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Abstract

Einstein’s general relativistic wave equation predicts a gravitational wave,
and that prediction is confirmed by an astronomical observation. His equation
of motion, on the other hand, predicts that a gravito-radiative force, due to a
gravito-tensor potential, exists. The gravito-radiative force propagates through
space, tries to induce a mass quadrupole moment in Earth’s crust, through
the rotation of Earth with respect to the center od Earth. However, Earth’s
crust is rigid, and resists such deformation. Only pendulum-bobs co-moving
with Earth’s crust are accelerated horizontally. We placed two verticity meters
(motionless pendulums) at Boulder, Colorado, and observed some gravitational
waves as coincidental displacements of their bobs. Typical gravitational wave
we observed is an impulse of about 10−8 m/s, and that corresponds to the en-
ergy decay rate of about 1051 J/s at the galactic center, and the energy of the
galactic nucleus is about 1054 J.
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1 Einstein’s general relativistic wave equation

In terms of the metric
(ds)2 = gijdxidxj , (1.1)

where x0 = ct, x1 = x, x2 = y, x3 = z, Einstein [1] proposed an equation

Rij −
1
2
gijR =

8πG

c4
Tij , (1.2)
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where Tij , in the right-hand side, is the ij component of the energy- momentum-stress
tensor, such that T00 = −µc2, taking the mass density as µ. The quantity on the
left-hand side is called the Einstein tensor. If we introduce gravitational potentials
by

gij = δij − φij +
1
2
φδij . (1.3)

where
δ00 = 1, δ11 = δ22 = δ33 = −1, δij = 0 if i 6= j, (1.4)

φ = φ00 − φ11 − φ22 − φ33, (1.5)

and
∂φij

∂xi
= 0 (Lorentz condition), (1.6)

and assume that all terms higher than linear in φ are negligible in the Einstein tensor,
then eq. (1.2) becomes: (

∇2 −
(

∂

c∂t

)2
)

φij =
16πG

c4
Tij . (1.7)

In an empty space, where µ = 0, the right-hand side of this equation is zero and
shows that the φij propagate with speed c. This is the gravitational wave. For this
reason we may call eq. (1.7) Einstein’s wave equation. When the mass forms a point
mass M moving with a velocity v, located at r from the observation point p at time
t, then eq. (1.7) gives:

φ00 =
4GM

c2r
, (1.8a)

φ0α = −4GMvα

c3r
, α = 1, 2, 3, (1.8b)

φαβ =
4GMvαvβ

c4r
= vαφ0β/c, α, β = 1, 2, 3. (1.8c)

If there are more than one sources we can simply add them on the right hand sides
of these equations. We neglect the retardation effect in the present paper.

Assuming a continuity between the mass source and the gravitational field pro-
duced, Landau and Lifshitz derived in [2] an expression of the rate of the energy loss,
−dE/dt, of the mass source due to the emission of the gravitational wave as

−dE
dt

=
2G

45c5
(
∑

M(3vαv̇β − δαβvv̇))2, (1.10)

where the summation is over all source masses and their velocity and acceleration
components. Taylor and Weisberg found in [3] that the decay of the orbital motion
of binary pulsar PSR 1913+16 follows this theoretical prediction. Thus the existence
of gravitational wave is established. The sun is orbiting around the galactic cen-
ter at v = 250 km/s. Its acceleration toward the galactic center is estimated to be
v̇ = v2/r = 3× 10−10 m/s2, taking the distance to the galactic center r = 3× 1020 m.
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The solar energy (mc2) of 2×1047 J is decaying down at the rate of 0.1 J/s according
to eq. (1.10). At the end of this paper, we will report that a typical gravitational
wave (impulse) we observed is responsible to Mvv̇ of about 1053 m/s2. Accepting to
eq. (1.10) it corresponds to 1051 J/s of energy loss rate from the galactic nucleus, if
the duration time of the impulse is 10 s. If the mass of the galactic nucleus is about
1039 kg this number is about equal to the corresponding energy, mc2 = 1054 J. We
are observing decays of black bodys at the galactic center.

Einstein also proposed in [1] an equation of motion for a test particle with coor-
dinates xi as:

d2xi

ds2
= −Γi

jk

dxi

ds

dxk

ds
≡ F i

E/m, (1.11)

where Γi
jk is a component of Christoffel symbols and m is the mass of the test particle

to be considered. The last expression of this equation defined the Einstein force, F i
E ,

to be discussed below.
If we take the gravitational potentials introduced by eq. (1.3) and neglect nonlinear

terms, we obtain as in [4]:

F 0
E/m = − c2

2(1 − 1
2φ00)

dt

ds

dφ00

ds
, (1.12)

FE/m = −c2

4
∇φ00 − c

∂φ

∂t
+ cV × (∇× φ)

+
∂[v(V · φ)]

c∂t
+

[
(V · ∇)φ − 1

2
∇(φ · V)

]
(V · v)

c
, (1.13)

where V is the velocity of the test particle, and we do not differentiate V by t. The
terms in the second line of eq. (1.13) are due to the tensor potentials. Using eq.
(1.12) in d2t/ds2 = F 0/mc2, we obtain:

dt

ds
=

1
c(1 − 1

2φ00)
, or s ' ct(1 − 1

2
φ00). (1.14)

Thus Einstein’s equation of motion, eq. (1.11), reduces to

d2r
dt2

= FE/m, (1.15)

to the first order.
Einstein’s equation of motion gives the acceleration of a test particle produced

by the (derivatives of) gravitational potentials existing at the position of the test
particle at a given time. Thus it is appropriate for a receiving antenna of an incoming
gravitational wave.
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Newton’s theory of gravity. Galileo equivalence prin-
ciple

Newton did not consider the gravitational field. He simply assumed that between
masses M and m placed at a distance r, an attractive force

FN =
GMmr

r3
(2.1)

exists. Thus he did not have a wave equation, but note that this is the first term of
FE as given by eq. (1.13).

Newton’s equation of motion is:

m
d2r
dt2

= FN , (2.2)

which reduces to:
d2r
dt2

=
GMr

r3
. (2.3)

Equation (2.3) exhibits the Galileo equivalence principle. Equation (1.15) shows
that the Einstein force, FE satisfies the Galileo equivalence principle. Einstein [8]
claimed that the Galileo equivalence principle is applicable to mass-zero particles
also. Because such mass-zero particles propagate with speed c in the empty space,
characterized by ds = 0, Newton’s equation (2.2) is not suitable, and Einstein pro-
posed eq. (1.15) to replace eq. (2.3).

According to Newton’s third law:

M v̇M = −mv̇m, (2.4)

we can regard a very massive (M) gravity source as a coordinate origin around which
a test particle of a small mass (m ¿ M) is moving according to eq. (2.2). Earth
is orbiting around the sun in a nearly circular orbit. If we take a coordinate system
rotating around the origin (the sun) with a constant angular velocity ω, eq. (2.2) is
transformed as:

m
d2r′

dt2
+ 2mω × dr′

dt
+ mω × (ω × r′) = FN , (2.5)

where r′ is the coordinate of the test particle measured in the rotating frame, such as
Earth orbiting around the sun. It is possible to choose ω to satisfy

ω2r′ − ω(ω · r′) =
GMr′

r′3
, (2.6)

which can be simplified if we choose ω · r′ = 0. When the test particle is co-moving
with the center of Earth, eq. (2.6) reduces to md2r′/dt2 = 0, in which the Newtonian
gravitational force due to the sun completely disappears. This situation, however,
does not imply that the gravitational force is a fictitious force, because the sun, the
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source of the gravitational force, still exists. In fact, if the test particle is co-orbiting
with the center of Earth around the sun, but is located off the center of Earth as

r′ = rs + r′E , (2.7)

where rs and r′E are the position of the center of Earth measured from the sun and the
position of the test particle measured from the (orbiting) center of Earth, respectively,
then eq. (2.6) reduces to

m
d2r′E
dt2

+ 2mω × dr′E
dt

=
GMsr′

r′3
− GMsrs

r3
s

+
GMEr′E

r′3E
, (2.8)

where we added the Newtonian gravitational force due to the center of Earth (ME

is the mass of Earth if the test particle is outside of Earth’s crust). The difference
between the gravitational force due to the sun at the test particle and that at the
center of Earth is called the tidal force.

The same calculation can be applied to the Einstein force (see [5]), which is ap-
proximately given by eq. (1.13). Here we notice that V appears in FE , but

V = Vs + VE , (2.9)

where Vs and VE are the velocity of the center of Earth relative to the sun and that
of the test particle relative to the center of Earth, respectively. For terms linear in V
in eq. (1.13), we can simply add them to the left-hand side of eq. (2.9), taking Vs

for V to eliminate them after the transformation into the orbiting frame. Thus only
cVE × (∇× φ) remains in the tidal force [5].

Synge performed in [6] the above transformation for the original Einstein’s equa-
tion of motion, (1.11), to eliminate the F i

E completely at an observation point, and
then found the remaning terms, called geodesic deviation, for a test particle placed
slightly out of that observation point. To the first order in V, his geodesic deviation
is identical to our tidal forces as stated above. Weber took in [7] the geodesic devi-
ation, but neglected the VE term arbitrarily. Because the gravito-radiative force, to
be discussed in section 4 below, is proportional to V, he missed the gravito-radiative
force in his discussion on gravitational waves.

Generalized Galileo-Lorentz transformation

As shown in eq. (1.13), FE reduces to the Newtonian gravity force, FN , in the first
approximation, and eqs. (1.11) and (1.15) satisfy the Galileo equivalence principle.
Therefore, Einstein’s claim that eq. (1.11) is a relativistic equation of a test particle
under gravity is very reasonable. It is relativistic because he claimed that it is appli-
cable to light also.

Newton’s equation of motion, eq. (2.2), is invariant under the Galileo transforma-
tion

r = r◦ + Vt with
dV
dt

= 0 and V · FN = 0. (3.1)
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Similarly, Einstein’s equation of motion (1.11) is invariant under

xi = xi
◦ + Lis, with

dLi

ds
= 0 and LiF

i
E = 0. (3.2)

In the non-relativistic limit, where eqs. (1.14) and (1.15) are obtained, we see that
our transformation (3.2) reduces to the Galileo transformation (3.1). When F i = 0,
or gravitational forces are zero, we see that

(L0)2 + (Lα)2 = 1, (3.3)

which gives the Lorentz transformation. Our transformation (3.2) thus may be called
a generalized Galileo-Lorentz transformation.

As Einstein claimed that eq. (1.11) is applicable to light (see [8]), he also meant
that a (bending) light path is invariant under the generalized Galileo-Lorentz trans-
formation.

E&M theory and general relativity

By taking the scalar potential φ and the vector potential A two of Maxwell’s equations
are automatically satisfied and the remaining two Maxwell’s equations can be written
as: (

∇2 −
(

∂

c∂t

)2
)

Ai = −µ◦J
i, (4.1)

where
A0 = φ/c, A1 = Ax, A2 = Ay, and A3 = Az, (4.2)

and
J0 = cρ, J1 = Jx, J2 = Jy, and J3 = Jz (4.3)

are the charge density and components of charge current density, respectively. The
Lorentz condition

∇ · A +
1
c2

∂φ

∂t
= 0 (4.4)

is assumed and 4πk/µ◦ = c2.
We see that Maxwell’s equations are the wave equations in E&M theory, corre-

sponding to Einstein’s wave equation, eq. (1.2), in the general relativity theory. The
only mathematical difference is that E&M theory is a vector theory, whereas the
general relativity theory is a tensor theory.

Eq. (4.1) is solved to obtain E&M scalar and vector potentials in the same way
as eq. (1.8a) and (1.8b), except that kq appears instead of GM , and q is the source
charge. Again, traditionally, the causality principle is assumed to take only the re-
tarded potential and disregard the advanced potentials. Thus Maxwell’s equations
describe emission, not absorption, of radiation (light).
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For a theory of receiving antenna, we take an equation of motion of an electron
with charge −e:

m
d2r
dt2

= e(∇φ +
∂A
∂t

− V × (∇× A)), (4.5)

which is obtained as Minkowski forces invariant under the Lorentz transformation. In
reality, most of the electrons are bound to atoms, and we need quantum mechanics
to describe their behavior. But in metals (conductors) there are some free electrons
and the classical eq. (4.5) is applicable. The second term of eq. (4.5) is what antenna
physicists call a far field (see [9]), which carries energy out of a source, charge q
accelerated by v̇, as

−dE
dt

=
2k(qv̇)2

3c3
. (4.6)

We notice amazing similarities between eqs. (4.5) and (1.13). In eq. (1.13) we notice
that the first term in FE , the Newtonian gravitational force, is a near-field force,
proportional to 1/r2, just like the Coulomb force in E&M. The third terms in both
eqs. (4.5) and (1.13) correspond to each other. Therefore, the third term in eq. (1.13)
may be called the gravito-magnetic force.

The second term in FE , which is very similar to the second term in the right-hand
side of eq. (4.5), contributes as a far-field force, proportional to 1/r. Neglecting the
retardation effect in eq. (1.8b), it reduces to

−c
∂φ

∂t
= 4G

∑
a

Mav̇a

c3ra
. (4.7)

There has to be more than one interacting source mass to have an acceleration in
each of them. If these source masses are located close to each other compared to the
distance to the test particle, ra in the denominator of eq. (4.12) would not depend on
a much, and the summation in eq. (4.7) would be reduced to

∑
a Mav̇a, but this is

zero, according to Newton’s third law, eq. (2.4). The fourth term of FE in eq. (1.13)
is also a far-field force. As stated in relation to eq. (2.9), Earth, orbiting around the
sun with Vs experiences a force exerted by

Frad,Earth/mE = −4G
∑

a

Ma
∂[va(Vs · va)]

c4r∂t
, (4.8)

relative to the sun. In eq. (4.8) we assumed that the source masses are confined in
a small volume compared to the distance from the test particle. In this case, the
summation does not reduce to zero even under Newton’s third law. In fact, the result
corresponds to eq. (1.10) (see [10]). We call this part of the Einstein force, FE , a
gravito-radiative force Frad. Equation (4.8) gives the part of Frad exerted on the
center of Earth relative to the sun. To obtain its tidal component when the test
particle is in an Earth-bound laboratory, we take VE as stated in Section 2, eq. (2.9).
Because Earth rotates around its North-South axis, a laboratory located on its surface
at latitude Θ moves with

VE = 464 cosΘ m/s (4.9)
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toward the East relative to the center of Earth.
Take the z-axis along the North direction and x- and y- axes in the East-West

plane, which contains an Earth-bound observation point. Let the spherical angles
that va and v̇a make in this xyz-system be θ, ϕ, and θ′, ϕ′, respectively. If the
longitude of the observation point is Φ, then we obtain the East component of the
gravito-radiative force due to the source masses as:

Frad(E)/m = −4GVE

c4r

∑
Mavav̇a sin θ sin θ′ sin(Φ − ϕ) sin(Φ − ϕ′). (4.10a)

In general, its North component, Frad(N), also exists:

Frad(N)/m = −4GVE

c4r

∑
Mavav̇a[(cosΘ cos θ+sinΘ sin θ cos(Φ−ϕ)) sin θ′ sin(φ−ϕ′)

+(cosΘ cos θ′ + sinΘ sin θ′ cos(Φ − ϕ′)) sin θ sin(Φ − ϕ′)]. (4.10b)

In these formulas, subscripts a of the angles, θ, θ′, ϕ, and ϕ′, are omitted for simplicity.
Almost everything in our Earth-bound laboratory is rigidly fixed to Earth’s crust

by quantum mechanical intermolecular forces. Only a pendulum-bob is free to move
horizontally, responding to incoming gravito-radiative forces. Our “free electron” is a
pendulum-bob. Figure 1 illustrate Frad(E)/m, given by eq. (4.10a), for a simplified
case of θ = θ′ = π/2. Earth’s crust is rigid and resists the quadrupole deformation
Frad(E) tries to induce. But the pendulum-bob (verticity meter) located at each
longitude, Φ, can be shifted to detect the gravitational wave produced by a burst at the
galactic center. Our verticity meter is a simple motionless pendulum [11]. Mizushima
and Zimmerer constructed in [12] two verticity meters at Boulder, Colorado, and
have monitored the East-West and North-South displacements of the pendulum-bob
to about 1 µm since 1997. We have found a few coincidences between the two verticity
meters, and reported them in [12]. Since then, we observed in [13] coincidences on
April 24 and July 14 of 1997, September 21 of 1998, and Feb. 3, Feb. 5, May 27
and June 16 of 1999. Figure 2 report one of them as an example. More data will be
reported in [13]. So far these data indicate that the gravitational waves, we detect, are
typically impulses of about 10−8 m/s each. If the duration is 10 s, the corresponding
Frad/m is about 10−9 m/s2. Taking the distance to the galactic center, r = 3 × 1020

m, it requires to be Mvv̇ = 1053 J/s. If M = 1039 kg, then vv̇/c = 105 g, where
g = 9.8 m/s2. As stated before, the rate of energy taken out by the corresponding
gravitational wave is 1051 J/s according to eq. (1.10), which is nearly equal to the
energy, mc2 = 1054 J, of the galactic nucleus itself. In order to find the nature of the
sources of these gravitational waves, however, it is necessary to find the latitude and
longitude dependences of the signals as predicted by eqs. (4.10a) and (4.10b).

Some possible effects of the gravitational waves on the motions of astronomical
bodies are predicted in [14].
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Figure 1. Illustration of eq. (4.10a), Frad(E), produced on Earth by a burst at the
galactic nucleus as indicated on the right-hand side.

Figure 2. Coincidences of the verticity meters at 2 pm (MDT) and 3:30 pm (MDT)
of June 16, 1999, between E2 and E6 lines, which are East-West displacements of

the 2-m and 6-m pendulum-bobs, respectively. The left is West, and the full
horizontal scale is 80 µm. No coincidence are seen in the North-South

displacements, indicating that θ = θ′ ' π/2 in these cases. The slope of the E2 line
from 2 pm to 3:30 pm is about 10−8 m/s.



Gravito-radiative force 157

References

[1] A. Einstein, Ann. Phys., 49, 50 (1916).

[2] L. Landau and E. Lifshitz, The Classical Theory of Fields, Addison-Wesley, Cam-
bridge, MA, eq. 11-115, (1951).

[3] H. Taylor and J. W. Weisberg, Astrophys, J. 345, 134 (1989).

[4] M. Mizushima, Hadronic J., 17, 97 (1994).

[5] M. Mizushima, Hadronic J., 18, 139 (1995).

[6] J. L. Synge, Relativity: The General Theory, North-Holland, Amsterdam, (1960).

[7] A. J. Weber, General Relativity and Gravitational Waves, Interscience, London
(1961).

[8] A. Einstein, Ann. hys., 35, 898 (1911).

[9] W. Heitler, The Quantum Theory of Radiation, Oxford Univ. Press, Oxford, I
sect. 3, (1953).

[10] M. Mizushima, Hadronic J., 18, 577 (1995).

[11] M. Mizushima, Verticity on p. 271 of New Frontiers in Relativity, ed. by T. L.
Gill, Hadronic Press, Palm Harbor, FL (1996).

[12] M. Mizushima and R. W. Zimmerer, Hadronic J., 20, 163 (1997).

[13] M. Mizushima and R. W. Zimmerer, to be published.

[14] 14. M. Mizushima, Hadronic J., 22, 123 (1999).

Authors’ addresses:

Masataka Mizushima
Department of Physics,
University of Colorado,
Boulder, Colorado 80309, U.S.A.
e-mail: mizushim@spot.colorado.edu

Gr. Tsagas
Division of Mathematics
Departement of Mathematics and Physics
Aristotle University of Thessaloniki
Thessaloniki 54006, Greece


