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Abstract. In the present paper we show that each stochastic process with finite
state space and two-dimensional discrete parameter associated to a family of border
probabilities and a t.t.f. has a Markov property called *Markov. We call such a
stochastic proces a finite Markov chain with discrete two-dimensional parameter.
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1 Introduction

In this work we intend to develop a theory of finite Markov chains with discrete
two-dimensional parameter. Till now we did not find any paper which treats this
subject. There are many works (see the list in References) that deal with stochastic
processes with two-dimensional parameter and their Markov properties, but none of
them follows a close analogy with the theory of finite Markov chains with discrete
one-dimensional parameter. The main instrument in this theory is the concept of
stochastic matrix and even the analogous concept for two-dimensional parameter is
absent in the works that we had the possibility to study.

Our start point was the concept of three-point transition function (t.t.f. for short)
(which can be found in papers [8], [13], [14], [15], [16]). Trying to adapt this concept
to finite state space and discrete two-dimensional parameter we were led in a natural
manner to the notions of four-dimensional stochastic matrix (4-s.m. for short) and of
horizontal and vertical products of such matrices and we noted that the very analogous
of the stochastic matrix is a 4-s.m. which can be composed with itself using both
products ([3]). First, we were interested in knowing whether there are such 4-s.m.s.
In paper [3], using the convolution product for functions defined on finite sets, we
showed that such 4-s.m.s exist for every finite set. Although the class of 4-s.m.s found
in [3] is rather a large one, it is still particular, so that we tried to find other such
4-s.m.s. In paper [5] we found all 4-s.m.s p on {0, 1} for which both the horizontal
product p ◦ p and the vertical product p ∨ p can be defined. In paper [4] we studied
the necessary and sufficient condition which must be fulfilled by a 4-s.m. so that
its powers determined by the horizontal and the vertical products make up a t.t.f.
and we found that this condition is that the 4-s.m. has the so called double product
property. Then we showed ([6]) that all 4-s.m.s found in paper [5] have the double

Proceedings of The 2-nd International Colloquium of Mathematics in Engineering and Numerical
Physics (MENP-2), April 22-27, 2002, University Politehnica of Bucharest, Romania.
BSG Proceedings 8, pp. 23-30, Geometry Balkan Press, 2003.



24 M.Bodnariu

product property. The result obtained in [6] determined us to ask ourselves whether
all 4-s.m.s p for which both the horizontal product p◦p and the vertical product p∨p
can be defined have the double product property. We gave the answer in paper [7]
and this is affirmative.

After we studied the 4-s.m.s and their relation with t.t.f.s, we focussed our atten-
tion upon the Markov properties of stochastic processes with finite state space and
two-dimensional discrete parameter. In the present paper we show that each stochas-
tic process with finite state space and two-dimensional discrete parameter associated
to a family of border probabilities and a t.t.f. has a Markov property called *-Markov.
For this reason we propose to call such a stochastic proces a finite Markov chain with
discrete two-dimensional parameter.

2 Three-point transition functions with discrete pa-
rameter

Let Γ be a finite set.

Definition 2.1. A function p : Γ4 → [0, 1] which has the property
∑

η∈Γ
p(α, β, γ, η) = 1 for all (α, β, γ) ∈ Γ3 is called a four dimensional stochastic matrix

on Γ (4-s.m. for short).

Definition 2.2. Let p and q be two 4-s.m.s on Γ.
a) If for every (α, β, γ, δ) ∈ Γ4 the sum

∑

η∈Γ
p(α, β, ξ, η)q(ξ, η, γ, δ) does not depend

on ξ ∈ Γ, then we define the function p ◦ q : Γ4 → [0, 1] by means of the relation

(p ◦ q)(α, β, γ, δ) =
∑

η∈Γ

p(α, β, ξ, η)q(ξ, η, γ, δ).

p ◦ q is called the horizontal product of p and q.
b) If for every (α, β, γ, δ) ∈ Γ4 the sum

∑

η∈Γ
p(α, ξ, γ, η)q(ξ, β, η, δ) does not depend

on ξ ∈ Γ, then we define the function p ∨ q : Γ4 → [0, 1] by means of the relation

(p ∨ q)(α, β, γ, δ) =
∑

η∈Γ

p(α, ξ, γ, η)q(ξ, β, η, δ).

p ∨ q is called the vertical product of p and q.

Definition 2.3. A family of 4-s.m.s on Γ,
(p(i,j),(i+m,j+n))

i,j∈N,m,n∈N
∗ such that for all i, j ∈ N, m, n, k, l ∈ N

∗
,

p(i,j),(i+m,j+n) ◦ p(i+m,j),(i+m+k,j+n) and p(i,j),(i+m,j+n) ∨ p(i,j+n),(i+m,j+n+l) can be
defined and

p(i,j),(i+m+k,j+n) = p(i,j),(i+m,j+n) ◦ p(i+m,j),(i+m+k,j+n),
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p(i,j),(i+m,j+n+l) = p(i,j),(i+m,j+n) ∨ p(i,j+n),(i+m,j+n+l)

is called three-point transition function on Γ with discrete time (t.t.f. for short).

Definition 2.4. A family of 4-s.m.s on Γ , (pm,n)
m,n∈N

∗ such that for all

m, n, k, l ∈ N
∗
, pm,n ◦ pk,n and pm,n ∨ pm,l can be defined and

pm+k,n = pm,n ◦ pk,n, pm,n+l = pm,n ∨ pm,l.

is called homogeneous three-point transition function on Γ with discrete time (h.t.t.f.
for short).

Theorem 2.1. ([7]) Let p = (p(i,j),(i+m,j+n))
i,j∈N,m,n∈N

∗ be a family of 4-s.m.s

on Γ and pi,j = p(i,j),(i+1,j+1) for i, j ∈ N. p is a t.t.f. on Γ with discrete parame-
ter if and only if for any i, j ∈ N, pi,j ◦ pi+1,j and pi,j ∨ pi,j+1 can be defined and
p(i,j),(i+m,j+n) = ∨n−1

l=0 (◦m−1
k=0 pi+k,j+l).

Corollary 2.1. ([7]) Let p = (pm,n)
m,n∈N

∗ be a family of 4-s.m.s on Γ and

p = p1,1. p is a h.t.t.f. on Γ if and only if p ◦ p and p ∨ p can be defined and
pm,n = (pm

◦ )n
∨ for any m, n ∈ N

∗
. (pm

◦ = ◦m
i=1pi, pi = p for i = 1, ..., k etc.).

Examples.
1) ([3]) Let Γ = ZZq, q ≥ 2. If P is a probability on Γ (i.e. a function P : Γ → [0, 1]

such that
∑

η∈Γ
P (η) = 1), then we define p(P ) : Γ4 → [0, 1] by

p(P )(α, β, γ, δ) = P (α− β − γ + δ), (α, β, γ, δ) ∈ Γ4.

p(P ) is a 4-s.m. on Γ. If P and Q are two probabilities on Γ, then we define the
convolution product of P and Q by means of the relation

(P ∗Q)(ξ) =
∑

θ+ω=ξ

P (θ)Q(ω), ξ ∈ Γ.

p(P )◦p(Q) and p(P )∨p(Q) can be defined and p(P )◦p(Q) = p(P ∗Q), p(P )∨p(Q) =
p(P ∗Q).

For this reason, if (Pi,j)
i,j∈N

is a family of probabilities on Γ, then (pi,j)
i,j∈N

,

where pi,j = p(Pi,j), is a family of 4-s.m.s on Γ such that pi,j ◦ pi+1,j and pi,j ∨ pi,j+1

can be defined. In view of Theorem 6 we obtain a t.t.f. on Γ.
For the same reason, p(P ) is a 4-s.m. on Γ such that p(P )◦p(P ) and p(P )∨p(P ) can

be defined and, consequently, (pm,n)
m,n∈N

∗ , where pm,n = p(Pmn
∗ ) (P k

∗ = P ∗ . . . ∗P,

k times), is a h.t.t.f. on Γ (Corollary 1).
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2) ([5], [6])) If p is a 4-s.m. on Γ = {0, 1}, then we denote p(α, β, γ, δ) = pt, where
t = 23α + 22β + 2γ + δ. We define five sorts of 4-s.m. on Γ giving the values of p0, p2,
p4, p6, p8, p10, p12, p14 (p2k+1 = 1− p2k).

p(a, u, v) : p0 = a, p2 = a−u, p4 = a−v, p6 = a−u−v, p8 = a+uv, p10 = a+uv−u,
p12 = a + uv − v, p14 = a + uv − u− v.

p(a, s) : p0 = a, p2 = s(1 − a), p4 = s(1 − a), p6 = s − s2(1 − a), p8 = 1 − a
s
,

p10 = a, p12 = a, p14 = s(1− a), a 6= 1, s 6= 0, s 6= a
1− a

.

p1(a) : p0 = p2 = p4 = p8 = p10 = p12 = p14 = 1, p6 = a, a 6= 1.
p0(a) : p0 = p2 = p4 = p6 = p10 = p12 = p14 = 0, p8 = a, a 6= 0.
p01 : p0 = 1, p2 = p4 = 0, p6 = 1, p8 = 0, p10 = p12 = 1, p14 = 0.
p is a 4-s.m. on Γ = {0, 1} for which p ◦ p and p ∨ p can be defined if and only if

the form of p is one from the five forms described above (see Theorem 3 in [6]). So
we can give five examples of h.t.t.f. on Γ = {0, 1}.

In addition, because p(a, u, v) ◦ p(b, u, w) = p(aw + b − w, u, vw), p(a, u, v) ∨
p(b, s, v) = p(as+b−s, us, v), p(a, s)◦p(A, s) = p(a, s)∨p(A, s) = p(aA+s(1−a)(1−
A), s), p1(a1)◦p1(a2) = p1(a1)∨p1(a2) = p(1, 0, 0), p0(a1)◦p0(a2) = p0(a1)∨p0(a2) =
p(0, 0, 0), and p01 ◦ p01 = p01∨ p01 = p01 we get five examples of t.t.f. on Γ = {0, 1}
generated by the families of 4-s.m. (pi,j)

i,j∈N
, where: 1) pi,j = p(ai,j , uj , vi), 2)

pi,j = p(ai,j , s), 3) pi,j = p1(ai,j), 4) pi,j = p0(ai,j), 5) pi,j = p01 (we applied here
again Theorem 6).

3) Let Γ = Γ1×Γ2, where Γ1,Γ2 are finite sets and let pi be a transition probability
from Γi to Γi, i = 1, 2. Define p : Γ4 → [0, 1] by means of the relation

p((α1, α2), (β1, β2), (γ1, γ2), (δ1, δ2)) = p1(β1, δ1)p2(γ2, δ2).

Then p is a 4-s.m. on Γ for which p ◦ p and p ∨ p can be defined.
It shows that, if (p1;i,j)

i,j∈N
and (p2;i,j)

i,j∈N
are two families of transition prob-

abilities from Γ to Γ, then (pi,j)
i,j∈N

, where

pi,j((α1, α2), (β1, β2), (γ1, γ2), (δ1, δ2)) = p1;i,j(β1, δ1)p2;i,j(γ2, δ2),

is a family of 4-s.m. on Γ such that pi,j ◦ pi+1,j and pi,j ∨ pi,j+1 can be defined and,
in view of Theorem 1.1 , it generates a t.t.f. on Γ. In the same way it can be seen
that, if p1 and p2 are transition probabilities from Γ to Γ, then the family of 4-s.m.
(pm,n)

m,n∈N
∗ , where

pm,n((α1, α2), (β1, β2), (γ1, γ2), (δ1, δ2)) = pm
1 (β1, δ1)pn

2 (γ2, δ2),

is a h.t.t.f. on Γ (Corollary 1.1).
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3 The Markov property

Let (xm,n)
(m,n)∈N

2 be a stochastic process on the state space Γ and having the prob-

ability space (Ω,K, P ). If (s, t) ∈ N
2
, then T ∗s,t = {(m, n) ∈ N

2
| m ≤ s or n ≤ t}.

Definition 3.1. We say that the stochastic process (xm,n)
(m,n)∈N

2 is *-Markov

if for each m′, m′′, n′, n′′ from N, m′ < m′′, n′ < n′′ and each finite M, M ⊂ T ∗m′,n′

and {(m′, n′), (m′, n′′), (m′′, n′)} ⊂ M one has

P (xm′′,n′′ = ηm′′,n′′ | xm,n = ηm,n, (m,n) ∈ M) =
(1)

P (xm′′,n′′ = ηm′′,n′′ | xm′,n′ = ηm′,n′ , xm′,n′′ = ηm′,n′′ , xm′′,n′ = ηm′′,n′)

for each ηm′′,n′′ ∈ Γ and each (ηm,n)(m,n)∈M ∈ Γ|M | (|M | is the number of elements
of M).

If Γ is a finite set, µ = {µ0;m1,...,mk;n1,...,nl | 0 < m1 < ... < mk, 0 < n1 < ... < nl}
is a family of border probabilities on Γ (i.e. each µ0;m1,...,mk;n1,...,nl is a probability on
Γ1+k+l and the family is projective) and p = (p(i,j),(i+m,j+n))

i,j∈N,m,n∈N
∗ a t.t.f. on

Γ, then there is a stochastic process (xm,n)
(m,n)∈N

2 on the state space Γ and having

the probability space (Ω,K, P ) such that

P (xm,n = ηm,n,m ∈ {0,m1, ..., mk}, n ∈ {0, n1, ..., nl}) =
(2) µ0;m1,...,mk;n1,...,nl(η0,0, ηm1,0, . . . , ηmk,0, η0,n1 , . . . , η0,nl)×

l−1
∏

j=0

k−1
∏

i=0
p(mi,nj),(mi+1,nj+1)(ηmi,nj , ηmi,nj+1 , ηmi+1,nj , ηmi+1,nj+1)

for all 0 = m0 < m1 < ... < mk, 0 = n0 < n1 < ... < nl and all ηm,n ∈ Γ,
m ∈ {0, m1, ...,mk}, n ∈ {0, n1, ..., nl}.

In the following we will show that each stochastic process (xm,n)
(m,n)∈N

2 defined

as above is *-Markov.

4 Three-point transition functions and the *-Markov
property

Theorem 4.1. Let Γ be a finite set, µ = {µ0;m1,...,mk;n1,...,nl | 0 < m1 < ... < mk, 0 <
n1 < ... < nl} a family of border probabilities on Γ, p = (p(i,j),(i+m,j+n))

i,j∈N,m,n∈N
∗

a t.t.f. on Γ and x = (xm,n)
(m,n)∈N

2 the associated stochastic process. Then x is

*-Markov.
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Proof. Let m′, m′′, n′, n′′ ∈ N, m′ < m′′, n′ < n′′ and M a finite set, M ⊂ T ∗m′,n′

and {(m′, n′), (m′, n′′), (m′′, n′)} ⊂ M. We can find m1, . . . ,mk, n1, . . . , nl ∈ N, k ≥ 2,
l ≥ 2, m1 < . . . < mk, n1 < . . . < nl such that M ⊂ D(m1, . . . ,mk; n1, . . . , nl),where
D(m1, . . . , mk; n1, . . . , nl) = {(mi, nj) | i = 1, . . . , k, j = 1, . . . , l} and there are q, u,
r, v, 1 ≤ q < u ≤ k, 1 ≤ r < v ≤ l, m′ = mq, n′ = nr, m′′ = mu, n′′ = nv.

Let A = (D(m1, . . . , mk;n1, . . . , nl) \D(mq+1, . . . ,mk; nr+1, . . . , nl))∪{(mu, nv)}
and A = D(m1, . . . , mk; n1, . . . , nl) \ D(mq+1, . . . , mk; nr+1, . . . , nl). We can write
P (xm,n = ηm,n, (m, n) ∈ A) =

∑

ηs,t∈Γ, (s,t)∈D(m1,...,mk;n1,...,nl) \A
P (xm,n = ηm,n, (m, n) ∈ A,

xs,t = ηs,t, (s, t) ∈ D(m1, . . . , mk; n1, . . . , nl) \A) and the same relation can be written
for A. Taking into consideration the relation (2), we get
P (xm,n = ηm,n, (m, n) ∈ A) = P (xm,n = ηm,n, (m, n) ∈ A)·
p(mq,nr),(mu,nv)(η(mq,nr), η(mq,nv), η(mu,nr), η(mu,nv)).

Since M ⊂ A, we have P (xm′′,n′′ = ηm′′,n′′ | xm,n = ηm,n, (m,n) ∈ M) =
P (xmu,nv = ηmu,nv | xm,n = ηm,n, (m,n) ∈ M) =
P (xmu,nv = ηmu,nv , xm,n = ηm,n, (m,n) ∈ M)

P (xm,n = ηm,n, (m,n) ∈ M)
=

∑

ηm,n∈Γ,(m,n)∈A\M
P (xmu,nv = ηmu,nv , xm,n = ηm,n, (m,n) ∈ A)

∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m,n) ∈ A)

=

∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m,n) ∈ A)

∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m,n) ∈ A)

=

S
∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m,n) ∈ A)

,

where S =
∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m, n) ∈ A)·

p(mq,nr),(mu,nv)(η(mq,nr), η(mq,nv), η(mu,nr), η(mu,nv))

Since {(mq, nr), (mq, nv), (mu, nv)} ⊂ M, we can write
S = p(mq,nr),(mu,nv)(η(mq,nr), η(mq,nv), η(mu,nr), η(mu,nv))·

∑

ηm,n∈Γ,(m,n)∈A\M
P (xm,n = ηm,n, (m, n) ∈ A) and so we obtain P (xm′′,n′′ = ηm′′,n′′ |

xm,n = ηm,n, (m,n) ∈ M) = p(mq,nr),(mu,nv)(η(mq,nr), η(mq,nv), η(mu,nr), η(mu,nv)).

From this relation we see that for every two finite sets M and M1 so that M ⊂
T ∗m′,n′ , M1 ⊂ T ∗m′,n′ and {(m′, n′), (m′, n′′), (m′′, n′)} ⊂ M∩M1 the following equality
holds P (xm′′,n′′ = ηm′′,n′′ | xm,n = ηm,n, (m,n) ∈ M) = P (xm′′,n′′ = ηm′′,n′′ | xm,n =
ηm,n, (m, n) ∈ M1). Particularly, we can take M1 = {(m′, n′), (m′, n′′), (m′′, n′)} and
we get the relation (1). Q.E.D.
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Because Theorem 4.1 does not demand any conditions neither for the family of
border probabilities µ, nor for the t.t.f p, all the t.t.f.s (and the h.t.t.f.s) described in
section 1 are good as examples.
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