Finite Markov chains with discrete two-dimensional parameter

Mircea Bodnariu

Abstract

In the present paper we show that each stochastic process with finite state space and two-dimensional discrete parameter associated to a family of border probabilities and a t.t.f. has a Markov property called *Markov. We call such a stochastic proces a finite Markov chain with discrete two-dimensional parameter.

Mathematics Subject Classification 2000: 60J10, 60 J 35.
Key words: Three-point transition function, *-Markov property.

1 Introduction

In this work we intend to develop a theory of finite Markov chains with discrete two-dimensional parameter. Till now we did not find any paper which treats this subject. There are many works (see the list in References) that deal with stochastic processes with two-dimensional parameter and their Markov properties, but none of them follows a close analogy with the theory of finite Markov chains with discrete one-dimensional parameter. The main instrument in this theory is the concept of stochastic matrix and even the analogous concept for two-dimensional parameter is absent in the works that we had the possibility to study.

Our start point was the concept of three-point transition function (t.t.f. for short) (which can be found in papers [8], [13], [14], [15], [16]). Trying to adapt this concept to finite state space and discrete two-dimensional parameter we were led in a natural manner to the notions of four-dimensional stochastic matrix (4-s.m. for short) and of horizontal and vertical products of such matrices and we noted that the very analogous of the stochastic matrix is a 4 -s.m. which can be composed with itself using both products ([3]). First, we were interested in knowing whether there are such 4 -s.m.s. In paper [3], using the convolution product for functions defined on finite sets, we showed that such 4 -s.m.s exist for every finite set. Although the class of 4 -s.m.s found in [3] is rather a large one, it is still particular, so that we tried to find other such 4 -s.m.s. In paper [5] we found all 4-s.m.s p on $\{0,1\}$ for which both the horizontal product $p \circ p$ and the vertical product $p \vee p$ can be defined. In paper [4] we studied the necessary and sufficient condition which must be fulfilled by a 4 -s.m. so that its powers determined by the horizontal and the vertical products make up a t.t.f. and we found that this condition is that the $4-\mathrm{s} . \mathrm{m}$. has the so called double product property. Then we showed ([6]) that all 4-s.m.s found in paper [5] have the double

Proceedings of The 2-nd International Colloquium of Mathematics in Engineering and Numerical Physics (MENP-2), April 22-27, 2002, University Politehnica of Bucharest, Romania.
BSG Proceedings 8, pp. 23-30, Geometry Balkan Press, 2003.
product property. The result obtained in [6] determined us to ask ourselves whether all 4-s.m.s p for which both the horizontal product $p \circ p$ and the vertical product $p \vee p$ can be defined have the double product property. We gave the answer in paper [7] and this is affirmative.

After we studied the 4 -s.m.s and their relation with t.t.f.s, we focussed our attention upon the Markov properties of stochastic processes with finite state space and two-dimensional discrete parameter. In the present paper we show that each stochastic process with finite state space and two-dimensional discrete parameter associated to a family of border probabilities and a t.t.f. has a Markov property called *-Markov. For this reason we propose to call such a stochastic proces a finite Markov chain with discrete two-dimensional parameter.

2 Three-point transition functions with discrete parameter

Let Γ be a finite set.
Definition 2.1. A function $p: \Gamma^{4} \rightarrow[0,1]$ which has the property
$\sum_{\eta \in \Gamma} p(\alpha, \beta, \gamma, \eta)=1$ for all $(\alpha, \beta, \gamma) \in \Gamma^{3}$ is called a four dimensional stochastic matrix on Γ (4-s.m. for short).

Definition 2.2. Let p and q be two 4-s.m.s on Γ.
a) If for every $(\alpha, \beta, \gamma, \delta) \in \Gamma^{4}$ the sum $\sum_{\eta \in \Gamma} p(\alpha, \beta, \xi, \eta) q(\xi, \eta, \gamma, \delta)$ does not depend on $\xi \in \Gamma$, then we define the function $p \circ q: \Gamma^{4} \rightarrow[0,1]$ by means of the relation

$$
(p \circ q)(\alpha, \beta, \gamma, \delta)=\sum_{\eta \in \Gamma} p(\alpha, \beta, \xi, \eta) q(\xi, \eta, \gamma, \delta) .
$$

$p \circ q$ is called the horizontal product of p and q.
b) If for every $(\alpha, \beta, \gamma, \delta) \in \Gamma^{4}$ the sum $\sum_{\eta \in \Gamma} p(\alpha, \xi, \gamma, \eta) q(\xi, \beta, \eta, \delta)$ does not depend on $\xi \in \Gamma$, then we define the function $p \vee q: \Gamma^{4} \rightarrow[0,1]$ by means of the relation

$$
(p \vee q)(\alpha, \beta, \gamma, \delta)=\sum_{\eta \in \Gamma} p(\alpha, \xi, \gamma, \eta) q(\xi, \beta, \eta, \delta)
$$

$p \vee q$ is called the vertical product of p and q.
Definition 2.3. A family of 4 -s.m.s on Γ,
$\left(p_{(i, j),(i+m, j+n)}\right)_{i, j \in \mathbb{N}, m, n \in \mathbb{N}^{*}}$ such that for all $i, j \in \mathbb{N}, m, n, k, l \in \mathbb{N}^{*}$,
$p_{(i, j),(i+m, j+n)} \circ p_{(i+m, j),(i+m+k, j+n)}$ and $p_{(i, j),(i+m, j+n)} \vee p_{(i, j+n),(i+m, j+n+l)}$ can be defined and

$$
p_{(i, j),(i+m+k, j+n)}=p_{(i, j),(i+m, j+n)} \circ p_{(i+m, j),(i+m+k, j+n)}
$$

$$
p_{(i, j),(i+m, j+n+l)}=p_{(i, j),(i+m, j+n)} \vee p_{(i, j+n),(i+m, j+n+l)}
$$

is called three-point transition function on Γ with discrete time (t.t.f. for short).
Definition 2.4. A family of 4 -s.m.s on $\Gamma,\left(p_{m, n}\right)_{m, n \in \mathbb{N}^{*}}$ such that for all $m, n, k, l \in \mathbb{N}^{*}, p_{m, n} \circ p_{k, n}$ and $p_{m, n} \vee p_{m, l}$ can be defined and

$$
p_{m+k, n}=p_{m, n} \circ p_{k, n}, \quad p_{m, n+l}=p_{m, n} \vee p_{m, l}
$$

is called homogeneous three-point transition function on Γ with discrete time (h.t.t.f. for short).

Theorem 2.1. ([7]) Let $\bar{p}=\left(p_{(i, j),(i+m, j+n)}\right)_{i, j \in \mathbb{N}, m, n \in \mathbb{N}^{*}}$ be a family of 4-s.m.s on Γ and $p_{i, j}=p_{(i, j),(i+1, j+1)}$ for $i, j \in \mathbb{N} . \bar{p}$ is a t.t.f. on Γ with discrete parameter if and only if for any $i, j \in \mathbb{N}, p_{i, j} \circ p_{i+1, j}$ and $p_{i, j} \vee p_{i, j+1}$ can be defined and $p_{(i, j),(i+m, j+n)}=\vee_{l=0}^{n-1}\left(\circ_{k=0}^{m-1} p_{i+k, j+l}\right)$.

Corollary 2.1. ([7]) Let $\bar{p}=\left(p_{m, n}\right)_{m, n \in \mathbb{N}^{*}}$ be a family of 4-s.m.s on Γ and $p=p_{1,1} \cdot \bar{p}$ is a h.t.t.f. on Γ if and only if $p \circ p$ and $p \vee p$ can be defined and $p_{m, n}=\left(p_{\circ}^{m}\right)_{\vee}^{n}$ for any $m, n \in \mathbb{N}^{*} .\left(p_{\circ}^{m}=\circ_{i=1}^{m} p_{i}, p_{i}=p\right.$ for $i=1, \ldots, k$ etc. $)$.

Examples.

1) ([3]) Let $\Gamma=\mathbb{Z}_{q}, q \geq 2$. If P is a probability on Γ (i.e. a function $P: \Gamma \rightarrow[0,1]$ such that $\sum_{\eta \in \Gamma} P(\eta)=1$, then we define $p(P): \Gamma^{4} \rightarrow[0,1]$ by

$$
p(P)(\alpha, \beta, \gamma, \delta)=P(\alpha-\beta-\gamma+\delta),(\alpha, \beta, \gamma, \delta) \in \Gamma^{4}
$$

$p(P)$ is a 4-s.m. on Γ. If P and Q are two probabilities on Γ, then we define the convolution product of P and Q by means of the relation

$$
(P * Q)(\xi)=\sum_{\theta+\omega=\xi} P(\theta) Q(\omega), \xi \in \Gamma
$$

$p(P) \circ p(Q)$ and $p(P) \vee p(Q)$ can be defined and $p(P) \circ p(Q)=p(P * Q), p(P) \vee p(Q)=$ $p(P * Q)$.

For this reason, if $\left(P_{i, j}\right)_{i, j \in \mathbb{N}}$ is a family of probabilities on Γ, then $\left(p_{i, j}\right)_{i, j \in \mathbb{N}}$, where $p_{i, j}=p\left(P_{i, j}\right)$, is a family of 4 -s.m.s on Γ such that $p_{i, j} \circ p_{i+1, j}$ and $p_{i, j} \vee p_{i, j+1}$ can be defined. In view of Theorem 6 we obtain a t.t.f. on Γ.

For the same reason, $p(P)$ is a 4 -s.m. on Γ such that $p(P) \circ p(P)$ and $p(P) \vee p(P)$ can be defined and, consequently, $\left(p_{m, n}\right)_{m, n \in \mathbb{N}^{*}}$, where $p_{m, n}=p\left(P_{*}^{m n}\right)\left(P_{*}^{k}=P * \ldots * P\right.$, k times), is a h.t.t.f. on Γ (Corollary 1).
2) $([5],[6]))$ If p is a 4 -s.m. on $\Gamma=\{0,1\}$, then we denote $p(\alpha, \beta, \gamma, \delta)=p_{t}$, where $t=2^{3} \alpha+2^{2} \beta+2 \gamma+\delta$. We define five sorts of 4 -s.m. on Γ giving the values of p_{0}, p_{2}, $p_{4}, p_{6}, p_{8}, p_{10}, p_{12}, p_{14}\left(p_{2 k+1}=1-p_{2 k}\right)$.
$p(a, u, v): p_{0}=a, p_{2}=a-u, p_{4}=a-v, p_{6}=a-u-v, p_{8}=a+u v, p_{10}=a+u v-u$, $p_{12}=a+u v-v, p_{14}=a+u v-u-v$.
$p(a, s): p_{0}=a, p_{2}=s(1-a), p_{4}=s(1-a), p_{6}=s-s^{2}(1-a), p_{8}=1-\frac{a}{s}$, $p_{10}=a, p_{12}=a, p_{14}=s(1-a), a \neq 1, s \neq 0, s \neq \frac{a}{1-a}$.
$p 1(a): p_{0}=p_{2}=p_{4}=p_{8}=p_{10}=p_{12}=p_{14}=1, p_{6}=a, a \neq 1$.
$p 0(a): p_{0}=p_{2}=p_{4}=p_{6}=p_{10}=p_{12}=p_{14}=0, p_{8}=a, a \neq 0$.
$p 01: p_{0}=1, p_{2}=p_{4}=0, p_{6}=1, p_{8}=0, p_{10}=p_{12}=1, p_{14}=0$.
p is a 4 -s.m. on $\Gamma=\{0,1\}$ for which $p \circ p$ and $p \vee p$ can be defined if and only if the form of p is one from the five forms described above (see Theorem 3 in [6]). So we can give five examples of h.t.t.f. on $\Gamma=\{0,1\}$.

In addition, because $p(a, u, v) \circ p(b, u, w)=p(a w+b-w, u, v w), p(a, u, v) \vee$ $p(b, s, v)=p(a s+b-s, u s, v), p(a, s) \circ p(A, s)=p(a, s) \vee p(A, s)=p(a A+s(1-a)(1-$ $A), s), p 1\left(a_{1}\right) \circ p 1\left(a_{2}\right)=p 1\left(a_{1}\right) \vee p 1\left(a_{2}\right)=p(1,0,0), p 0\left(a_{1}\right) \circ p 0\left(a_{2}\right)=p 0\left(a_{1}\right) \vee p 0\left(a_{2}\right)=$ $p(0,0,0)$, and $p 01 \circ p 01=p 01 \vee p 01=p 01$ we get five examples of t.t.f. on $\Gamma=\{0,1\}$ generated by the families of 4 -s.m. $\left(p_{i, j}\right)_{i, j \in \mathbb{N}}$, where: 1) $\left.p_{i, j}=p\left(a_{i, j}, u_{j}, v_{i}\right), 2\right)$ $\left.\left.\left.p_{i, j}=p\left(a_{i, j}, s\right), 3\right) p_{i, j}=p 1\left(a_{i, j}\right), 4\right) p_{i, j}=p 0\left(a_{i, j}\right), 5\right) p_{i, j}=p 01$ (we applied here again Theorem 6).
3) Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$, where Γ_{1}, Γ_{2} are finite sets and let p_{i} be a transition probability from Γ_{i} to $\Gamma_{i}, i=1,2$. Define $p: \Gamma^{4} \rightarrow[0,1]$ by means of the relation

$$
p\left(\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right),\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right)\right)=p_{1}\left(\beta_{1}, \delta_{1}\right) p_{2}\left(\gamma_{2}, \delta_{2}\right)
$$

Then p is a 4 -s.m. on Γ for which $p \circ p$ and $p \vee p$ can be defined.
It shows that, if $\left(p_{1 ; i, j}\right)_{i, j \in \mathbb{N}}$ and $\left(p_{2 ; i, j}\right)_{i, j \in \mathbb{N}}$ are two families of transition probabilities from Γ to Γ, then $\left(p_{i, j}\right)_{i, j \in \mathbb{N}}$, where

$$
p_{i, j}\left(\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right),\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right)\right)=p_{1 ; i, j}\left(\beta_{1}, \delta_{1}\right) p_{2 ; i, j}\left(\gamma_{2}, \delta_{2}\right)
$$

is a family of $4-\mathrm{s} . \mathrm{m}$. on Γ such that $p_{i, j} \circ p_{i+1, j}$ and $p_{i, j} \vee p_{i, j+1}$ can be defined and, in view of Theorem 1.1 , it generates a t.t.f. on Γ. In the same way it can be seen that, if p_{1} and p_{2} are transition probabilities from Γ to Γ, then the family of 4 -s.m. $\left(p_{m, n}\right)_{m, n \in \mathbb{N}^{*}}$, where

$$
p_{m, n}\left(\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right),\left(\gamma_{1}, \gamma_{2}\right),\left(\delta_{1}, \delta_{2}\right)\right)=p_{1}^{m}\left(\beta_{1}, \delta_{1}\right) p_{2}^{n}\left(\gamma_{2}, \delta_{2}\right)
$$

is a h.t.t.f. on Γ (Corollary 1.1).

3 The Markov property

Let $\left(x_{m, n}\right)_{(m, n) \in \mathbb{N}^{2}}$ be a stochastic process on the state space Γ and having the probability space (Ω, \mathcal{K}, P). If $(s, t) \in \mathbb{N}^{2}$, then $T_{s, t}^{*}=\left\{(m, n) \in \mathbb{N}^{2} \mid m \leq s\right.$ or $\left.n \leq t\right\}$.

Definition 3.1. We say that the stochastic process $\left(x_{m, n}\right)_{(m, n) \in \mathbb{N}^{2}}$ is ${ }^{*}$-Markov if for each $m^{\prime}, m^{\prime \prime}, n^{\prime}, n^{\prime \prime}$ from $\mathbb{N}, m^{\prime}<m^{\prime \prime}, n^{\prime}<n^{\prime \prime}$ and each finite $M, M \subset T_{m^{\prime}, n^{\prime}}^{*}$ and $\left\{\left(m^{\prime}, n^{\prime}\right),\left(m^{\prime}, n^{\prime \prime}\right),\left(m^{\prime \prime}, n^{\prime}\right)\right\} \subset M$ one has

$$
P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid x_{m, n}=\eta_{m, n},(m, n) \in M\right)=
$$

$$
\begin{equation*}
P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid x_{m^{\prime}, n^{\prime}}=\eta_{m^{\prime}, n^{\prime}}, x_{m^{\prime}, n^{\prime \prime}}=\eta_{m^{\prime}, n^{\prime \prime}}, x_{m^{\prime \prime}, n^{\prime}}=\eta_{m^{\prime \prime}, n^{\prime}}\right) \tag{1}
\end{equation*}
$$

for each $\eta_{m^{\prime \prime}, n^{\prime \prime}} \in \Gamma$ and each $\left(\eta_{m, n}\right)_{(m, n) \in M} \in \Gamma^{|M|}(|M|$ is the number of elements of M).

If Γ is a finite set, $\mu=\left\{\mu_{0 ; m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}} \mid 0<m_{1}<\ldots<m_{k}, 0<n_{1}<\ldots<n_{l}\right\}$ is a family of border probabilities on Γ (i.e. each $\mu_{0 ; m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}$ is a probability on Γ^{1+k+l} and the family is projective) and $\bar{p}=\left(p_{(i, j),(i+m, j+n)}\right)_{i, j \in \mathbb{N}, m, n \in \mathbb{N}^{*}}$ a t.t.f. on Γ, then there is a stochastic process $\left(x_{m, n}\right)_{(m, n) \in \mathbb{N}^{2}}$ on the state space Γ and having the probability space (Ω, \mathcal{K}, P) such that

$$
\begin{align*}
& P\left(x_{m, n}=\eta_{m, n}, m \in\left\{0, m_{1}, \ldots, m_{k}\right\}, n \in\left\{0, n_{1}, \ldots, n_{l}\right\}\right)= \\
& \mu_{0 ; m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}\left(\eta_{0,0}, \eta_{m_{1}, 0}, \ldots, \eta_{m_{k}, 0}, \eta_{0, n_{1}}, \ldots, \eta_{0, n_{l}}\right) \times \tag{2}\\
& \quad \prod_{j=0}^{l-1} \prod_{i=0} \prod_{\left(m_{i}, n_{j}\right),\left(m_{i+1}, n_{j+1}\right)}\left(\eta_{m_{i}, n_{j}}, \eta_{m_{i}, n_{j+1}}, \eta_{m_{i+1}, n_{j}}, \eta_{m_{i+1}, n_{j+1}}\right)
\end{align*}
$$

for all $0=m_{0}<m_{1}<\ldots<m_{k}, 0=n_{0}<n_{1}<\ldots<n_{l}$ and all $\eta_{m, n} \in \Gamma$, $m \in\left\{0, m_{1}, \ldots, m_{k}\right\}, n \in\left\{0, n_{1}, \ldots, n_{l}\right\}$.

In the following we will show that each stochastic process $\left(x_{m, n}\right)_{(m, n) \in \mathbb{N}^{2}}$ defined as above is *-Markov.

4 Three-point transition functions and the *-Markov property

Theorem 4.1. Let Γ be a finite set, $\mu=\left\{\mu_{0 ; m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}} \mid 0<m_{1}<\ldots<m_{k}, 0<\right.$ $\left.n_{1}<\ldots<n_{l}\right\}$ a family of border probabilities on $\Gamma, \bar{p}=\left(p_{(i, j),(i+m, j+n)}\right)_{i, j \in \mathbb{N}, m, n \in \mathbb{N}^{*}}$ a t.t.f. on Γ and $x=\left(x_{m, n}\right)_{(m, n) \in \mathbb{N}^{2}}$ the associated stochastic process. Then x is *-Markov.

Proof. Let $m^{\prime}, m^{\prime \prime}, n^{\prime}, n^{\prime \prime} \in \mathbb{N}, m^{\prime}<m^{\prime \prime}, n^{\prime}<n^{\prime \prime}$ and M a finite set, $M \subset T_{m^{\prime}, n^{\prime}}^{*}$ and $\left\{\left(m^{\prime}, n^{\prime}\right),\left(m^{\prime}, n^{\prime \prime}\right),\left(m^{\prime \prime}, n^{\prime}\right)\right\} \subset M$. We can find $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{l} \in \mathbb{N}, k \geq 2$, $l \geq 2, m_{1}<\ldots<m_{k}, n_{1}<\ldots<n_{l}$ such that $M \subset D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right)$, where $D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right)=\left\{\left(m_{i}, n_{j}\right) \mid i=1, \ldots, k, j=1, \ldots, l\right\}$ and there are q, u, $r, v, 1 \leq q<u \leq k, 1 \leq r<v \leq l, m^{\prime}=m_{q}, n^{\prime}=n_{r}, m^{\prime \prime}=m_{u}, n^{\prime \prime}=n_{v}$.

Let $A=\left(D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right) \backslash D\left(m_{q+1}, \ldots, m_{k} ; n_{r+1}, \ldots, n_{l}\right)\right) \cup\left\{\left(m_{u}, n_{v}\right)\right\}$ and $\bar{A}=D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right) \backslash D\left(m_{q+1}, \ldots, m_{k} ; n_{r+1}, \ldots, n_{l}\right)$. We can write $P\left(x_{m, n}=\eta_{m, n},(m, n) \in A\right)=$
$\sum_{m} P\left(x_{m, n}=\eta_{m, n},(m, n) \in A\right.$,
$\eta_{s, t} \in \Gamma,(s, t) \in D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right) \backslash A$
$\left.x_{s, t}=\eta_{s, t},(s, t) \in D\left(m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}\right) \backslash A\right)$ and the same relation can be written for \bar{A}. Taking into consideration the relation (2), we get
$P\left(x_{m, n}=\eta_{m, n},(m, n) \in A\right)=P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)$.
$p_{\left(m_{q}, n_{r}\right),\left(m_{u}, n_{v}\right)}\left(\eta_{\left(m_{q}, n_{r}\right)}, \eta_{\left(m_{q}, n_{v}\right)}, \eta_{\left(m_{u}, n_{r}\right)}, \eta_{\left(m_{u}, n_{v}\right)}\right)$.
Since $M \subset \bar{A}$, we have $P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid x_{m, n}=\eta_{m, n},(m, n) \in M\right)=$ $P\left(x_{m_{u}, n_{v}}=\eta_{m_{u}, n_{v}} \mid x_{m, n}=\eta_{m, n},(m, n) \in M\right)=$
$\frac{P\left(x_{m_{u}, n_{v}}=\eta_{m_{u}, n_{v}}, x_{m, n}=\eta_{m, n},(m, n) \in M\right)}{P\left(x_{m, n}=\eta_{m, n},(m, n) \in M\right)}=$
$\frac{\sum_{\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M} P\left(x_{m_{u}, n_{v}}=\eta_{m_{u}, n_{v}}, x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)}{\sum_{n, \bar{A}} P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)}=$

$$
\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M
$$

$\frac{\sum_{\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M} P\left(x_{m, n}=\eta_{m, n},(m, n) \in A\right)}{\sum_{\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M} P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)}=$
$\frac{S}{\sum_{\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M} P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)}$,
where $S=\sum_{\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M} P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)$.
$p_{\left(m_{q}, n_{r}\right),\left(m_{u}, n_{v}\right)}\left(\eta_{\left(m_{q}, n_{r}\right)}, \eta_{\left(m_{q}, n_{v}\right)}, \eta_{\left(m_{u}, n_{r}\right)}, \eta_{\left(m_{u}, n_{v}\right)}\right)$
Since $\left\{\left(m_{q}, n_{r}\right),\left(m_{q}, n_{v}\right),\left(m_{u}, n_{v}\right)\right\} \subset M$, we can write $S=p_{\left(m_{q}, n_{r}\right),\left(m_{u}, n_{v}\right)}\left(\eta_{\left(m_{q}, n_{r}\right)}, \eta_{\left(m_{q}, n_{v}\right)}, \eta_{\left(m_{u}, n_{r}\right)}, \eta_{\left(m_{u}, n_{v}\right)}\right)$.
$\sum \quad P\left(x_{m, n}=\eta_{m, n},(m, n) \in \bar{A}\right)$ and so we obtain $P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid\right.$ $\eta_{m, n} \in \Gamma,(m, n) \in \bar{A} \backslash M$
$\left.x_{m, n}=\eta_{m, n},(m, n) \in M\right)=p_{\left(m_{q}, n_{r}\right),\left(m_{u}, n_{v}\right)}\left(\eta_{\left(m_{q}, n_{r}\right)}, \eta_{\left(m_{q}, n_{v}\right)}, \eta_{\left(m_{u}, n_{r}\right)}, \eta_{\left(m_{u}, n_{v}\right)}\right)$.
From this relation we see that for every two finite sets M and M_{1} so that $M \subset$ $T_{m^{\prime}, n^{\prime}}^{*}, M_{1} \subset T_{m^{\prime}, n^{\prime}}^{*}$ and $\left\{\left(m^{\prime}, n^{\prime}\right),\left(m^{\prime}, n^{\prime \prime}\right),\left(m^{\prime \prime}, n^{\prime}\right)\right\} \subset M \cap M_{1}$ the following equality holds $P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid x_{m, n}=\eta_{m, n},(m, n) \in M\right)=P\left(x_{m^{\prime \prime}, n^{\prime \prime}}=\eta_{m^{\prime \prime}, n^{\prime \prime}} \mid x_{m, n}=\right.$ $\left.\eta_{m, n},(m, n) \in M_{1}\right)$. Particularly, we can take $M_{1}=\left\{\left(m^{\prime}, n^{\prime}\right),\left(m^{\prime}, n^{\prime \prime}\right),\left(m^{\prime \prime}, n^{\prime}\right)\right\}$ and we get the relation (1). Q.E.D.

Because Theorem 4.1 does not demand any conditions neither for the family of border probabilities μ, nor for the t.t.f \bar{p}, all the t.t.f.s (and the h.t.t.f.s) described in section 1 are good as examples.

References

[1] M. Bodnariu, \mathcal{T}-Markov Processes, Studii şi Cerc. Mat., 46, no.6,561-576, 1994
[2] M. Bodnariu, On the Markov properties, Rev. Roum. Math. Pures Appl., 42, no. $3-4,191-202,1997$
[3] M. Bodnariu, Three-point transition function with finite state space, U. P. B. Sci. Bull. Series A, 62, no. 2, 37-46, 2000
[4] M. Bodnariu, Three-point transition function generated by four-dimensional stochastic matrices, U. P. B. Sci. Bull. Series A, 63, no. 1, 21-28, 2001
[5] M. Bodnariu, Four-dimensional stochastic matrices on $\{0,1\}$, U. P. B. Sci. Bull. Series A, 63, no. 2, 11-18, 2001
[6] M. Bodnariu, Four-dimensional stochastic matrices with the double product property, U. P. B. Sci. Bull. Series A, 63, No. 4, 2001, (to appear)
[7] M. Bodnariu, The cross product and the three-point transition functions, U. P. B. Sci. Bull. Series A, (to appear)
[8] R. Cairoli, Une classe de processus de Markov, C. R. Acad. Sc. Paris, A, 273 (1971), 1071-1074
[9] M. Dozzi, Stochastic processes with a multidimensional parameter, Pitman Research Notes in Mathematics Series, Longman Scientific \& Technical, 1989
[10] M. Dozzi, Two-parameter stochastic processes, în Dozzi, M., Engelbert, H.J., Nualart, D., Stochastic Processes and Related Topics, Akademie-Verlag, Berlin, 1991
[11] H. Korezlioglu, P. Lefort, G. Mazziotto, Une propriété markovienne et difusions associées, Lecture Notes in Mathematics, 863, 245-274, 1980
[12] D. Nualart, M. Sanz, A Markov property for two parameter gaussian processes, Stochastica, Vol. III, no.1, 1-16, 1979
[13] Luo, Shou-Jun, Two-parameter homogeneous markovian process, Acta Math. Sci., 8 (1988), no.3, 315-322
[14] Luo, Shou-Jun, Two-parameter Markov processes, Stochastics and Stochastics Reports, 40 (1992), no. 3-4, 181-193
[15] C. Tudor, Some examples of Markov processes with two-dimensional time parameter, Analele Univesităţii Bucureşti, XXVIII (1979), 111-118
[16] C. Tudor, An invariance principle for Markov processes with two-dimensional time parameter, Rev. Roum. Math. Pures Appl., 10 (1979), 1513-1523

Mircea Bodnariu
University Politehnica of Bucharest
Department of Mathematics I
Splaiul Indepndentei 313
RO-77206 Bucharest, Romania
e-mail: bodnariu@mathem.pub.ro

