equation versus Poisson’s ratio ν.

In conclusion we have found three solutions: for 0 ≤ ν < ν∗ all these roots are
pure real; for ν∗ ≤ ν ≤ 0.4 the first solution θ2 remains real and however θ1, θ3 are
complex; finally for 0.4 < ν ≤ 0.5, we have the same conclusion as in the case before,
by doing the permutation θ1 → θ2, θ2 → θ3, θ3 → θ1, as seen in Figure 3.

We notice also that the critical value of the Poisson ratio ν∗ determine the nature
(real or complex) of the roots.
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Real and imaginary parts for the roots of the Rayleigh wave equation.

3 Displacement components

Once we have the solution of the Rayleigh wave equation, we can get the expressions
of the scalar and the vector potentials φ and ψ:

φ(x, y, t) = Al e[−
√

c2−c2
l y+i(kx−ωt)]

ψ(x, y, t) = − 2ic
√

c2−c2
l

2c2−c2
t

Al e[−
√

c2−c2
t y+i(cx−ωt)].

Using the above equation and the system (2.10) we obtain the displacement compo-
nents Ux, Uy:

Ux = Al c [e−
√

c2−c2
l y − 2

√
(c2−c2

l )(c2−c2
t )

c2
t

e−
√

c2−c2
t y] ei(cx−ωt−π

2 )

Uy = Al
√

c2 − c2
l [e−

√
c2−c2

l y − 2c2

2c2−c2
t

e−
√

c2−c2
t y] ei(cx−ωt).
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