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Abstract

We study stopping and convergence criteria for the general descent algorithm,
with affine differential notions and techniques only. An example is provided
which shows that this framework is more natural for optimization problems
than the Riemannian one.
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1 Introduction

Given a differentiable manifold M and a C2- differentiable function on M , one looks
for

(1) min{f(x)|x ∈ M}.

This is a modern formulation of some classical constrained optimization problems.
Since the 70-ties, the main tool in building algorithms for solving it was Riemannian
geometry (see [5] and [7] for reviews and details); but, as the classical setting (of
subsets in affine Rn) also suggests, the essence of the problem and the main notions
(as convexity...) are affine ones. This is why we have extended the framework of
function optimization to Affine differential geometry ([3], [4]). In [4], a general descent
algorithm was described, involving only affine notions; however, the stopping and the
convergence (to a critical point) criteria were expressed through metric (even not
necessarly Riemannian) conditions.

In this paper we give to the general descent algorithm a purely affine descrip-
tion (§2): at each step, the descent curves are auto-parallel with respect to a (step-
dependent) linear connection; the stopping and the convergence criteria are expressed
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by estimates of the values the differential of f takes on a properly choosed and par-
allel transported vector base. Finally, an example is provided (§3), which reflects the
advantages of our algorithm comparatively to the Riemannian ones.

2 General descent algorithm - an affine approach

Let M be a n-dimensional differentiable manifold and a C2- real differentiable function
f ∈ F(M). (Usually, M proceeds from a -”smooth enough”- constrained optimization
problem on Rn.)

Denote by C(M) the affine module of linear connections on M . For each linear
connection ∇ ∈ C(M), the couple (M,∇) is called an affine (differential) manifold.
Denote by exp∇ the exponential application determined by ∇, which carries rays from
tangent spaces TpM to ∇- autoparallel curves through p ∈ M . When M = Rn and
∇ is the canonical connection, then its parallelism coincides with the one provided by
the natural affine structure of Rn.

The general descent algorithm working on Riemannian manifolds ([7]) was ex-
tended for the affine (differential) setting ([4]):

Step 1. Set i = 1. Choose xi ∈ M .

Step 2. If dfxi
= 0, then stop !

Step 3. Choose a tangent vector Xi ∈ TxiM such that df(Xi) < 0

Step 4. Choose a linear connection ∇ . Determine a real number ti such that

f(exp∇xi
(tiXi)) < f(xi)

Step 5. Set xi+1 = exp∇xi
(tiXi)

Step 6. If xi+1 satisfies a given stopping criterion, then stop !

Step 6. Set i = i + 1 and go to Step 2.

Remarks. (i) The linear connection ∇ in Step 4 and its exponential depend on i;
so, instead of choosing an apriori ”absolute” Riemannian metric (with its Levi-Civita
connection and geodesics) as in the Riemannian setting, we ”relativize” and adapt
the parallelism, requiring only step- dependent (local) affine structures.

(ii) In the pure affine setting, we replace the gradient of f (as a Riemannian notion)
by the differential of f ; then, at Step 6, we choose a basis {e(1)

1 , ..., e
(1)
n } in Tx1M , such

that dfx1(e
(j)
1 ) be 0 or 1 (a kind of ”normalization”); then we ∇ -transport it along

the ∇ -autoparallel curve t → exp∇x1
(tX1) to a basis {e(2)

1 , ..., e
(2)
n } of Tx2M , and so

on. If for counter i we have |df(e(i+1)
j )| < ε, for every j ∈ {1, ..., n}, then STOP. (The

procedure is coordinate free.)
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(iii) Denote by γ the piecewise differentiable curve constructed from all the (step-
dependent) autoparallel curves in the algorithm; we reparametrize each piece such
that γ is defined for parameter values t ≥ t1 and on each interval [ti, ti+1] differs from
the respective autoparallel curve by a translation. For each natural number k, the
tangent vectors X1, ..., Xk prolong to a (unique) vector field X along γ (restricted to
[t1, tk+1]), which is (but in a finite number of points) the tangent one. Denote by
X the ”maximal” prolongation of all Xi. Analogously, denote E1, ..., En the parallel
vector fields along γ modelling a moving frame like in Remark (ii).

We say f is convex along γ if at each step the Hessian of f calculated from the
respective step-dependent connection is semi-positively definite.

Theorem. Let M be a differentiable manifold, f ∈ F(M) be a C2 differentiable
function and the sequence of points {xi}i be generated by the affine general descent
algoritm. Suppose the ”subgraph” S = {x ∈ M |f(x) < f(x1)} is compact and the
function f is bounded from below.

(i) If there exists a moving frame E1, ..., En along γ as above, such that for every
ε > 0, the algorithm stops according to the stopping criterion in Remark (ii), then
there exists a sub- sequence {xiα}iα converging to a critical point x∗ of f .

(ii) If f is convex along γ, then the sequence {xi}i converges to a (unique) mini-
mum point x∗.

Proof. The Step 3 ensures us that the sequence {f(xi)}i is decreasing. Since f is
lower bounded, it follows that the previous sequence is convergent to a real value t∗.

The set S is compact and contains the sequence {xi}, so there exists a sub- se-
quence {xiα}iα convergent to a point x∗ ∈ S. By continuity of df and by the property
of the moving frame , we obtain dfx∗ = 0, hence (i) is proved.

The assertion (ii) follows from general arguments about convex functions. We
stress ([2]) that convexity with respect to affine connections is very analogous to Rie-
mannian convexity (expressed by semi-positive definition of the Riemannian Hessian).
2

3 An example

We consider here a comparative case study. Let M := (0,∞) and f : M → R, given
by:

f(x1, x2) = e(x1−10)2 + (x2 − 20)2.

Obviously, the only critical point for f is x = (10, 20), which is a minimum one.

How can we approach it through a steepest descent algorithm starting from x1 = (1, 1)?

I. The classical case imposes movement along straight (half) lines in M , which
are in fact geodesics of the (very particular) Euclidean metric of R2 restricted to
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M . If ”lucky”, we may start with the best direction, namely the (unique) half-line
through (1,1) and (10,20). In exchange, a Newton variant moving along (−gradf) is
much worse, starting with an almost horizontal deplacement, since (−gradf)(1,1) =
2(9e81, 19).

II. The (general) Riemannian case allows to choose an apriori metric on M .
As in [7], let take the Poincaré metric:

gij =
1

(x2)2
δij .

The Riemannian steepest descent algorithm ([7], [5], [1]) moves along geodesics of
g, which are (half) lines and (segments of) semicircles in M . Between x1 and xmin

there exists a (unique) semicircle arc, which represents a best (admissible) direction
corresponding to X1 = (3, 80) ; however, moving from x1 along other admissible
directions (such as (−gradP f)(1,1) = (−gradf)(1,1)) may ”diverge badly” from the
previous one.

III. The Affine differential case allows a large choice of affine connections. We
adopt a very particular one, and take the (globally defined) family of affine connections
∇ = ∇α,β on M (indexed after real parameters α and β), which (in the canonical
coordinates) has vanishing coefficients but

Γ1
11 =

α

x1
, Γ2

22 =
β

x2
.

Integrating the equations of the auto-parallel curves of ∇, we obtain that:

x1(t) =
{

b1e
a1t if α = −1

(a1t + b1)
1

α+1 if α 6= −1
, x2(t) =

{
b2e

a2t if β = −1
(a2t + b2)

1
β+1 if β 6= −1

,

where a1, a2, b1, b2 are arbitrary real constants. Imposing the curves start from x1,
we deduce b1 = b2 = 1. For each couple (α, β), we have a (unique) auto-parallel curve
from x1, passing through the minimum point (10, 20). Their behaviour depends on
the parameters values.

Conclusion . In the first two cases, the starting curve has only one ”best chance”
to reach fastest the minimum point. In the affine setting, we obtain (at least) a
”double infinity” of such ”best choices”, in a thick(ly) spray of ∇α,β- auto-parallel
curves. (Of course, considering ALL linear connections in M , the chance to get a
”best” curve, since the beginning, increases.)
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