Abstract

In this paper we present some results of almost Hermitian manifolds of dimension four with J-invariant Ricci tensor and we restate some recent published results.

AMS Subject Classification: 53C15, 53C25.

Key words: Almost Hermitian manifold, almost Kähler manifold, Ricci tensor.

Much geometric information is carried by integrals of particular functions over a compact manifold, especially if such an integral is a critical value of a functional defined by such integrals on a space of certain geometric objects over the manifold.

The study of the integral of the scalar curvature:

\[A(g) = \int_M SdV, \]

as a functional on the set of all Riemannian metrics of the same total volume on a compact orientable manifold \(M \) is now classical (Hilbert 1915).

Let \(M^{2n} \equiv (M^{2n}, g, J) \) be a 2\(n \)-dimensional \((n \geq 2)\) almost Hermitian manifold equipped with the almost Hermitian structure \((g, J)\) and \(\Phi \) the Kähler form of \(M^{2n} \) defined by \(\Phi(X, Y) = g(X, JY) \), for \(X, Y \in \mathcal{X}(M^{2n}) \) \((\mathcal{X}(M^{2n}) \) denotes the Lie algebra of all smooth vector fields on \(M^{2n} \). We denote by \(\nabla, R, \rho, Q \) and \(S \) the Riemannian connection, the curvature tensor \((R(X, Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z) \), the Ricci tensor, the Ricci operator \((\rho(X, Y) = g(QX, Y)) \) and the scalar curvature of \(M^{2n} \), respectively.

We denote by \(\rho^* \) the *Ricci tensor of \(M^{2n} \) defined by \(\rho^*(x, y) = \frac{1}{2}\text{trace of } (z \rightarrow R(z, Jx)y) \) for \(x, y, z \in T_p(M^{2n}) \), \(p \in M^{2n} \). We also denote by \(S^* \) the *scalar curvature of \(M^{2n} \), which is the trace of the linear endomorphism \(Q^* \) defined by \(g(Q^*x, y) = \rho^*(x, y) \), for \(x, y \in T_p(M^{2n}) \), \(p \in M^{2n} \). If \(M^{2n} \) is a Kähler manifold, then \(\rho = \rho^* \) (and therefore \(S = S^* \)).

On an almost Hermitian manifold \(M^{2n} \) we define the Weyl tensor \(W \)

\[W(X, Y)Z = R(X, Y)Z - \frac{1}{2(n-1)}[g(Y, Z)QX - g(X, Z)QY + \ldots] \]
\[+\rho(Y, Z)X - \rho(X, Z)Y \]
\[+ \frac{S}{2(2n - 1)(n - 1)}[g(Y, Z)X - g(X, Z)Y], \]
for all \(X, Y, Z, W \in \mathcal{X}(M^{2n}) \).

An almost Hermitian manifold \(M^{2n} \) is conformally flat if and only if \(W(X, Y)Z \equiv 0 \), or
\[R(X, Y)Z = \frac{1}{2(n - 1)}[g(Y, Z)QX - g(X, Z)QY + \rho(Y, Z)X - \rho(X, Z)Y] + \]
\[+ \frac{S}{2(2n - 1)(n - 1)}[g(Y, Z)X - g(X, Z)Y]. \]

S.I. Goldberg in [8] proved that every almost Kähler manifold satisfying \(g(R(X, Y)Z, W) = g(R(X, Y)JZ, JW) \) is a Kähler manifold. In this paper he stated the following conjecture:

"A compact Einstein almost Kähler manifold is a Kähler manifold ".

It is still an open problem in general. Important progress was made by K. Sekigawa ([15]), who proved that the conjecture is true if the scalar curvature is non-negative.

Let \(M \equiv (M, g, \Phi) \) be a compact, symplectic manifold with scalar curvature \(S \), *scalar curvature \(S^* \) and \(\Phi(X, Y) = g(X, JY) \). Studing a variational problem, D.E.Blair and S. Ianus in [3] proved that an associated (to the symplectic form) metric on \(M \) is a critical point of \(A(g) = \int_M SdV \) and \(K(g) = \int_M (S - S^*)dV \) if and only if the Ricci operator is \(J \)-invariant. They also raised the question of whether a compact, almost Kähler manifold whose Ricci operator commutes with the almost complex structure must be Kähler. This question is stronger than Goldberg’s conjecture. J. T. Davidov and O. Mushkarov in [4] gave a 6-dimensional example proving that the answer of this question is negative in general. Recently, P. Nurowski and M. Przanowski in [11] constructed an example of non-Kähler almost Kähler Ricci-flat space of dimension four. This example is also weakly *Einstein space which is not *Einstein.

It is worthwhile to discover some additional curvature condition on these manifolds such that Blair, Ianus’ question has a positive answer.

In [16] we studied almost Hermitian manifolds of dimension 4 equipped with J-invariant Ricci tensor which also are conformally flat or have harmonic curvature.

Quite recently, the author knew through private communication with Prof. T. Draghici that in [1] (V. Apostolov and P. Gauduchon) a method is provided to obtain non-Kähler and non-Einstein Hermitian metrics with J-invariant Ricci tensor on compact 4-dimensional manifolds. These examples, which also appear by V. Apostolov, G. Ganchev and S. Ivanov in [2], contradict the statement of theorem 3.1 of [16].

This contradiction is due to the use of a result of Hamoui’s paper [9]. In this paper it is proved that on every Hermitian manifold \(M \) it holds:
\[g(R(X, Y)Z, W) - g(R(JX, JY)JZ, JW) \]
\[= \frac{1}{2}g((\nabla_X J Y - (\nabla_Y J)X)J Z, W) + g((\nabla_Z J W - (\nabla_W J)Z)J X, Y) \]
for all vector fields X, Y, Z, W on M. In the proof of this relation there exists a gap in the beginning of the third paragraph (p. 206). Therefore, some of the results of [16] (Theorem 3.1, Corollary 3.3, Theorem 4.1 and Corollary 4.2) can be restated as follows.

Theorem 1 Every conformally flat, almost Hermitian 4-manifold with J-invariant Ricci tensor is either a space of constant curvature or a Hermitian manifold.

Corollary 2 Every conformally flat, RK-manifold of dimension 4 is either a space of constant curvature or a Hermitian manifold.

Theorem 3 Every almost Hermitian 4-manifold with harmonic curvature and J-invariant Ricci tensor is either an Einstein manifold or a Hermitian manifold.

Corollary 4 Every RK-manifold of dimension 4 with harmonic curvature is either an Einstein manifold or a Hermitian manifold.

Acknowledgement

The author would like to thank Professor Tedi Draghici for the useful suggestion.

References

Author's address:

Philippos J. Xenos

Mathematics Division-School of Technology

Aristotle University of Thessaloniki

Thessaloniki, 54006, GREECE