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Abstract. In this period of very fast increasing of the technical possibilities of
computers, as well as of the number of published works, the Numerical Physics most
provide: a) some accurate criteria intended to the evaluation of the compatibility
of a theoretical model relative to the experimental results, b) computing algorithms
which ensure: (i) a satisfactory accuracy, avoiding the instability and non-convergence
phenomena and limiting the dispersion-distortion phenomena, (ii) a minimal duration
of calculations (numerical simulations). The part of Physics which can solve these
problems corresponds to the chapter 0260 (Numerical Approximation and Analysis)
in the international classification of Physics Abstracts; one finds so that the Numerical
Physics is a kind of “projection” in Physics of the field 65 (Numerical Analysis) of
Mathematical Reviews.
The field of Numerical Physics has the support of Mathematics and of Theoretical
Physics, providing the necessary algorithms for the computing codes used by the
Computational Physics. Surely, the results of numerical computations have many ap-
plications, both in the field of Theoretical Physics and in different domains of Applied
(Technical) Physics. Taking into account that the validity domain of the different
Physics theoretical models corresponds to some numerical values of the similitude
criteria, one finds that the Numerical Physics is also very important for the classifica-
tion of these domains and, for the Physics teaching (in frame of Technical Universities,
especially), consequently.

I. Introduction

§1.1. The structures of the modern Mathematics and Physics, respectively; the
specific tasks of the Computational Physics and of the Numerical Physics

The next Diagram 1 presents the structures of modern Mathematics (according
to Mathematical Reviews Contents) and Physics (according to Physics Abstracts),
respectively. One finds the existence of a certain “superposition” of these basic sci-
ences; e.g., the Physics is “represented” in frame of Mathematics by the domains:
Mechanics of particles and systems (domain 70), Mechanics of solids (73), Optics,
electromagnetic theory (78), Classical thermodynamics, heat transfer (80), Quantum
theory (81), Statistical mechanics (82), Relativity and gravitational theory (83), As-
tronomy and astrophysics (85), Geophysics (86), while the Mathematics is present in
Physics mainly due to the domain Mathematical Methods in Physics (0200), with the
sub-domains referring to: Algebra, set theory, and graph theory (field 0210), Group
theory (0220), Function theory, analysis (0230), Geometry, differential geometry, and
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topology (0240), Probability theory, stochastic processes, and statistics (0250), Nu-
merical Approximation and Analysis (0260), Computational techniques (0270) and
Other topics in mathematical methods in Physics (0280).

Diagram 1

MAIN PRESENT DOMAINS OF MATHEMATICS AND PHYSICS

according to:

MATHEMATICAL REVIEWS CONTENTS PHYSICS ABSTRACTS

00: General

01: History and biography

03: Mathematical logic and founda-
tions

04: Set theory

05: Combinatorics

06: Order, lattices, ordered algebraic
systems

08: General algebraic systems

11: Number theory

12: Field theory and polynomials

13: Commutative rings and algebras

14: Algebraic geometry

15: Linear and multilinear algebra;
matrix theory

16: Associative rings and algebras

17: Nonassociative rings and algebras

18: Cathegory theory homological al-
gebra

19: K-theory

20: Group theory and generalizations

22: Topological groups, Lie groups

26: Real functions

28: Measure and integration

30: Functions of complex variable

31: Potential theory

32: Several complex variables and an-
alytical spaces

33: Special functions

34: Ordinary differential equations

35: Partial differential equations

39: Finite differences and functional
equations

40: Sequences, series, summability

41: Approximations and expansions

42: Fourier analysis

43: Abstract harmonic analysis

44: Integral transforms, operational
calculus

45: Integral equations

46: Functional analysis

47: Operator theory

49: Calculus of variations and optimal
control; optimization

51: Geometry

52: Convex and discrete geometry

53: Differential geometry

54: General topology

55: Algebraic topology

57: Manifolds and cell complexes

58: Global analysis, analysis in mani-
folds

60: Probability theory and stochastic
processes

62: Statistics

65: NUMERICAL ANALYSIS

68: Computer science

70: Mechanics of particles and systems

73: Mechanics of solids

78: Optics, electromagnetic theory

80: Classical thermodynamics, heat
transfer

81: Quantum theory

82: Statistical mechanics

83: Relativity and gravitational the-
ory

85: Astronomy and astrophysics

86: Geophysics

90: Economics, operations research,
programming, games

92: Biology and natural sciences, be-
havioral sciences

93: Systems theory, control

94: Information and communication
circuits

0000: GENERAL

0100: Communication, Education, His-
tory, and Philosophy

0200: Mathematical Methods in Physics

0210: Algebra, set theory, and graph the-
ory

0220: Group theory

0230: Function theory; analysis

0240: Geometry, differential geometry,
and topology

0250: Probability theory, stochastic
processes, and statistics

0260: Numerical Approximation and
Analysis
(NUMERICAL PHYSICS)

0270: Computational techniques

0280: Other topics in mathematical
methods in physics

1000: The Physics of elementary Parti-
cles and Fields

2000: Nuclear Physics

3000: Atomic and Molecular Physics

4000: Fundamental Areas of Phenom-
enology

5000: Fluids, Plasmas and Electric Dis-
charges

6000: Condensed Matter; Structure, Me-
chanical and Thermal Properties

7000: ibid.; Electronic Structure, Elec-
trical, Magnetic and Optical Prop-
erties

8000: Cross-Disciplinary Physics
and Related Areas of Science and
Technology

9000: Geophysics,Astronomy and Astro-
physics
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One finds so that the Numerical Physics acts mainly in frame of the sub-domain Numer-
ical Approximation and Analysis (0260), being a true ”projection” in Physics of the domain
58: “Numerical Analysis” of Mathematics. On the other hand, the Numerical Physics is a
part of the Computational Physics, namely that part which elaborates the (physical) algo-
rithms of the studied problems, while the Computational Physics needs and involves also
many elements concerning the used Computational techniques. The position of the Nu-
merical Physics relative to Mathematics and in frame of Physics and of the Computational
Physics, resp. is presented by Diagram 2.

Unlike the considerable number of the existing textbooks of Computational Physics (see
e.g. the references [1]-[7], as well as of the books of Numerical Methods for Physics [8]), we
did not yet meet similar textbooks of Numerical Physics, despite of the considerable interest
corresponding to its specific problems and applications. The study of the structure of the
Computational Physics textbooks points out (Diagram 3), that they start always
from the mathematical knowledge necessary for the basic calculations in Physics,
the typical applications (in many important Physics problems) following the mathematical
knowledge.

Taking into account that the Numerical Physics starts always from some nu-
merical problems specific to Physics, a short previous analysis of the main conceptual
differences between Mathematics and Physics is absolutely necessary.

Diagram 2
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Diagram 3a

The content of the Computational Physics textbook: Steven E. Koonin
“Computational Physics”, Addison-Wesley Publishing Company, 1986

Chapter 1: Basic Mathematical Operations (§1.1. Numerical differentiation, §1.2.
Numerical quadrature, §1.3. Finding roots, §1.4. Semiclassical quantization of molecular
vibrations, Project I: Scattering by a central potential) . . . . . . . . . . . . . . . . . . . . . . . . . . 22 pages

Chapter 2: Ordinary Differential Equations (§2.1. Simple methods, §2.2. Mul-
tistep and implicit methods, §2.3. Runge-Kutta methods, §2.4. Stability, §2.5. Order and
chaos in 2D motion, Project II: The structure of white dwarf stars (II.1. The equations
of equilibrium, II.2. The equation of state, II.3. Scaling the equations, II.4. Solving the
equations)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 pages

Chapter 3: Boundary Value and Eigenvalue Problems (§3.1. The Numerov
algorithm, §3.2. Direct integration of boundary value problems, §3.3. Green’s function
solution of boundary value problems, §3.4. Eigenvalues of the wave equation, §3.5. Stationary
solutions of the 1D Schrödinger equation, Project III: Atomic structure in the Hartree-Fock
approximation (III.1. Basis of the Hartree-Fock approximation, III.2. The two-electron
problem, III.3. Many-electrons systems, III.4. Solving the equations)) . . . . . . . . . . . .28 pages

Chapter 4: Special Functions and Gaussian Quadrature (§4.1. Special functions,
§4.2. Gaussian quadratures, §4.3. Born and eikonal approximations to quantum scattering,
Project IV: Partial wave solution of quantum scattering (IV.1. Partial wave decomposition
of the wavefunction, IV.2. Finding the phase shifts, IV.3. Solving the equations)) 24 pages

Chapter 5: Matrix Operations (§5.1. Matrix inversion, §5.2. Eigen-values of a tri-
diagonal matrix, §5.3. Reduction to tri-diagonal form, §5.4. Determining nuclear charge
densities, Project V: A schematic shell model (V.1. Definition of the model, V.2. The exact
eigenstates, V.3. Approximate eigenstates, V.4. Solving the model)) . . . . . . . . . . . . . 36 pages

Chapter 6: Elliptic Partial Differential Equations (§6.1. Discretization and the
variational principle, §6.2. An iterative method for boundary value problem, §6.3. More on
discretization, §6.4. Elliptic equations in 2D, Project VI: Steady-state hydrodynamics in 2D
(VI.1. The equations and their discretization, VI.2. Boundary conditions, VI.3. Solving the
equations)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 pages

Chapter 7: Parabolic Partial Differential Equations (§7.1. Naive dis-
cretization and instabilities, §7.2. Implicite schemes and the inversion of tri-diagonal
matrices, §7.3. Diffusion and boundary problems in 2D, §7.4. Iterative methods for
eigenvalue problems, §7.5. The time-dependent Schrödinger equation, Project VII:
Self-organization in chemical reactions (VII.1. Description of the model, VII.2. Lin-
ear stability analysis, VII.3. Numerical solution of the model)) . . . . . . . . . . . . . . . . . . 24
pages

Chapter 8: Monte Carlo methods (§8.1. The basic Monte Carlo strategy,
§8.2. Generating random variables with a specified distribution, §8.3. The algorithm
of Metropolis et al., §8.4. The Ising model in 2D, Project VIII: Quantum Monte Carlo
for the H2 molecule (VIII.1. Statement of the problem, VIII.2. Variational Monte
Carlo and the trial wavefunction, VIII.3. Monte Carlo evaluation of the exact energy,
VIII.4. Solving the problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 pages

Appendix A: Synopsis of the BASIC language . . . . . . . . . . . . . . . . . 10 pages



Numerical physics-Specific problems and applications 27

Appendix B: Programs for the Examples (B1. Finding the semiclassical ap-
proximations to the bound state energies of the Lennard-Jones potential for the value

of γ =
√

2ma2Vo/h̄2 input, B2. Integration of trajectories in the Hénon-Heiles poten-
tial and obtainment of the corresponding surfaces of section, B3. Obtainment of the
stationary states of the 1D-Schrödinger equation for a particle in a potential normal-
ized so that its maximum and minimum values are +1 and –1, resp., B4. Calculation
of the Born and eikonal scattering amplitudes and cross-sections for an electron in-
cident on a square-well, Gaussian-well, or Lenz-Jensen potential, as described in the
text, B5. Fitting of the electron-nucleus elastic scattering cross sections to determine
the nuclear charge density using the method described in the text, B6. Solving the
Laplaçe’s equation in 2D on a uniform rectangular lattice by Gauss-Seidel iteration,
B7. Solving the time-dependent Schrödinger equation for a particle moving in 1D,
B8. Simulation of the 2D Ising model using the algorithm of Metropolis et al.) . 110
pages

A similar structure, but involving also some elements concerning the Errors and
Uncertainties in Computations (Blunders, Random errors, Approximation Errors and
Roundoff Errors) and those intervening in Algorithms, as well as some elements con-
cerning the Computation Techniques, has the recent Computational Physics book of
R.H.Landau and M.J.Páez [6]. The titles of the chapters involved by this book are
indicated in the last part of Diagram 3b.

Diagram 3b

The content (titles of Chapters) of the book of R.H.Landau, M.J.Páez
Mej́ıa “Computational Physics. Problem Solving with Computers”, John

Wiley and Sons, Inc., New
York-Chichester-Weinheim-Brisbane-Singapore-Toronto, 1997

Part I. Generalities (1. Introduction, 6 pages, 2. Computing Software Basics,
22 pages, 3. Errors and Uncertainties in Computations, 16 pages, 4. Integration, 19
pages)

Part II. Applications (5. Data Fitting, 20 pages, 6. Deterministic Randomness,
10 pages, 7. Monte Carlo Applications, 16 pages, 8. Differentiation, 8 pages, 9.
Differential Equations and Oscillations, 14 pages, 10. Quantum Eigenvalues; Zero-
Finding and Matching, 12 pages, 11. Anharmonic Oscillations, 8 pages, 12. Fourier
Analysis of Nonlinear Oscillations, 20 pages, 13. Unusual Dynamics of Nonlinear
Systems, 10 pages, 14. Differential Chaos in Phase Space, 16 pages)

Part III. Applications: High Performance Computing (15. Matrix Com-
puting and Subroutine Libraries, 34 pages, 16. Bound States in Momentum Space,
8 pages, 17. Quantum Scattering via Integral Eqauations, 10 pages, 18. Computing
Hardware Basic: Memory and CPU, 14 pages, 19. High-Performance Computing:
Profiling and Tuning, 12 pages, 20. Parallel Computing and PVM, 8 pages, 21.
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Object-Oriented Programming: Kinematics, 14 pages, 22. Thermodynamic Simula-
tions, 12 pages, 23. Functional Integration on Quantum Paths, 14 pages, 24. Fractals,
20 pages)

Part IV. Partial Differential Equations (25. Electrostatic Potentials, 12
pages, 26. Heat Flow, 10 pages, 27. Waves on a String, 14 pages, 28. Solitons,
the DdeV Equation, 10 pages, 29. Sine-Gordon Solitons, 10 pages, 30. Confined
Electronic Wave Packets, 10 pages)

Appendices: A. Analogous Elements in Fortran and C, 2 pages, B. Programs on
Floppy Diskette, 6 pages, C. Listing of C Programs, 44 pages, D. Listing of Fortran
Programs, 40 pages, E. Typical Project Assignments, 2 pages, Glossary – 2 pages and
References – 5 pages.

§1.2. Short analysis of the main conceptual differences between Mathematics and
Physics

While: a) the Physics of macroscopic systems (represented mainly by Mechan-
ics) presents a deterministic character, which allowed its very quick axiomatization
by Ernst Mach et al., b) the phenomena at the mesoscopic level (dimensions of the
magnitude order of 1 µm) of the grains from metals, alloys, rocks etc. present both
hysteretic and considerably strong nonlinear behaviors, that does difficult (often im-
possible) the deterministic descriptions, and: c) the phenomena at the microscopic
(atomic) level have a net quantum (probabilistic) character.

That is why – unlike to the usual mathematical concepts – an absolutely exact
(from the view point of the classical determinism) description of the physical systems
is usually impossible.

A first direct consequence of this experimental finding refers to the problem of
uniqueness parameters. This consequence represents a first important difference be-
tween the mathematical and physical concepts, resp.: While the number of uniqueness
parameters of a mathematical problem is fixed (e.g. 3 for an arbitrary triangle: the
lengths of the triangle sides, or the lengths of 2 sides and the angle between these
sides etc.), the number of uniqueness parameters of a physical system depends on the
required accuracy of the obtained description. E.g., while the thermodynamic state
(mass density, volume density of the internal energy, etc) of the air is mainly described
by 2 uniqueness parameters (the air temperature and pressure), an improvement of
the description accuracy needs to take into consideration an additional (a third one)
uniqueness parameter: the air humidity, another increase of the description accuracy
requires a fourth uniqueness parameter: the content of carbon dioxide, etc.

The second important difference between the mathematical and physical concepts
refers to the definition of a well-possessed problem. While in Mathematics a such
problem corresponds usually to a system of compatible and non-redundant equations,
whose number is equal to that of unknowns, a well-possessed Physics problem needs
a system of (slightly) incompatible (and non-redundant) equations, whose number
must be considerably larger than that of unknowns.

The above definition of a well-possessed Physics problem reflects already the ex-
istence of fluctuations (due to the microscopic structure) and even the presence of
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some hysteretic behaviors (due to the mesoscopic structure) of the studied physical
system. It appears here a third important difference between the mathematical and
physical concepts: while in Mathematics the obtained results are exact (therefore
their confidence level is the maximum one: L = 1) and they correspond to a real ob-
tained information (=¿0), the Physics results are connected always with some specific
confidence levels (L < 1) and sometimes the obtained apparent information could
correspond really to a misinformation (=¡0).

Finally, we consider that a fourth (and last) important difference between the
mathematical and physical concepts refers to the method of incomplete induction.
While in Mathematics, the incomplete induction is only the first step of the rigorous
(and exclusively accepted) method of the complete induction, in Physics the method
of the incomplete induction is accepted and represents even one of the main Physics
methods (also of the Numerical Physics) 1.

§1.3. Main Functions of the Numerical Physics

Taking into account the existing differences between the mathematical and physi-
cal concepts, the above presented main possibilities of the Computational Physics, as
well as the relations of the Numerical Physics with Mathematics and the Computa-
tional Physics, this work has found that the Numerical Physics represents:

a) the Physics version of the theory of field 0260 “Numerical Approximation and
Analysis”, as a componentof the domain 0200 “Mathematical Methods in Physics” of
the Physics Abstracts Classification (as it can be found from Diagram 1, the Numerical
Physics represents the end located in Physics of the “bridge” which connects the
Mathematics and Physics),

b) the Theory of Physics Models (as it was shown above, the Numerical Physics
represents also a “projection” of the field 65 of Mathematics in Physics; taking into
account that the main purpose and application of the Numerical Analysis is the
study of the general (abstract) models, it results that one of the main goals of the
Numerical Physics consists in the study of physical models),

c) a general method of Physics intended to the obtainment and to the study of the
meaning of physical numbers (as the experimental Physics uses mainly the experimen-
tal methods for the Physics study, as the theoretical Physics highlights the concepts,
basic equations, principles and other theoretical elements to study the Physics, and
the technical Physics studies mainly the physical instruments and devices and their
applications, the Numerical Physics highlights the physical numbers, studying and
underlying their specific meanings and uses; because this function is the most
important one, the Numerical Physics represents the physical findings expressed
and multiply checked by numbers),

d) the Proto-Mathematics (as it can be found from Diagram 1, the Numerical

1For this reason, the set of Physics principles is not equivalent to the experimental results which
have generated them. This non-equivalence allows to the theoretical Physics, which obtains rigorous
deductions (but starting from the Physics principles, obtained by means of the incomplete induction
method!), to find some extremely important new results (e.g. concerning the population inversion,
the nuclear energy etc.) many years before their experimental discovery.
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Physics (and its associated field 0260) represents a true “pump”, which sends per-
manently towards Mathematics new algebraic structures specific to certain Physics
domains (see the domains 70...86 of the Mathematical Reviews Contents from Dia-
gram 1); it results that the Numerical Physics could be considered as a previous stage
of many domains of Mathematics, i.e. as a true Proto-Mathematics).

Taking into account the considerable number of different functions of the Numer-
ical Physics, it is easy to understand its important and various scientific, technical
and didactic applications.

II. Basic notions of Numerical Physics

Taking into account the central role of correlations for the study of the nature
sciences2, it is necessary to classify the basic notions of Physics (as the main nature
science, the others being the Physical Chemistry, the Biophysics, the Physical Elec-
tronics, the Astrophysics etc) as: (i) pre-correlational notions, (ii) notions specific to
correlations, (iii) post-correlational notions.

§2.1. Definitions of the main pre-correlational notions

Because some of the pre-correlational notions are defined starting from notions of
Mathematical Statistics, these parameters can be classified as:

a) Pre-correlational notions, whose definitions do not need statistical notions:
The main such notions are: (i) the physical property, (ii) the physical quantity,

(iii) the physical measure, (iv) the physical units and magnitudes (relative to a certain
physical measure), resp., (v) the physical amount, (vi) the physical parameter,

b) Notions of Mathematical Statistics, intervening in definitions of some pre-
correlational notions:

(i) the non-conditioned and the conditioned probabilities, (ii) the density of prob-
ability in a continuous N-dimensional space, (iii) some particular discrete (Bernoulli,
Poisson (of rare events) etc) and continuous (the normal N-dimensional distribution,
with its particular 2D- and 1D- (Gauss) cases) probability distributions, (iv) the
principles and the specific features of the main statistical tests used in Physics.

c) Pre-correlational notions defined by means of some statistical notions:
The main such notions are: (i) the true (most probable) value aXiof a physical

parameter Xi, (ii) the physical errors εXi ≡ ε (Xi) = xi − −aXi (where xiis the
measured individual value), their classification and their associated notions, mainly:
(iii) the covariance: Cov(X, Y ) =< ε (Xi)·ε (Yi) > and: (iv) the variance (dispersion):
D(X) ≡ Cov(X,X) =< ε2 (Xi) >, (v) the confidence domains and levels, resp.

The definitions of these notions are presented by works [11], p. and [12], p.484-486.

§2.2. Definitions of the main notions specific to correlations

The most important correlational notions are those referring to the: a) uniqueness
parameters uk (k=1,2,...m), b) the parameters of material (system) pj (j=1,2...n) and
their zero-order approximations, c) tested (measurable) parameters ti (i=1,2,...N),

2This opinion belongs to A. Einstein [9], page 67, R. Feynman [10], vol.1, page 36 etc.
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whose measured (experimental) values texp .i can be also evaluated (calculated) the-
oretically, starting from the values of the uniqueness parameters and those of the
material (system) parameters: tcalc.i = fi(uk, pj), d) the weights Wi (i=1,2,...N)
associated to the experimental values of the test(ed) parameters, usually chosen as:
Wi = C

D(ti)
, where Cis a conveniently chosen constant, e) principle of the mini-

mum square deviations: the most probable values of the material (system) para-
meters pj are those corresponding to the minimum of the sum of weighted squares:

S =
N
∑

i=1
Wi (tcalc.i − texp .i)

2, e) the algorithm of the gradient (Jacobi’s) method and its

involved main notions. The definitions and descriptions of these notions are discussed
by works [11], p. and [12], p.486-488.

§2.3. Definitions of the main post-correlational notions

The most important post-correlational notions refer to: a) the physical correlations
and their classification (as legal correlations or semiempirical ones), b) the classifi-
cation of the legal correlations (as physical theorems and laws, respectively), c) the
incomplete induction method of Physics, d) the classification of the main results of
the Physics incomplete induction method, starting from the Physics legal correlations
(as Physics postulates and principles, respectively), e) the classification of physical
constants (as material parameters, universal or fundamental constants, respectively),
f) the definitions of the fundamental physical quantities and units, respectively, g) the
definition of the rationalization coefficients, h) the definitions of the main systems of
physical quantities and units (mainly of the international system SI, of the electrostatic
CGSεo, magnetostatic CGSµo and Gauss (CGSεoµo) systems, respectively), i) the
definition of the physical dimension and its applications (the dimensional analysis),
j) the definitions of the uniqueness parameters and of the corresponding similitude
indices, k) the definitions of the similar states (or processes) and of the similitude
numbers (criteria), l) the theorems of the theory of physical similitude and their theo-
retical (classification of the validity domains of the main Physics theoretical models)
and technical application (the theory of the laboratory experimental models).

III. Specific problems of the Numerical Physics

§3.1. The Choice of the Uniqueness Parameters

From the definition of the uniqueness parameters, it results that the physical de-
scriptions start from these parameters, the main method used to ensure accurate
descriptions being that of the gradient (Jacobi’s) method. Taking into account that
some inaccurate zero -order approximations of the uniqueness parameters could lead
to wrong (non-physical) results, it is necessary to prefer (as uniqueness parameters)
the parameters which can be measured directly, and with the highest accuracy, prefer-
ably.

For this finding is valid (from the point of view of physicists) even for the some
problems of Mathematics, we will present firstly the example of the choice of the
uniqueness parameters for the point groups of the operations of rotations and mirror-
ing in the 3D-space.
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a) The uniqueness parameters of the 3D-rotation & mirroring point groups
The choice of the uniqueness parameters of the 3D-rotation and mirroring point

groups by means of the: (i) Euler’s angles, (ii) Cayley-Klein’s parameters, is well
known [13]. Unfortunately, it is rather difficult to find – starting from the Euler’s
angles or the Cayley-Klein’s parameters – the specific parameters of each point oper-
ation: the unit vector of the rotation axis (or of the normal on the mirroring plane)
and the angle of rotation. That is why the choices of uniqueness parameters for the
point groups, done by the classical Mathematics, are unsatisfactory from the point of
view of physicists. For this reason, we will present here an alternative choice of the
uniqueness parameters of the 3D point groups, whose chosen uniqueness parameters:

s = det T , q̄ = sin
[ϕ

2
+ (s− 1)

π
4

]

1̄a, (3.1.1)

are directly connected to the indicated parameters of Physics interest: the geo-
metrical transformation matrix T , the rotation angle φ and the unit vector of the
rotation axis (or mirroring plane, resp.) 1a. In this case, one finds that the successive
accomplishment of the point operations P1(q1, s1) and – in following – P2(q2, s2) is
equivalent to a point operation whose parameters q, s are given by the identity:

P̂2(q̄2, s2) · P̂1(q̄1, s1) = P̂ [s12 (q̃2q̄1 + q̃1q̄2 − q̄1 × q̄2) , s1s2] , (3.1.2)

where the norm of the dual of the vector q and s12 are:

q̃ =
∣

∣

∣

√

1− q2
∣

∣

∣ , s12 = sign (q̃1q̃2 − q̄1q̄2) . (3.1.3)

Similarly, one finds [13] that the above presented uniqueness parameters (3.1) allow
direct expressions for: (i) the product of 3 point operations, (ii) the conjugate of
a point operation relative to another point operation, (iii) the inverse of a point
operation a.s.o., answering so to all usual requirements in Physics. Of course, the
above defined uniqueness parameters can be correlated with the Euler’s angles by
means of relations:

qx = σ · sin β
2 · cos γ−α

2
qy = σ · sin β

2 · sin
γ−α

2
qz = σ · cos β

2 · sin
γ+α

2 ,
(3.1.4)

[where σ = s123 for: q̄1 = q̄(1̄z, α, sα), q̄2 = q̄(1̄x, β, sβ), q̄3 = q̄(1̄z, γ, sγ)] and with
the Cayley-Klein parameters by means of the expressions:

a = σ (q̃ + i · qz) , b = σ (qx + i · qy)
(

i =
√
−1

)

. (3.1.5)



Numerical physics-Specific problems and applications 33

b) Choice of the Uniqueness Parameters in the Problem of Thermally Stimulated
Depolarization Currents (TSDC).

The temperature dependence of the thermally stimulated depolarization currents
(see Fig.1) is described by the classical equation [15]:

I(T ) =
Qo

τo
exp

[

−W
kT

− T
bτo

E2

(

W
kT

)]

. (3.1.6)

One finds easily that while the uniqueness parameter b is given by the experimental
time dependence of the temperature: b=dT/dt, the evaluation of other classical TSDC
uniqueness parameters (the electrical charge Qo under the peak of the ITSDC=f(t(T))
plot, as well as of the relaxation time τo) is very difficult. Taking into account:
(i) the particular importance of the choice of the zero-order approximations of the
uniqueness parameters for certain numerical methods (e.g. for the gradient method,
see the corresponding Section), and: (ii) the real difficulty to find sufficiently accurate
zero-order approximations of some parameters (as Qo and τo) which are not measured
directly, a choice of some uniqueness parameters directly related to the experimentally
measured parameters is really useful. That is why we proposed [16] to substitute the
indirect valuable uniqueness parameters Qo and τo by means of the maximum TSDC
current Im and the temperature Tm corresponding to this current (see Fig. 3.1):

ln I(T ) = ln Im +
W
k

(

1
Tm

− 1
T

)

[TmE2(xm)− T · E2(x)] , (3.1.7)

where E2(x)is a function related to the “exponent integral” function Ei(-x):

E2(x) =

∞
∫

1

e−x·t · t−2dt = e−x − x (−Ei(−x)) , (3.1.8)

and: x= W/(kT) and: xm=W/(kTm).
The accomplished study [16a-c] pointed out that the choice of some experimen-

tally measured parameters as uniqueness parameters (Im and Tm) allows both the
accurate determination of the activation energy W and the accurate description of
the temperature (time) dependence of the TSDC currents.

§3.2. Knowledge and Use of Effective Parameters

As it is well known, the physical models used to describe some physical states
or phenomena cannot be absolutely exact. That is why the improvement of the
measurement accuracy imposes new (more complex) physical models, which generalize
the previous (more elementary) ones. The parameters of the simpler models which
allow the description of some features of the studied complex physical system by
means of these elementary models are named effective parameters. Of course, this
definition is valid also for the numerical values obtained for some physical parameters
by different experimental methods (e.g. the neutron diffraction effective cross-section
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refers to the cross-section of certain atomic nuclei, measured by means of the neutron
diffraction).

An elementary example of effective parameters corresponds to the case of the
power dissipated by a resistance under an alternating current. It is well known that
this (average, usually named active) power is given by the expression:

Pa =
1
T

T
∫

0

RI2
o cos2 (ωt + ϕ) dt = RI2

o

T
∫

0

1− cos 2 (ωt + ϕ)
2T

dt =
RI2

o

2
= RI2

eff ,

where: Ieff = Io√
2
∼= 0.7071 Io is the so-called effective current (being related to

the so-called effective voltage on the considered resistance by means of the relation:
Ueff = RIeff . One finds that a direct current Ieff dissipates, in the same duration,
the same heat in the considered resistance as the alternating current of amplitude Io.

Such effective parameters are met particularly for alternating fields, of arbitrary
nature. So, we will present in following some examples of effective parameters associ-
ated to the: a) physical models intended to the description of the sound propagation
through attenuative elastic media, b) electrical measurements in alternating currents
of some electrical circuits involving hysteretic (nonlinear) components, c) intramolecu-
lar interactions and structures, taking into account the complex (involving oscillations
of the atomic nuclei and other) intramolecular “motions”.

The knowledge and proper use of the effective parameters allows: (i) to simplify
the description of some (complex) physical systems, (ii) to obtain accurate numerical
simulations of some rather intricate physical phenomena (for example of the multiple
reflected and transmitted ultrasonic beams in composite materials) even for media
with dispersive and nonlinear (hysteretic, inclusively) properties, (iii) to avoid the
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appearance of some numerical heterogeneity by the introduction in the same semi-
empirical relations of the values of some effective parameters of different physical
nature.

a) Effective Parameters Specific to the Description of Sound Propagation through
Attenuative Elastic Media

For a general anisotropic material and Ndifferent relaxation processes, the stress-
strain constitutive law corresponding to a Christensen’s attenuative medium is as-
sumed to be [17]:

σij +
N

∑

k=1

ak,ijmn
dkσmn

dtk
=

∞
∑

k=0

bk,ijmn
dkεmn

dtk
, (3.2.1)

where εmn = 1
2 (∂wm

∂xn
+ ∂wn

∂xm
) and σij are the corresponding element of the strain

and stress tensors, respectively, while ak,ijmnand bk,ijmnare coefficients related to
the material properties of the medium. For materials described by a monorelaxation
process, the Christensen’s constitutive law (1) particularizes into the Zener’s equation
[18]:

σij + τε,ijmnσmn = Sijmnεmn + ηijmnε̇mn = Sijmn(εmn + τσ,mnklε̇kl) (3.2.2)

where τε,ijmn and τσ,mnkl are the elements of the tensors of relaxation times of
stresses and strains under constant strains and stresses, respectively, while Sijmn

and ηijmn are the elements of the tensors of elastic constants and dynamic viscosity,
respectively.

The wave equation for an attenuative material can be derived from the Cauchy-
Newton equation: ρẅi = ∂σik

∂xk
(i, k = 1, 3) , whereρ is the material density. For the

monochromatic waves, using the complex wave function: w̄ (x, t) = w̄0 ·ej(ωt−k̄x), one
obtains the following differential equation in Christensen’s media:

ρ ¨̄w = S̄ · w̄”, (3.2.3)

where the complex elasticity modulus S̄ (ω) is given by expression:

S̄(ω) = S
[

1−N +
N
∑

i=1

1+jωτiσ
1+jωτiε

]

=

= S
[

1−N +
N
∑

i=1

1+ω2τiστiε
1+ω2τ2

iε
+ j

N
∑

i=1

ω(τiσ−τiε)
1+ω2τ2

iε

]

=

= S′(ω) + jS”(ω) .

(3.2.4)

Using Equation (3.2.1), one obtains a third order differential equation, which in the
homogeneous 1-D case becomes: ρ (ẅ + τεw) = S (w” + τσẇ”), where the Zener’s me-
dia frequency independent parameters [19]: relaxation times under constant strains τε

and stresses τσ, respectively and relaxed elasticity modulus S (≡ MR) are replaced for
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Christensen’s media by the corresponding effective parameters, given by the following
frequency functions:

τε (ω) = 1
ω ·

Im
N
∏

i=1

(1+jωτiε)

Re
N
∏

i=1

(1+jωτiε)

,

τσ(ω) = 1
ω ·

Im

{

(1−N)
N
∏

i=1

(1+jωτiε)+
N
∑

i=1

[

(1+jωτiσ)
1,N
∏

k ( 6=i)

(1+jωτkε)

]}

Re

{

(1−N)
N
∏

i=1

(1+jωτiε)+
N
∑

i=1

[

(1+jωτiσ)
1,N
∏

k ( 6=i)

(1+jωτkε)

]} ,

S(ω) = MR

Re

{

(1−N)
N
∏

i=1

(1+jωτiε)+
N
∑

i=1

[

(1+jωτiσ)
1,N
∏

k ( 6=i)

(1+jωτkε)

]}

Re
N
∏

i=1

(1+jωτiε)

.

(3.2.4)

The use of the effective Zener parameters given by the expressions (3.2.4) simplifies
considerably the description of the harmonic waves propagation through real (Chris-
tensen’s) media, but the corresponding Finite Differences (FD) simulations remain
unstable because the complex wave equation (3.2.3) has: (i) 4 distinct mathemati-
cal solutions: w̄ = Ae±jωt · exp [±j (k − jα)x], a unique solution corresponding to
the physical (attenuated progressive) wave, and the other 3 parasitic solutions can-
not be avoided by the numerical simulations, (ii) complex solutions, whose real and
pure imaginary parts mix during the FD iterations, leading to a quick increase of the
computing errors and to the instability of the corresponding FD schemes. Taking
into account that for a given frequency, only 2 parameters (e.g. the real S′ and pure
imaginary S′′ parts of the complex stiffness) are independent, it is possible to simplify
more the description of the harmonic waves propagation through real (Christensen’s)
attenuative media.

So, taking into account the definition of the tangent of the angle of mechanical

losses: tan δ(ω) =
Im[S̄(ω)]
Re[S̄(ω)] ,the complex wave equation (3.2.3) becomes:

∂2w̄
∂x2 =

ρ
S̄
· ∂2w̄

∂t′2
=

ρ · cos δ
S

· e−iδ · ∂2w̄
∂t′2

=
ρ · cos2 δ

S
(1− j · tan δ)

∂2w̄
∂t′2

.

Denoting: R = ρω · tan δ (the viscous friction coefficient), and taking into account
that for harmonic waves: ¨̄w = jω ˙̄w , it results that the above complex wave equation
can be written as:

Sow̄” =

∣

∣S̄
∣

∣

cos δ
· w̄” = ρ (1− j · tan δ)

∂2w̄
∂t′2

= ρ
∂2w̄
∂t′2

+ R
∂w̄
∂t′

(because for Maxwell’s media: So = MU (the unrelaxed elasticity modulus), for gen-
eral Christensen’s media So can be named the Rayleigh-Stokes (pseudo unrelaxed)
elasticity modulus).
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The differential equation (30) can be decomposed in its real and pure imaginary
parts, obtaining the real wave equation:

ρ
∂2w
∂t′2

+ R
∂w
∂t′

= Sow”. (3.2.5)

Taking into account that equation (3.2.5) has: (i) a unique parasitic solution
(corresponding to its symmetry relative to the space inversion: x→ -x), (ii) does not
produce any mixture of the real and pure imaginary components of the complex wave
function, it represents the best starting point for FD simulation schemes, the stability
and accuracy of the corresponding FD schemes being – for these reasons – the best
possible [20].

b) Effective Parameters Specific to the Low Frequency Dynamic Magnetization of
the Ferro- and Ferrimagnetic Materials

During the last years, due to the technical interest presented by the use of the
ferro- and ferrimagnetic materials in circuits of alternating current, one finds the
increase of the interest for the determination of the physical parameters of the dynamic
magnetization of these materials.

In the field of low frequencies, there are mainly used: the method of the RLC bridge
([21]) for the determination of the initial permeability and of the parameters of the
dynamic magnetization in fields of low intensity and the methods of the “sinusoidal
forced” magnetic field strength (of the electrical current in the first winding) [22] and
of the “sinusoidal forced” magnetic induction (voltage on the second winding) [23],
[21d], resp. for the evaluation of the parameters of the dynamic hysteresis cycle.

Taking into account that the magnetic field strength inside the (toroidal, usually)
sample depends on position, the physical parameters of the dynamic magnetization
of the sample (permeability, tangent of the angle of magnetic losses, magnetic in-
duction, etc) depend also on the position, as well as on time during the period of
the electrical current through the first winding. Consequently, the values given for
these parameters by the relations indicated by the specified works represent averages
of the distribution values, obtained in different conditions (often very difficult to be
described analytically), therefore they do not correspond to the same magnetization
state of the same volume element of the considered sample, as it is assumed usually.

E.g., the values of the maximum magnetic induction determined by the method of
the sinusoidal electrical current (Boi) and of the sinusoidal voltage (Bou), respectively,
are given by the expressions:

Bou = e
2πfNsh(re−ri)

= Φo
Nsh(re−ri)

= Boi = 1
re−ri

re
∫

ri

Bo(r) =

= Nf

4π(re−ri)

re
∫

ri

[

Io
∫

−Io

µdr

(

Nf I
2πr , Nf Io

2πr

)

· dI

]

dr
r ,

where re, ri, h are the outer and the inner radii, resp. and the height of the toroidal
(with rectangular section) magnetic sample. Nf and Ns are the numbers of turns
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of the first and of the second winding, resp., Io is the amplitude of the alternating
current (of frequency f) in the first (primary) winding and µdr(H, Ho)is the function
describing the dependence of the differential permeability on the remagnetization
branch of the dynamic hysteresis cycle (fig. 3.2) on the amplitude Ho and

the momentary value H(t) of the magnetic field strength.
In the particular case of the Rayleigh’s domain (H∼Hc/10 << Hc):

B = µiH + R.H2, (3.2.6)

the above expression gives, for the (frequent) case re ≈ 2ri:

Bou = Boi ∼=
3
2

ln 2 · µiHom +
9R
8
·H2

om ,

with:
Hom =

NIo

π (re + ri)
. (3.2.7)

The relation (3.2.7) shows that the value of the amplitude of the magnetic in-
duction (Bou = Boi) associated – by the present theory of the dynamic magnetic
measurements – to the “average” amplitude Hom of the magnetic field strength in the
toroidal sample is, even for the Rayleigh’s domain, larger with 4.1 . . . 12.5% than the
real (physical) value corresponding to this magnetic field strength:

Bom = µiHom + R ·H2
om .

The errors become even larger in the field of the strong dependence of the magnetic
permeability on the magnetic field strength (for H ∼ Hc), being in this case of the
magnitude order of 10% or even larger.

For this reason, a reconsideration of the procedure used for the evaluation of the
parameters of the dynamic magnetization of the ferri- and ferromagnetic materials is
necessary now. It results also that for a more rigorous evaluation of the (effective)
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parameters of the dynamic magnetization of the considered materials, a previous study
of the dependence µdr(H, Ho)is necessary. In fact, starting from this dependence, it
is possible to find all other important features of the dynamic magnetization: (i) the
maximum induction (flux density):

B0(H0) =
1
2

H0
∫

−H0

µdr(H,H0)dH, (3.2.8)

(ii) the differential permeability on the plot of first magnetization (µdiff ),the total
permeability (µtot) and the initial one (µi):

µdiff =
dB0

dH0
, µtot =

B0

H0
, µi = lim

H0→0
µdiff = lim

H0→0
µtot ,

(3.2.9)
(iii) the equations of the branches of de- and remagnetization of the dynamic hys-

teresis cycle:

Bd(H, H0) = B0 −
H0
∫

H

µdr(−, H0)dH, Br(H, H0) = B0 −
H0
∫

H

µdr(H, H0)dH,

(3.2.10)
(iv) the values of the remanent induction (flux density) and of the coercive field:

Brem(H0) =

H0
∫

0

µdr(H, H0)dH −B0,

H0
∫

Hc

µdr(H, H0)dH = B0, (3.2.11)

with:
Br = lim

H0→∞
Brem(H0), Hc = lim

H0→∞
Hc(H0), (3.2.12)

v) the saturation magnetization:

Msat = lim
H0→∞

[

B0 (H0)
µ0

−H0

]

, etc (3.2.13)

The macroscopic (electrical engineering) effective parameters can be expressed
also by means of the remagnetization differential permeability. Truly, in the usual
case of the Owen and Maxwell’s bridges, the inductance of the magnetic sample is
determined by the voltage equilibration (compensation) on the inductive reactance:

L
dI
dt

= (< L > +δL)
dI
dt

,

where < L >is the time average of the inductance and δL is the inductance fluctuation
around its mean value. Taking into account that the time average of the product
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δL.dI/dt is null, it results that the measured (effective) value of the inductance is:

Lm(I0) =< L(I0) >= 2
T

T/2
∫

0

dΦ
dI · dt = 2N

T

T/2
∫

0

[

re
∫

ri

dB
dH · dH

dI · dr

]

dt =

= N2h
T ·

T/2
∫

0

[

re
∫

ri

µdr
( NI

2πr , NI0
2πr

) dr
r

]

dt .

(3.2.14)

Similarly, the resistance of the hysteresis losses can be expressed by means of
the dissipated power Ph during a hysteresis cycle under the action of a magnetic
field generated by an electrical current (in the primary winding) of frequency f and
amplitude I0:

Rh =
2Ph

I2
0

=
4πhf
I2
0

re
∫

ri

r







H0
∫

−H0

[Bd(H, H0)−Br(H, H0)] dH







dr, (3.2.15)

and the maximum value uC of the voltage on the integration condenser (the method
of the sinusoidal forced current) and the effective value eeff of the induced voltage in
the secondary winding (the method of the sinusoidal forced voltage) are obtained by
means of relations:

uC =
hANs

τ

re
∫

ri

B0(r)dr, eeff =
√

2πfNs

re
∫

ri

B0(r)dr, (3.2.16)

where τ is the time constant of the integrator and Ais the amplification factor.
c) Effective Parameters specific to the Intramolecular Structures and Interactions

It is well-known that different physical methods used in Molecular Physics involve
averages of different types of the molecules velocities: (i) the coefficient of the thermal
conduction can be expressed by means of the cubic mean velocity of molecules, (ii)
the internal energy of gases is expressed in terms of the mean square velocity, (iii) the
most probable distance (from the “geometrical shadow”) of the Ag atoms deposed on
the external cylindrical surface of a Stern installation can be expressed by means of
the most probable inverse velocity of molecules: 1/¡1/v¿mp and so on. Because the
characteristic molecular velocities present a certain order:

3
√

< v3 > >
√

< v2 > > ṽ > vmp >
1

< 1/v >
> ..., (3.2.17)

it results that the effective (characteristic) molecular velocities have distinct values
and must be studied separately.

These findings are valid also for the effective parameters of the (intra)molecular
structures and interactions. So, taking into account that the distance between the
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successive spectral lines of the pure rotation (microwave) spectrum of the diatomic
molecules is:

∆ν =
h

8π2µr2 (3.2.18)

(where µ=m1m2/(m1+m2) is the effective mass of the diatomic molecule and r is
the distance between its atomic nuclei), it results that the effective distance between
the atomic nuclei of a diatomic molecule, determined starting from the microwave
spectrum data, is an inverse square mean average of the distances between these
atomic nuclei:

rMS =
1

√

< 1
r2 >

. (3.2.19)

For this reason, the numerical results (referring to the distances between the atomic
nuclei) obtained by means of the pure rotation (microwave) spectra and of the electron
diffraction, will be systematically different, because the last ones correspond to the
average distance rED =< r >.

Taking into account that besides the classical methods based on: (i) the microwave
spectra and: (ii) the electron diffraction, there are several additional methods which
allow also the evaluation of some effective parameters of the (intra)molecular structure
and interactions (mainly, the methods using: (iii) the fine structure of the nuclear res-
onance spectrum (NMR), (iv) the molecular orbitals (MO), (v) the vibration spectra
of the first 3 orders, (vi) the rotation structure of the vibration bands, (vii) the col-
lections of deformation constants (by means of the so-called conformational analysis)
etc, as well as that the averages of the molecular parameters (geometrical or specific
to interactions) over the intramolecular “motions” are specific to each experimental
method, the main features of the determined effective parameters depend strongly
on the used experimental method. That is why a synthesis of the main features of
the effective parameters characteristic to the (intra)molecular “geometrical” structure
and interactions is presented in the following Tables 3.1 and 3.2.

Content of the future monograph “Elements of Numerical Physics”

The above 14 pages present in detail the main elements of the first 2 chapters, as
well as of the first 2 paragraphs of the projected monograph. Taking into account
the finite volume of this abstract, we must present in following only the basic details
concerning the content of the projected monograph.

Besides its first 2 paragraphs above presented, Chapter 3 “Specific Problems
of the Numerical Physics” will involve also the following paragraphs:

§3.3. Some statistical tests specific to Physics (in frame of this paragraph,
will be presented briefly some of the main statistical tests of: a) large data volume
(the tests: (i) χ2 (Pearson), (ii) Kolmogorov, (iii) Smirnov-Grubbs etc), b) small
data volume (the tests of: (i) Massey, (ii) Irwin, (iii) Sarkady etc), as well as some
statistical tests intended to the elimination of the plunder experimental errors (the
tests of: (i) Chouvenet, (ii) Charlier etc))
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§3.4. Finding out of the similitude criteria and domains (some examples
specific to fluid flows, heat exchange, as well as to some classical Physics fields)

§3.5. Procedures for the obtainment and study of semiempirical rela-
tions

§3.6. Procedures used for the obtainment of the confidence intervals
and for the study of the compatibility of some theoretical (or semiempiri-
cal) relations relative to the existing experimental data

§3.7. Possibilities of evaluation of the apparent and real information
amounts, respectively, and of their use in some Physics problems (the de-
limitation of the real physical information and of the misinformation, as well as of the
possibilities to measure the real information, will be analyzed)

§3.8. Some Numerical Methods specific to Physics (the main analyzed
Numerical Methods will be: a) the Finite Differences method [24] and its form (the
Local Interaction Simulation Approach (LISA) method [25]) specific to Physics and
to the use of parallel computers), b) the search methods used to solve the so-called
“inverse problems”, mainly: (i) the deterministic search methods (the gradient (Ja-
cobi’s) method etc), (ii) the random methods (the Monte Carlo method, the random
walk method etc), (iii) the intermediate methods (the method of genetic algorithms
and others) etc.)

§3.9. Numerical Phenomena Specific to some Numerical Methods (there
will be analyzed mainly the numerical phenomena specific to: a) the FD method
(mainly the phenomena of: (i) instability, (ii) divergence, of pseudoconvergence, in-
clusively [26], (iii) dispersion, involving the main aspects concerning the possible
distortions, as well as the causes which lead to such numerical phenomena in certain
particular Physics problems [27], b) the gradient method (mainly the phenomena of:
(i) oscillations, (ii) instability, (iii) misinformation due to the incorrect choice of the
zero-order approximations of the uniqueness parameters, etc)

Chapter 4 “Specific Technical Applications” will have the following content:

§4.1. Uniparametric Technological Series of Industrial Materials (besides
the presentation of such series, the derivation of some “limit laws” (valid for magnetic
materials, dielectric materials etc), as well as their applications will be also discussed)

§4.2. Design of the Laboratory Experiments and of the Similitude Lab-
oratory Models of Some Industrial Installations (this paragraph will refer
mainly to the design principles of the laboratory experiments and to the construction
principles of the similitude laboratory models, and it will present also some examples
(e.g. for the experimentation of cryogenic cables))

§4.3. Optimization of the design of some technical or/and scientific
devices and installations (some elements concerning the optimization principles
and examples concerning some devices of magnetic measurements)

§4.4. Numerical Simulations of some Physical Processes in Inaccessible
Conditions (it is underlined that these numerical simulations are useful even in
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the case of some accessible, but expensive conditions, due to the considerably lower
(practically negligible) costs of the numerical simulations)

§4.5. Elaboration of some Physical Models intended to the Applications
of the Systems Theory (taking into account that the well-elaborated Systems
Theory needs always detailed physical models of the studied systems in order to be
applied)

Finally, the Chapter 5 “Specific Didactic Applications” will have the con-
tent:

§5.1. Classification of the main Physics domains by means of the Simili-
tude Criteria (there will be analyzed: a) the delimitations of the: (i) nonrelativistic,
relativistic, and extreme relativistic Physics, (ii) classical and Quantum Physics, (iii)
classical (Newtonian) and Einstein’s gravitation theories, b) the similitude criteria in
other Physics fields: (i) Elasticity Theory and Sound Waves, (ii) Thermodynamics
of Irreversible Phenomena, (iii) Electromagnetism, (iv) Electromagnetic Waves, (v)
Quantum Physics, (vi) Condensed Matter Physics)

§5.2. Classification of the physical parameters by means of the method
of Physics symmetries (the definitions of the: a) scalar (with particular cases of
the: (i) proper, (ii) improper types), b) vector (particular cases of the: (i) polar, (ii)
axial types), c) tensor (particular cases of: (i) proper, (ii) pseudo types) parameters
will be presented and some examples concerning the consequences and the applications
of these notions will be discussed)

§5.3. Elements about the main physical analogies (mainly the analogies
corresponding to: a) the analytical formalism of Physics, b) the Physics thermal and
statistical formalisms, c) the wave formalism)

§5.4. Logical Schemes intended to the Physics study and learning (we
want to present both: a) some general logical schemes intended to: (i) the (General)
Physics study, (ii) Data Processing, etc and: b) logical schemes (“maps”) intended to
the study of some particular Physics domains, as: (i) the Relativity Theory, (ii) the
Quantum Physics, etc)
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Splaiul Independenţei 313, Bucharest, Romania,
E-mail: matphys@physics1.physics.pub.ro



T
a
b
le

1
.

C
om

p
arison

b
etw

een
th

e
p
resen

t
p
h
y
sical

m
eth

o
d
s

u
sed

to
d
eterm

in
e

th
e

com
p
lete

(an
d

n
on

p
ertu

rb
ed

)
m

olecu
lar

stru
ctu

re

IN
P

U
T

D
A

T
A

T
H

E
S
T

R
U

C
T

U
R

E
T

H
E

C
O

M
P
A

R
IS

O
N

C
R

IT
E
R

IO
N

A
re

th
ere

u
sed

sem
i-

em
p
irica

l
re-

la
tio

n
s

fo
r

d
a
ta

p
ro

cess-
in

g
?

R
ep

ro
d
u
cib

ility
o
f

th
e

resu
lts

fro
m

d
iff

eren
t

sets
o
f

ex
p
erim

en
ta

l
d
a
ta

(∆
M

/M
)*

M
a
g
n
itu

d
e

o
rd

er
o
f

th
e

rela
tiv

e
d
if-

feren
ce

in
resp

ect
to

th
e

eq
u
ilib

riu
m

m
o
lecu

la
r

co
n
fi
g
u
-

ra
tio

n
((r−

r
e
q
u

il. )/
r
)*

P
o
ssib

ilities
o
f

refi
n
e-

m
en

t
o
f

th
e

eff
ectiv

e
stru

ctu
re

to
w

a
rd

s
th

e
eq

u
ilib

riu
m

co
n
fi
g
u
ra

-
tio

n
;

a
re

th
ere

n
eces-

sa
ry

so
m

e
sem

iem
p
iri-

ca
l
rela

tio
n
s

?

Is
th

e
sp

a
ce

o
f

th
e

ef-
fectiv

e
stru

c-
tu

re
lin

ea
r

?

M
icro

w
a
v
e

S
p
ectra

o
f
su

b
stitu

tio
n

(r
s
)

N
O

<
1
0 −

3
<

1
0 −

2
Y

E
S
;
-

Y
E

S

cla
ssica

l
(r

o
)

N
O

<
5×

1
0 −

2
<

5×
1
0 −

2
Y

E
S
;
-

Y
E

S
a
v
era

g
e

(r
z
)

N
O

<
2×

1
0 −

3
<

2×
1
0 −

2
Y

E
S
;
-

Y
E

S

E
lectro

n
ic

D
iff

ra
ctio

n
S
p
ectra

o
f

ra
d
ia

l
d
istrib

u
-

tio
n

(r
g

(1
))

Y
E

S
<

2×
1
0 −

3
<

2×
1
0 −

2
Y

E
S
;
-

Y
E

S

r
g
(0

)
Y

E
S

<
3×

1
0 −

3
<

5×
1
0 −

2
Y

E
S
;
Y

E
S

N
O

F
in

e
stru

ctu
re

o
f
N

M
R

S
p
ectru

m
o
f
n
u
clea

r
m

a
g
n
etic

co
u
p
lin

g
(r

J
)

Y
E

S
<

5×
1
0 −

2
<

5×
1
0 −

2
N

O
N

O

M
o
lecu

la
r

O
rb

ita
ls

r
M

O
Y

E
S

<
2×

1
0 −

2
<

3×
1
0 −

2
D

iffi
cu

lt;
n
o
n
su

re
N

O

C
o
llectio

n
o
f

d
efo

rm
a
tio

n
co

n
sta

n
ts

o
f
co

n
fo

rm
a
tio

n
a
l

a
n
a
ly

sis
(r

C
A

)
Y

E
S

<
5×

1
0 −

2
<

5×
1
0 −

2
N

O
Y

E
S

*
E

stim
ated

values
starting

from
the

data
of

the
specialty

literature,
as

w
ell

as
from

the
original

analytical
relations

established
in

Section
I.2.

47



T
a
b
le

2
.

C
om

p
arison

of
th

e
p
resen

t
m

eth
o
d
s

of
d
eterm

in
ation

of
th

e
eff

ective
in

tram
olecu

lar
force

fi
eld

s

IN
P

U
T

D
A
T
A

F
O

R
C

E
F
IE

L
D

T
H

E
C

O
M

P
A

R
IS

O
N

C
R

IT
E

R
IO

N

A
re

th
ere

u
sed

sem
i-

em
p
irica

l
rela

tio
n
s

in
d
a
ta

p
ro

cessin
g

?

R
ep

ro
-

d
u
cib

ility
o
f

th
e

resu
lts

(∆
M

/M
)*

R
ela

tiv
e

d
iff

er-
en

ces
o
f

th
e

ca
l-

cu
la

ted
rela

tiv
e

to
th

e
ex

p
erim

en
-

ta
l
freq

u
en

cies
((ν

c
a

lc
−

ν
e
x

p
)/

ν
e
x

p
)*

A
re

th
ere

p
o
s-

sib
ilities

o
f

o
b
-

ta
in

m
en

t
o
f

th
e

stru
c-

tu
ra

l
p
a
ra

m
eters

a
n
d

o
f

th
e

co
m

-
p
lete

fo
rce

fi
eld

?

Isth
ere

a
m

u
lti-

p
licity

o
f

so
-

lu
tio

n
s

?

N
u
m

b
er

o
f

in
-

d
ep

en
d
en

t
p
a
-

ra
m

eters
o
f

th
e

fo
rce

fi
eld

S
p
ecia

l
d
is-

a
d
v
a
n
-

ta
g
es

o
f

th
e

m
eth

o
d

U
A

Q
F
F

N
O

<
1
0 −

2
<

1
0 −

2
N

O
Y

E
S

N
v
(N

v
+

1
)/

2
E

A
Q

F
F

N
O

<
3
.1

0 −
3

<
3
.1

0 −
3

Y
E

S
;
Y

E
S

Y
E

S
N

v
(N

v
+

1
)/

2
V

ib
ra

tio
n

S
p
ec-

tra
o
f
th

e
o
rd

ers
1
,
2

a
n
d

3

C
o
m

p
lete

(u
p

to
th

e
q
u
a
rtic

term
s,

in
clu

siv
ely

)

N
O

Q
u
a
d
ra

tic
co

m
p
o
n
en

t
<

2
.1

0 −
3

T
h
e

o
th

ers
<

1
0 −

2

<
1
0 −

3
Y

E
S
;
Y

E
S

Y
E

S
∼

N
4v

U
rey

-B
ra

d
ley

w
ith

elim
in

a
tio

n
o
f

a
n
h
a
rm

o
n
icities

N
O

<
5
.1

0 −
3

<
5
.1

0 −
3

N
O

;
Y

E
S

Y
E

S
∼

2
N

v

M
eth

o
d

o
f

g
en

-
era

lized
iso

to
p
ic

su
b
stitu

tio
n
s

N
O

<
3
.1

0 −
3

<
3
.1

0 −
3

Y
E

S
;
Y

E
S

N
O

N
v

(N
v

+
1
)/

2
M

a
n
y

in
p
u
t

d
a
ta

(d
iffi

-
cu

lt
to

b
e

co
llected

)

R
o
ta

tio
n

stru
ctu

re
o
f

V
ib

ra
tio

n
b
a
n
d
s

M
eth

o
d

o
f
C

o
ri-

o
lis

co
effi

cien
ts

N
O

<
1
0 −

2
<

5
.1

0 −
3

Y
E

S
;
N

O
Y

E
S

N
v

(N
v

+
1
)/

2
V
ery

d
iffi

cu
lt

ca
lcu

la
tio

n
s

F
in

e
(sh

a
rp

)
S
tru

ctu
re

o
f

N
M

R
S
p
ectra

M
eth

o
d

o
f

C
o
u
-

p
lin

g
C

o
n
sta

n
ts

Y
E

S
<

2
.1

0 −
2

<
2
.1

0 −
2

N
O

;
N

O
N

O
∼

N
v

M
o
lecu

la
r

O
rb

ita
ls

k
M

O
Y

E
S

<
1
0 −

2
<

1
0 −

2
D

iffi
cu

ltly
N

O
N

v
(N

v
+

1
)/

2

*
E

stim
ated

values
by

m
eans

of
the

specialty
literature

data.

48


