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Abstract. For short memory processes nonparametric estimation of quantile func-
tions was considered in Abberger (1996, 1997). Ghosh et. al (1997) consider the kernel
estimaton of these functions for suitable transformations of an underlying Gaussian
process with long memory. In this paper we consider similar processes, however the
underlying Gaussian process is assumed to have serial correlations which decay fast
so that the sum of all correlations is finite. We prove the consistency of the kernel
estimates of distribution functions which are inverted to obtain consistent estimates
of the quantiles. We also discuss a smoother estimate of the quantiles and illustrate
the procedure by an application to a precipitation time series from Switzerland.
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1 Introduction

Consider a stochastic process Wi, i = 1, 2, ... that is generated by a time-dependent
transformation (see (1) below) of a zero mean stationary Gaussian process Zi. Processes
of this type were considered in Ghosh et al. (1997). Note that the probability distri-
bution function of Wi may change with time so that in this sense, the process is not
stationary. Ghosh et al. (1997) consider estimation of the conditional quantiles of
such processes by kernel smoothing and derive asymptotic properties of the estimator
in the presence of long-memory serial correlations in Wi (for detailed information on
long-memory processes, see Beran (1994) and Cox (1984)). Specifically,

Wi = G(Zi, ti), i = 1, 2, . . . , (1.1)

where ti = i
n , i = 1, 2, . . . are rescaled time points, {Zi} is a stationary Gaussian

process with E(Zi) = 0, V ar(Zi) = 1 and covariances γZ(l) = cov(Zi, Zi+l), l =
0,±1,±2, . . . . Let the conditional probability distribution function of the process W
at the rescaled time t be denoted by

Ft(w) = P (W (t) ≤ w|t). (1.2)

The unknown function G : R × [0, 1] → R is Lebesgue measurable with

1{G(Zi,ti)≤w} − Fti(w) =
∞
∑

k=m

ck(ti, w)Hk(Zi). (1.3)
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Here Hk(·) is the Hermite polynomial of degree k and the coefficients ck(t, w) are
twice continuously differentiable with respect to t and continuous with respect to w.
In this article we assume that the process {Zi} has short memory, so that the infinite
sum of the covariances γZ(l), l = 0,±1,±2, . . . is finite. By inverting (3), one obtains
the quantile function

θα(t) = inf{w ∈ R |Ft(w) ≥ α}, 0 < α < 1. (1.4)

2 Smooth quantiles

Consider the kernel estimator of Ft(w)

F̂t(w) =
1

nb1

n
∑

i=1

K1

( ti − t
b1

)

· 1{Wi≤w}, t ∈ [0, 1], w ∈ R . (2.5)

The corresponding estimate of the α - quantile may be obtained as

θ̂α(t) = inf{w ∈ R
∣

∣F̂t(w) ≥ α, } t ∈ [0, 1], 0 < α < 1. (2.6)

In the above definitions, b1 = b1(n) is a sequence of bandwidths such that, as
n → ∞, b1 → 0 and nb3

1 → ∞. Also K1 in (2.5) is a kernel that is assumed to
be a symmetric, Lipschitz-continuous and twice continuously differentiable density
function with support [−1, 1] that integrates to 1. Ghosh et. al (1997) prove the
consistency of the estimators (2.5) and (2.6) when the underlying Gaussian process
{Zi} in (1.1) has long memory. The procedure was also used for nonparametric
prediction of distribution functions and quantiles under long-memory in Ghosh and
Draghicescu (2002). Applications of this estimator to the precipitation time series
of Switzerland can be found in Draghicescu and Ghosh (2000, 2001) and Ghosh and
Draghicescu (2001). For short-memory processes, kernel estimation of the quantile
functions was considered in Abberger (1996, 1997). For further references to kernel
estimation in general, see Wand and Jones (1995). In this article we prove the con-
sistency of the same estimators for processes of the type {Wi} when the underlying
Gaussian process {Zi} has short memory (infinite sum of auto-covariances is finite).
We also discuss a smoother estimating procedure for the quantiles and illustrate the
method by an application to a Swiss precipitation series. In what follows, we assume
that ∂

∂w

[

Ft(w)
]

= ft(w) and ∂2

∂t2

[

Ft(w)
]

exist. Moreover, K1(0) ≥ K1(u), for all

u ∈ [−1, 1]. The proof of the following result is given in the appendix.

Theorem 1 If
∑∞

u=−∞ |γm
Z (u)| < ∞ then, as n →∞,

(a) Bias of F̂t(w) :

E
(

F̂t(w)|t
)

− Ft(w) =
b2
1

2

1
∫

−1

u2K1(u)du
∂2

∂t2

[

Ft(w)
]

+ o
(

b2
1

)

. (2.7)
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(b) Variance: An upper bound of the variance of F̂t(w) is given by

Vn(t, w) =
K2

1 (0)
(nb1)2

∞
∑

k=m

c2
k(t, w)k!

n(t+b1)
∑

i,j=n(t−b1)

γk
Z(i− j) = O

(

1
nb1

)

.

Remark 1 When W1, W2, . . . , Wn are independent, the dominating term in the
variance of F̂t(w) is

1
nb1

Ft(w)[1− Ft(w)]
∫ 1

−1
K2

1 (u)du.

Since the expression for the bias does not depend on the underlying correlation struc-
ture, it remains the same as in Theorem 1.

Remark 2 Theorem 1 immediately implies that the mean squared error of the
estimator F̂t converges to zero as n → ∞ implying consistency of F̂t. Finally, since
the quantile function θα(t) is obtained by inverting F̂t (equation (4)), consistency of
θ̂α(t) also follows.

3 Smoother quantiles

Tukey (1977) describes many smoothing methods, their advantages and disadvan-
tages being analyzed via numerous applications. He illustrates the idea to “make the
smooth still smoother” (p. 534) via running medians, repeated medians, hanning and
combinations of these, the basic idea being that “anything we can do once, we can do
twice” (p. 234). Similar to these procedures, Wu and Chu (1992) consider “double
smoothing” to estimate the mean function in the classic nonparametric regression
model with independent identically distributed data. They apply the Gasser-Müller
kernel estimator to the smooth estimator of the regression curve obtained by kernel
smoothing via the Nadaraya-Watson kernel and study the asymptotic properties of
this double smoothed estimator. In this paper we discuss a second kernel estimate
of the quantile functions that also essentially follows this principle. The method is
similar to Tukey’s twicing (p.526), because in our procedure kernel smoothing is done
twice, but, as in Wu and Chu (1992), the kernels need not be the same. The method
is illustrated in Figure ??.

We thus define the “smoother” estimator of the probability distribution function
of Wi, i = 1, 2, . . . (see (1.1))

F̃t(w) =
1

nb2

n
∑

i=1

K2

( ti − t
b2

)

· F̂ti(w), t ∈ [0, 1], w ∈ R , (3.8)

where F̂ti(w) are constructed as in (2.5), K1 and K2 are kernels and the bandwidth
b2 is defined as b1.
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To keep notations simple, “hat” will denote the kernel estimator defined in (5)
and “tilde” will be used to denote the smoother estimator. The quantiles can then
be estimated as

θ̃α(t) = inf{w ∈ R
∣

∣F̃t(w) ≥ α}, t ∈ [0, 1], 0 < α < 1. (3.9)

In what follows we discuss the consistency of this estimator when
W1,W2, . . . ,Wn are independently distributed. Note that this is the classical assump-
tion for many statistical applications including standard regression models. Under the
same conditions of Theorem 1 and as n →∞, we have

Theorem 2 (a) Bias:

E
(

F̃t(w)|t
)

− Ft(w) =
∂2

∂t2

[

Ft(w)
]

·
(b2

1

2

1
∫

−1

u2K1(u)du +
b2
2

2

1
∫

−1

u2K2(u)du
)

+

+o
(

max
(

b2
1, b

2
2

)

)

. (3.10)

(b) Variance:

V ar
(

F̃t(w)|t
)

=

1
∫

−1
K2

1 (u)du

nb1
·

1
∫

−1
K2

2 (u)du

nb2
Ft(w)

(

1− Ft(w)
)

+

+o
(

max
(

1
nb1

,
1

nb2

)

)

. (3.11)

Remark 3 While the bias of the “smoother” estimator will be larger or smaller than
the bias of the first kernel estimator depending on the curvature of the distribution
function Ft(w) at t, an appropriate choice of b2 can lead to smaller variance in the
“smoother” method. In particular, a proper choice of the bandwidth b2 can lead to
a more efficient “smoother” estimate of the distribution function and hence of the
quantiles. For related discussions in the context of nonparametric trend estimation
from replicated time series, see Ghosh (2001).

4 A data example

Figure 1 illustrates the time series of yearly means of daily precipitation (in mm) in
Bern during 1901-1999. The horizontal line corresponds to the value of the yearly
mean of daily precipitation equal to 2.5 mm. We estimated

P (Y early mean of daily precipitation ≤ 2.5 mm| year)

by using both (2.5) and (3.8) - see Figure 2. We used the truncated Gaussian density
kernel as K1 and the box kernel as K2.
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5 Appendix

Proof of Theorem 1
(a) Bias: The proof of the bias follows from standard arguments in particular by

symmetry of the kernel K1 around zero as well as the due to the fact that the function
K1 integrates to unity.

(b) Variance: The dominating term is

Vn(t, w) =
K2

1 (0)
(nb1)2

∞
∑

k=m

c2
k(t, w)k!

nb1
∑

u=−nb1

(

2nb1 + 1− |u|
)

k!γk
Z(u).

Now, following the line of proof given in Ghosh (2001), note that

Vn(t, w) = K2
1 (0)

(

2An + Bn + Cn

)

where

An =
1

nb1

∞
∑

k=m

[

c2
k(t, w)k! ·

nb1
∑

u=−nb1

γk
Z(u)

]

,

Bn =
1

(nb1)2

∞
∑

k=m

[

c2
k(t, w)k! ·

nb1
∑

u=−nb1

γk
Z(u)

]

,

and

Cn =
1

(nb1)2

∞
∑

k=m

[

c2
k(t, w)k! ·

nb1
∑

u=−nb1

|u|γk
Z(u)

]

.

The proof is completed by noting that Bn = o(An), Cn = o(nb1) and γk
Z(l) ≤

γm
Z (l), ∀l, ∀k ≥ m.
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