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Abstract

In this paper our aim is to find numerical solution of Korweg-de Vries equa-
tion using the Adomian Decomposition Method. With this method we change
the non-linear problem to a mathematically tractable one with physical solution.
Theoretical analysis is given and all calculations have been done and the results
are discussed.
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1 Introduction

The Kortweg-de Vries Equation describes the long waves over water and some wave
phenomena in plasma physics. The Kortweg-de Vries (KdV) equation is the champion
of model equations of nonlinear waves. It was studied by Kortweg and de Vries late
in the 19th century as a water wave equation, and after a long period of sleep, revived
as one of the most fundamental equation of soliton phenomena. In fact, it is from
numerical experiments of this equation that Zabusky and Kruskal introduced the term
”soliton”.

Solitons are very stable solitary waves in a solution of those equations. As the
term ”soliton” suggests, these solitary waves behave like ”particles”. When they
are located mutually far apart, each of them is approximately a traveling wave with
constant shape and velocity. As two such solitary waves get closer, they gradually
deform and finally merge into a single wave packet; this wave packet, however, soon
splits into two solitary waves with the same shape and velocity before ”collision” as
shown in the figure below.

Editor Gr.Tsagas Proceedings of The Conference of Geometry and Its Applications in Technology
and The Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1999, 121-129
c©2001 Balkan Society of Geometers, Geometry Balkan Press



122 C. Mamaloukas

The stability of solitons stems from the delicate balance of ”nonlinearity” and
”dispersion” in the model equations. Nonlinearity drives a solitary wave to concen-
trate further; dispersion is the effect to spread such a localized wave. If one of these
two competing effects is lost, solitons become unstable and, eventually, cease to exist.
In this respect, solitons are completely different from ”linear waves” like sinusoidal
waves. In fact, sinusoidal waves are rather unstable in some model equations of soliton
phenomena. Computer simulations show that they soon break into a train of solitons.

The existence of certain solitary wave solutions were discovered by Kruskal and
Zabusky, who first observed the emerging solitary waves by studying motion pictures
of the computations. Once noted, careful computations isolated the phenomena and
led to a pure mathematical solution. Also, Kenig et al [10] mentioned some global
solutions for the KdV equation with unbounded data.

In this paper, we will find numerical solutions using the Adomian decomposition
method [3]. The advantage of this method is that the method does not take any help
of linearization or any other simplifications and restrictions for handling the non-linear
terms which change the physical non-linear problem to a mathematically tractable
one, whose solution is not consistent with the physical solution. This method gives
a computable and accurate solution of the problem for a small number of terms. In
this paper we proceeded a solution using three terms.

The whole paper contains five sections. Each of them is analysed as follows.
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The first section is the introduction. The formulation of the problem is studied
in the second section. The theoretic approach is given in the third section. The
determination of the Adomian’s Special Polynomials is studied in the fourth section.
The fifth section includes the results, the diagrams and the discussions.

2 Formulation of the Problem

The Kortweg-de Vries equation in one dimension has the following form:

∂u

∂t
− u

∂u

∂x
− ∂3u

∂x3
= 0, (1)

where the first term is the linear, the second is the non-linear and the third is the
highest order term.

If we define [13]:

Ltu =
∂u

∂t
= Ru, Lxu =

∂3u

∂x3
= Lu, Nu = u

∂u

∂x
, (2)

where Nu represents the non-linear term, Lu the highest order term, and Ru the rest
of the equation, then equation (1) takes the form:

Ru − Nu − Lu = 0.

The boundary conditions are defined as follows:

u(t, 0) = u(t, 1) = 0, for t º 0 (3)

and the initial condition as a sinusoidal initial value:

u(0, x) = sin πx. (4)

3 Theoretic approach

We solve equation (1) for Ltu and Lxu separately and we get:

Ltu = Lxu + Nu, (5)

Lxu = Ltu − Nu. (6)

Let L−1
t and L−1

x be the inverse operators of Ltu and Lxu respectively, given by
the form:

L−1
t =

∫
(·) dt and L−1

x =
∫ ∫ ∫

(·) dxdxdx. (7)

Then operating both sides of equations (5) and (6) with the inverse operators (7),
we obtain:
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u = φ0 + L−1
t

(
∂3u

∂x3
+ u

∂u

∂x

)
(8)

u = ψ0 + L−1
x

(
∂u

∂t
− u

∂u

∂x

)
(9)

where φ0 and ψ0 are the solutions of the equations

∂u

∂t
= 0 and

∂3u

∂x3
= 0 (10)

respectively. The equations (10) can be solved subjected to the corresponding initial
condition (4) and boundary conditions (3) and we obtain:

φ0 = 0 and ψ0 = sinπx. (11)

Now, adding (8) and (9) and dividing by 2, we get the following form:

u =
1
2

[
(φ0 + ψ0) + L−1

t

(
∂3u

∂x3
+ u

∂u

∂x

)
+ L−1

x

(
∂u

∂t
− u

∂u

∂x

)]
=

sin πx

2
+

1
2

[
L−1

t

(
∂3u

∂x3
+ u

∂u

∂x

)
+ L−1

x

(
∂u

∂t
− u

∂u

∂x

)]
, (12)

where

u0 =
1
2

(φ0 + ψ0) =
sinπx

2
. (13)

After that, we write the parametrized form of (12) which is:

u = u0 + λ
1
2

[
L−1

t

(
∂3u

∂x3
+ u

∂u

∂x

)
+ L−1

x

(
∂u

∂t
− u

∂u

∂x

)]
(14)

and the parametrized decomposition forms of u and Nu as:

u =
∞∑

n=0

λnun, (15)

Nu =
∂u

∂x
=

∞∑
n=0

λnAn, (16)

where An are the Adomian’s special polynomials [1,2] to be determined later. Here the
parameter λ looks like a perturbation parameter; but actually is not a perturbation
parameter; it is used only for grouping the terms.

Now substitution of (15) and (16) into (14) gives:
∞∑

n=0
λnun =



Numerical solution of one dimensional Kortweg-de Vries equation 125

u0 + λ
1
2

L−1
t

∂3
∞∑

n=0
λnun

∂x3
+

∞∑
n=0

λnAn

 + L−1
x

∂
∞∑

n=0
λnun

∂t
−

∞∑
n=0

λnAn


 .

(17)
If we compare like-power terms of λ from both sides of equation (17), and taking

under consideration that parameter λ is being proved [5,6] that has the unique value
λ = 1, we get:

u0 = sin πx,

u1 =
1
2

[
L−1

t

(
∂3u0

∂x3
+ A0

)
+ L−1

x

(
∂u0

∂t
− A0

)]
,

u2 =
1
2

[
L−1

t

(
∂3u1

∂x3
+ A1

)
+ L−1

x

(
∂u1

∂t
− A1

)]
,

..........................................................................

..........................................................................

un+1 =
1
2

[
L−1

t

(
∂3un

∂x3
+ An

)
+ L−1

x

(
∂un

∂t
− An

)]
, n = 0, 1, 2, ..., n. (18)

Next, we proceed to determine Adomian’s special polynomials An.

4 Determination of Adomian’s Special Polynomials

The An polynomials are defined in such a way that each An depents only on u0, u1, ..., un

for n = 0, 1, 2, ..., n, i.e., A0 = A (u0) , A1 = A1 (u0, u1) , A2 = A2 (u0, u1, u2), etc. In
order to do this we substitute (15) into (16) and we have:

Nu = u
∂u

∂x
=

(
u0 + λu1 + λ2u2 + λ3u3 + ...

) (
∂u0

∂x
+ λ

∂u1

∂x
+ λ2 ∂u2

∂x
+ λ3 ∂u3

∂x
+ ...

)
= u0

∂u0

∂x
+ λ

(
u0

∂u1

∂x
+ u1

∂u0

∂x

)
+ λ2

(
u0

∂u2

∂x
+ u1

∂u1

∂x
+ u2

∂u0

∂x

)
+

+λ3

(
u0

∂u3

∂x
+ u1

∂u2

∂x
+ u2

∂u1

∂x
+ u3

∂u0

∂x

)
+ λ4 (...) . (19)

From (19) we conclude that the Adomian Polynomials have the following form:

A0 = u0
∂u0

∂x
,

A1 = u0
∂u1

∂x
+ u1

∂u0

∂x
,
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A2 = u0
∂u2

∂x
+ u1

∂u1

∂x
+ u2

∂u0

∂x
, (20)

.......................................... .

Hence, the polynomial A0 has the following form:

A0 = u0
∂u0

∂x
=

1
4
π cos πx sin πx. (21)

Using (13) and A0 from (20) into the expression of u1 in (18) and then performing
the integrations with respect to t and x respectively, we have:

u1 =
x2

64
− 1

4
π3 cos πx − cos 2πx

128π2
+

1
8
πt cos πx sin πx, (22)

then from (13) and (22) we have the two terms solution

u = u0 + u1, (23)

given by the following form:

1
2

sinπx +
x2

64
− 1

4
π3 cos πx − cos 2πx

128π2
+

1
8
πt cos πx sinπx. (24)

Now, if we suggest as a solution of u an approximation of three terms, then using
calculations of u1 from (22) and A1 from (20) into the expression of u2 in (18) and
then performing the integrations with respect to t and x respectively, we have the
solution:

u = u0 + u1 + u2,

wich is given by the following form:

5
8

sinπx +
x2

64
− 1

4
π3 cos πx − cos 2πx

256π2
+

1
8
πt cos πx sinπx +

9t cos πx

1024π
+

x cos πx

64π3
+

1
256

πtx2 cos πx − − 5
32

π4t2 cos 2πx − 35t cos 3πx

9216π
− 23 sinπx

1024π4
− 1

256
π2t2 sinπx−

1
16

π6t2 sinπx+
1

128
tx sinπx+

x2 sin πx

256π2
− 5

128
πt sin 2πx− sin 3πx

9216π4
+

3
256

π2t2 sin 3πx.

The complete computer program written in Mathematica 3.0 in order to get nu-
merical results is:

uo=(1/2)Sin [Pi x]
xuo=D[uo,x]
tuo=D[uo,t]
truo=D[uo,x,x,x]
amiden=Expand[uo xuo]
a=Integrate[tuo-amiden,x,x,x], b=Integrate[truo+amiden,t]
u1=Expand[(a/2)+(b/2)]
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u=Expand[uo+u1]
xu1=D[u1,x], tru1=D[u1,x,x,x], tu1=D[u1,t]
aena=Expand[uo xu1+u1 xuo]
c=Integrate[tu1-aena,x,x,x], d=Integrate[tru1+aena,t]
u2=Expand[(c/2)+(d/2)]
u=Expand[u+u2]
u/.{x->.75, t->.01}

5 Results, Diagrams and Discussion

Here are the results for a small time period t > 0, with time values t = 0.01, 0.05,
0.1, 0.15, 0.2, 0.25 and for space values x = −0.75, −0.5, −0.25, 0.25, 0.5, 0.75
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Until now nonlinear partial differential equations have defined analytical solution
for a century and analytical approaches have been replaced by numerical methods
which discretize the problem and lead to severe problems of computational time on
supercomputer.

So, this global methodology has made it possible to solve nonlinear, partial differ-
ential equations without a need for linearization or assumptions of ”weak” nonlinear-
ity, ”small” fluctuations, and to avoid discretized methods which lead to the massive
computational requirements in solving such equations and as a result of these, to seek
continuous, verifiable, analytic solutions without the massive printouts and restric-
tive assumptions which necessarily change the physical problem into a mathematical
tractable and different problem not yielding the same solution.
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