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Abstract

Recently Penson and Solomon have constructed a new family of bosons co-
herent states by using a specially designed function which is a solution of a
functional equation dE(q, x)/dx = E(q, qx), with 0 ≤ q ≤ 1 and E(q, 0) = 1.
The above authors by using this function in place of the usual exponential and
generate now coherent states |q, z > from the vacuum , which are normalized and
continuous in their label z. In this paper we use the same procedure of the above
authors, but for an other functional equation of the form DqE(q, x) = E(q, x)
,where Dq is the q − differential operator and we obtain new coherent states
|q, z >which are more convenient for the q-bosons. Also we will find the solution
of the general commutation relation (3.1) and the coherent states of the coher-
ent states of the corresponding annihilation operator.Especially we investigated
the coherent states in the isobosonic and genobosonic formulation of Hadronic
Mechanics .
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1 Introduction

Resently Penson and Solomon [1] have constructed a new family of boson coherent
states by using a specially designed function,which is a solution of a functional equa-
tion dE(q, x)/dx = E(q, qx) with 0 ≤ q ≤ 1and E(q, 0) = 1.If we substituting the
differential operator D with the q-differential operator Dq,we obtain a new functional
equation of the form:

DqE(q, x) =
1
x

E(q, qx) − E(q, x)
q − 1

= E(q, qx) (1.1)

which is more convenient to establish the q-bosons.Before studying the above equation
,we will mention briefly the coherent states of the annihilation operator aq, inasmuch
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they have been studied by many researches [?], and we will compare them with the
corresponding ones which arise from the solution of equation (1.1).

According to ref 2, the operators aq, a+
q satisfay the q-commutation relation:

aqa
+
q − qa+

q aq = 1 (1.2)

and take the following forms:

aq =

√
[n̂ + 1]
n̂ + 1

a, a+
q = a+

√
[n̂ + 1]
n̂ + 1

(1.3)

Also the following relations are valid:

a+
q aq |n >= [n] |n > (1.4)

aq

∣∣∣n >=
√

[n] |n − 1 > (1.5)

a+
q

∣∣∣n >=
√

[n + 1] |n + 1 > (1.6)

where [n] =
qn − 1
q − 1

and a, a+are the usual boson operators.

The coherent states:
aq |z >= z |z > (1.7)

are given by the expression:

||z >=
1√

e |z|2
∣∣∣

∞∑
n=0

zn√
[n]!

∣∣∣∣∣ n >= (E(|z|2))− 1
2 E(λa+) |0 > (1.8)

or:
|z >= (e(|z|2))− 1

2 e(za+
q )e(−z∗aq) |0 > (1.9)

where e(x) are the q-exponential function.
The operator

∣∣∣(e(|z|2))− 1
2 e(za+

q )e(−z∗aq) |0 > is denoted by D(q, z) and defined
as q-Weyl displacement operator, because for q = 1 it coincides with the well-known
Weyl operator[6].

In addition the calculation of the probability amplitute supplies the following
result:

|< z |n >
∣∣2 = (e(|z|2))−1 |z|

n

[n]!
, (1.10)

that is the q-deformed Poisson distribution which for q = 1 coincides with the classical
one.

From the calculation of the q-coherent states (1.8),the resolution of non orthogo-
nality of these states is obtained, i.e.

< z
′
|z >=

{
e(q, |z|2 e(q,

∣∣∣z′
∣∣∣2)}− 1

2

e(q, z∗z
′
) (1.11)
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The relation (1.8), (1.9) and (1.10) for the case q = 1 coincide with the know
relation of the coherent states Glauber[7]. In section 3 we investigated the cohernt
states of the correspondings annihilations operators in the isobosonic and genobosonic
formulation of hadronic mechanics of Santilli[8]. Section 4 is devote to concluding
remarks.

2 Study of Equation (1.1)

According to ref. 1 we consider the following functional equation for a function of the
complex variable z:

1
z

E(q, qz) − E(q, z)
q − 1

= E(q, qz) (2.1)

when q = 1 these are definig equations for exp(z). When q 6= 1, the E(q, z) 6= exp(z)
and a solution analytic in some nieghborhood of z = 0 may be assumed to be given
by:

E(q, z) =
∞∑

n=0

cn(q)zn (2.2)

Equation (2.1) produces the recursion relation:

cn+1(q) =
qn

[n + 1]
cn(q), c0 = 1, n = 1, 2, . . . (2.3)

with solution:
cn(q) = q

n(n−1)
2 .

zn

[n]!
(2.4)

and:

E(q, z) =
∞∑

n=0

q
n(n−1)

2 .
zn

[n]!
(2.5)

which convergent for all z, when 0 ≤ q ≤ 1 . In the sequel the remarks by the
authors1) are valid for the function E(q, z); that interpolates between E(0, z) = 1 + z
and E(1, z) = exp z. The function E(q, z) has a infinitely cauntable number of roots,
of which non lies on the positive real axis.

Now is simple to define a new familly of physical states∣∣∣q, z >= N(q, |z|2)− 1
2 E(q, za+

q )E(q,−z∗aq) |0 > (2.6)

and the above staetes are coherent in the general sense according to ref. 1.
From the relation < q, z |q, z >= 1 we obtain the normalization:

N(q, |z|2) =
∞∑

n=0

qn(n−1)

[n]!
|z|2n = E(q, |z|2) (2.7)
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and then the normalized state is:

|q, z > = (E(q, |z|2))
∞∑

n=0

q
n(n−1)

2 zn√
[n]!

|n| > (2.8)

For a given q calculate the overlap:

< q, z
∣∣∣q, z′

>=
{

(E(q, |z|2))E(q,
∣∣∣z′

∣∣∣2)}− 1
2

E(q, z
′
z∗) (2.9)

From the new coherent states (2.8),is now simple to calculate the probability
amplifude, i.e.

|< q, z |n >|2 = (E(q, |z|2))−1 qn(n−1) |z|2n

[n]!
(2.10)

and:
∞∑

n=1

|< q, z |n >|2 = (E(q, |z|2))−1
∞∑

n=0

qn(n−1) |z|2n

[n]!
= 1 (2.11)

also the distribution (2.10) is a q-deformed Poisson distribution ,which for q = 1
coincides with the classical one.

Finally the normalized states (2.8) takes the form:

|q, z > = (E(q, |z|2))− 1
2

∞∑
n=0

q
n(n−1)

2 zn√
[n]!

∣∣∣∣∣ n >= (2.12)

= (E(q, |z|2))− 1
2

∞∑
n=0

(za+
q )n

[n] 1
q
!

∣∣∣∣∣ 0 >=

= E(q, |z|2)− 1
2 e 1

q
(za+

q ) |0 >=

= E(q, |z|2)− 1
2 e 1

q
(za+

q )e 1
q
(−z∗aq) |0 >

where e 1
q
(za+) is 1

q -exponential function.

3 Coherent States in the Lie-Admissible Formula-
tion

Before we start to deal with the coherent states in the Lie-admissible formulation we
consider the most general commutation relation for the operators A,A+, i.e.

AT (n̂ + 1)A+ − A+R(n̂ + 1)A = F (n̂ + 1) (3.1)

where the functions T (n̂+1), R(n̂+1) and F (n̂+1) are deppendent from the number
operator n̂ = a+a, a, a+ are the are the usual boson operators and n̂ |n >= n |n > .By
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using the bosonization method[2] the operators A+, A obtain the following expres-
sions:

A = f(n̂ + 1)a , A+ = a+f(n + 1) (3.2)

and the structure function f(n̂ + 1) satisfies the following equation:

T (n + 2)(n + 1)f2(n + 1) − R(n)nf2(n) = F (n + 1) (3.3)

For nf2(n) = Ln the above equation yields:

T (n + 2)Ln+1 − R(n)Ln = F (n + 1) (3.4)

or:
Ln+1 − σ(n + 1)Ln = g(n + 1) (3.5)

where σ(n + 1) =
R(n)

T (n + 2)
, g(n + 1) =

F (n + 1)
T (n + 2)

and T (n + 2) <> 0.

For
Ln = σ(1)σ(2) . . . σ(n)Sn = σ(n)!Sn (3.6)

equation (3.5) takes the form:

Sn+1 − Sn =
g(n + 1)
σ(n + 1)!

(3.7)

where σ(n)! = σ(1) . . . σ(n). Because for

n = 0, L0 = 0 and S0 = 0, (3.8)

then the solution of the above equation has the form:

Sn+1 =
∞∑

n=0

g(l + 1)
σ(l + 1)!

(3.9)

and the relation (3.6) we obtain the solution:

Ln+1 = σ(n + 1)!
∞∑

l=0

g(l + 1)
σ(l + 1)!

(3.10)

Finally we obtain the the structure function:

f(n + 1) =

√
Ln+1

(n + 1)
(3.11)

The expressions (3.2) take now the forms:

A =

√
L

n̂+1

(n̂ + 1)
a, A+ = a+

√
L

n̂+1

n̂ + 1
(3.12)
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and satisfay the following relations

A |n >=
√

Ln |n − 1 >, A+ |n >=
√

Ln+1 |n + 1 > (3.13)

For n = 0 is
A |0 >= 0 and A+ |0 >=

√
L1 |1 > (3.14)

The operators A and A+ are annihilation and creation operators.
The coherent states of the annihilation operator are defined:

A |α >= α |α > (3.15)

and after some algebras we obtain:

|α >= (
∞∑

n=0

|α|2n

Ln!
)−

1
2

∞∑
n=0

(αA+)n

Ln!

∞∑
n=0

(−α∗A)n

Ln!

∣∣∣∣∣ > (3.16)

In the following we will start to find the coherent states for the isobosonic and
genobosonic annihilation operators in the Lie-admissible formulation:

a) Coherent states for the General Iisotopic Case.
According to Jannussis[9] the annnihilation and creation operators A,A+ satisfy

the commutation relation:

AT (n + 1)A+ − A+T (n + 1)A =
1

T (n + 1)
(3.17)

and take the following expressions:

A =
1√

T (n + 1)T (n + 2)
a, A+ = a+ 1√

T (n + 1)T (n + 2)
(3.18)

where the element T (n + 1) is real and n is the convensional occupation number.
According to Santilli [8] we have:

A∗ |αT >= AT (n + 1) |αT > (3.19)

and |αT are the isobosonic coherent states , with the isonormalized coherent isobasis:

|αT >
1√

T (n + 1)
|α >,< α |α >= 1, < αT |T (n + 1)|αT >= 1 (3.20)

From (3.18) and (3.20) formula (3.19) takes the form:

A∗ |αT > = AT (n + 1) |αT >=
1√

T (n + 1)T (n + 2)
α
√

T (n + 1) |α >=(3.21)

=
1√

T (n + 1)
α |α >= α

1√
T (n + 1)

|α >= α |αT >
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In the same way we obtain:

< αT |∗ A+ = α∗ < αT | (3.22)

with:
< αT | =< α|

√
T−1(n + 1). (3.23)

b) General Lie-Admissible Case with Real Elements T and R.
According to ref. 9 the corresponding annihilation and creation operators A, A+

and B, B+ are given by the following expressions:

A = f(n + 1)a, A+ = a+f(n + 1) (3.24)

B = g(n + 1)a, B+ = a+g(n + 1) (3.25)

where the structure functions f(n + 1) and g(n + 1) are real and have the following
forms:

f(n + 1) =
1√

(n + 1)T (n + 1)T (n + 2)
{1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

} 1
2

(3.26)

g(n + 1) =
1√

(n + 1)R(n + 1)T (n + 2)
{1 +

R(n + 1)
T (n + 1)

+ . . . + (3.27)

+
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . T (2)

} 1
2

In the following formula we can construct the Lie-admissible common normalized
coherent basis:

|αTR >=
1

4
√

T (n + 1)R(n + 1)
|α >,< α |α >= 1 (3.28)

< αTR

∣∣∣√T (n + 1)R(n + 1)
∣∣∣ αTR >= 1

and after some algebra we obtain:

A ∗ |αTR > = AT (n + 1) |αTR >= f(n + 1)aT (n + 1) |αTR > (3.29)
= f(n + 1)T (n + 2)a |αTR >

= f(n + 1)T (n + 2)a
1

4
√

T (n + 1)R(n + 1)
|α >

= α 4

√
R(n + 1)T (n + 2)
T (n + 1)R(n + 2)

{
1

n + 1
(1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

)
} 1

2

· |αTR >
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B ∗ |αTR > = BT (n + 1) |αTR >= g(n + 1)T (n + 2)a |αTR > (3.30)

= α 4

√
T (n + 1)T (n + 2)
R(n + 1)R(n + 2)

{
1

n + 1

(
1 +

R(n + 1)
T (n + 1)

+ . . . +
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . T (2)

)} 1
2

|αTR >

and:

< αTR| ∗ A+ = α∗ < αTR| (3.31)

· 4

√
R(n + 1)T (n + 2)
T (n + 1)R(n + 2)

{
1

n + 1

(
1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

)} 1
2

< αTR| ∗ B+ = α∗ < αTR| 4

√
T (n + 1)T (n + 2)
R(n + 1)R(n + 2)

· (3.32)

{
1

n + 1

(
1 +

R(n + 1)
T (n + 1)

+ . . . +
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . (2)

)} 1
2

The above results for T (n + 1) = R(n + 1) coincides exactly with the formulae
(3.21) and (3.22).

c) General Coherent States with Complex Elements T and R.
When the elements T (n+1)and R(n+1) are complex functions of the conventional

occupation number n we have two pairs of the operators A, B and A′, B′ and according
to ref. 9 we have:

A = f(n + 1)a,B = a+f(n + 1) (3.33)

A+ = a+f+(n + 1), B+ = f+(n + 1)a (3.34)

Á = g(n + 1)a, B́ = a+g(n + 1) (3.35)

Á+ = a+g+(n + 1), B́+ = g+(n + 1)a (3.36)

where the structure functions f(n + 1) and g(n + 1) are complex functions and have
the following forms:

f(n + 1) =

1√
(n + 1)T (n + 1)T (n + 2)

{
1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

} 1
2

(3.37)

g(n + 1) =

1√
(n + 1)R(n + 1)T (n + 2)

{
1 +

R(n + 1)
T (n + 1)

+ . . . +
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . T (2)

} 1
2

(3.38)
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and in the same way with (3.28)we can construct the general Lie-admissible common
normalized coherent basis, i.e.∣∣α|T ||R| >=

1
4
√
|T (n + 1)| |R(n + 1)|

|α >,< α |α >= 1, (3.39)

< α|T ||R|

∣∣∣√|T (n + 1)| |R(n + 1)|
∣∣∣ α|T ||R| >= 1

After some algebra we obtain:

A ∗
∣∣α|T ||R| > = AT (n + 1)

1
4
√
|T (n + 1)| |R(n + 1)|

|α >= (3.40)

= 4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T (n + 2)
T (n + 1)

{ 1
n + 1

(1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

)} 1
2∣∣α|T ||R| >

< α|T ||R|
∣∣ ∗ A+ = α∗ < α|T ||R|

∣∣ (3.41)

4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T+(n + 2)
T+(n + 1)

{ 1
n + 1

(1 +
R+(n)
T+(n)

+ . . .

+
R+(n)R+(n − 1) . . . R+(1)
T+(n)T+(n − 1) . . . T+(1)

)} 1
2

Á ∗
∣∣α|T ||R| > = α 4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T (n + 2)
R(n + 1)

(3.42)

{ 1
n + 1

(1 +
R(n + 1)
T (n + 1)

+ . . . +
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . T (2)

)} 1
2∣∣α|T ||R| >

< α|T ||R| |∗ Á+ = α∗ < α|T ||R|
∣∣ (3.43)

4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T+(n + 2)
R+(n + 1){

1
n + 1

(1 +
R+(n + 1)
T+(n + 1)

+ . . . +
R+(n + 1)R+(n) . . . R+(2)
T+(n + 1)T+(n) . . . T+(2)

} 1
2

B+∗
∣∣ α|T ||R| > = α 4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T+(n + 2)
T+(n + 1)

(3.44)
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{
1

n + 1

(
1 +

R+(n)
T+(n)

+ . . . +
R+(n)R+(n − 1) . . . R+(1)
T+(n)T+(n − 1) . . . T+(1)

)} 1
2

∣∣α|T ||R| >

< α|T ||R| |∗B = α∗ < α|T ||R|
∣∣ 4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T (n + 2)
T (n + 1)

(3.45)

{
1

n + 1

(
1 +

R(n)
T (n)

+ . . . +
R(n)R(n − 1) . . . R(1)
T (n)T (n − 1) . . . T (1)

)} 1
2

(1)

B́+∗
∣∣∣ α|T ||R| > = α 4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T+(n + 2)
R+(n + 1)

· (3.46)

{
1

n + 1

(
1 +

R+(n + 1)
T+(n + 1)

+ . . . +
R+(n + 1)R+(n) . . . R+(2)
T+(n + 1)T+(n) . . . T+(2)

)} 1
2

∣∣α|T ||R| >

< α|T ||R|

∣∣∣∗B́ = α∗ < α|T ||R|
∣∣ (3.47)

4

√
|T (n + 1)| |R(n + 1)|
|T (n + 2)| |R(n + 2)|

√
T (n + 2)
R(n + 1)

·

{
1

n + 1

(
1 +

R(n + 1)
T (n + 1)

+ . . . +
R(n + 1)R(n) . . . R(2)
T (n + 1)T (n) . . . T (2)

)}1
2

For the general genobosonic case, i.e., R(n + 1) = T+(n + 1) we obtain:

A = f(n + 1)a, B = a+f(n + 1) (3.48)

A+ = a+f+(n + 1) , B+ = f+(n + 1)a (3.49)

and

A∗|αTT+ > = α

√
|T (n + 1)|T (n + 2)
|T (n + 2)|T (n + 1)

· (3.50)

·{ 1
n + 1

(
1 +

T+(n)
T (n)

+ . . . +
T+(n)T+(n − 1) . . . T+(1)

T (n)T (n − 1) . . . T (1)

) 1
2

|αTT+ >

< αTT+

∣∣∗A+ = α∗ < αTT+ |

√
|T (n + 1)|T+(n + 2)
|T (n + 2)|T+(n + 1)

· (3.51)

·
{

1
n + 1

(
1 +

T (n)
T+(n)

+ . . . +
T (n)T (n − 1) . . . T (1)

T+(n)T+(n − 1) . . . T+(1)

)} 1
2
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B+ ∗ |αTT+ > = α

√
|T (n + 1)|T+(n + 2)
|T (n + 2)|T+(n + 1)

(3.52)

{ 1
n + 1

(
1 +

T (n)
T+(n)

+ . . . +
T (n)T (n − 1) . . . T (1)

T+(n)T+(n − 1) . . . T+(1)

) 1
2

|αTT+ >

< αTT+ |∗B = α∗ < αTT+ |

√
|T (n + 1)|T (n + 2)
|T (n + 2)|T (n + 1)

(3.53)

{
1

n + 1

(
1 +

T+(n)
T (n)

+ . . . +
T+(n)T+(n − 1) . . . T+(1)

T (n)T (n − 1) . . . T (1)

)} 1
2

4 Conclusion

In the present paper we have studied a new functional equation similar with the equa-
tion of ref.1 and we obtained new coherent states |q, z > which are more convinient for
the q-deformed bosons.Also we have found the coherent states of the corresponding
annihilation operator which satisface the general commutation relations (3.1).Finally
we have determined the coherent states in the isobosonic and genobosonic formulation
in Hadronic Mechanics.

References

[1] Person K. and Solomon A., Jour. of Math. Phys. 40, 2354 (1999) and references
therein.

[2] Jannussis A. et al, Lett. N. Cimento: 30, 123 (1981); Hadr. Jour. 5 1923 (1982).

[3] MacFarlane A., Jour. Phys. A22, 4581 (1989).

[4] Biedeharn L., Jour. Phys. A22, L 873 (1989).

[5] Solomon A., Phys. Lett. A 188, 215 (1984); A 160, 29 (1996) and references therein.

[6] Louisell W., Quantum Statistical Properties of Radiation (chapter 3, operator
Algebra), Wiley (1973).

[7] Glauber R., Phys. Rev. 131, 2766 (1963).

[8] Santilli R., Elements of Hadronic Mechanics, Vol. I, Mathematical Foundations
(1993), Vol. II Theoretical Foundations (1994) Vol. III Experimental Verifications
to (Appears) (1994). Academy of Sciences of the Ukraine, Kiev, Ukraine, Second
Edition (1995).



114 A. Jannussis and A. Tsonis

[9] Jannussis A., Isotopic and Genotopic Lie-Algebras and the new Deformed Heisen-
berg Quantum Mechanics. Dep. of Phys. Univ. of Patras (1998). Invited talk in the
Workshop on Differential geometry, Global Analysis and Lie-Algebras. Aristotle
Univ. of Thessaloniki, School of Technology Math. Division 24-17 June (1998).

Authors’ addresses:
A. Jannussis

Department of Physics
University of Patras
26500 Patras, Greece

A. Tsonis
Department of Mathematics and Physics
Faculty of Technology
Aristotle University of Thessaloniki


