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Abstract

Quantization of reducible Hamiltonian first-class theories in an irreducible
manner is accomplished in the framework of the Becchi-Rouet-Stora-Tyutin
symmetry based on a (co)homological approach.
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1 BRST symmetry— geometric ingredients

Let P be a manifold (regarded as the phase-space of a dynamical system) endowed
with a symplectic structure (the Poisson bracket) and let Σ be a surface embedded
in P , described by the equations

Ga0

(
zA

)
≈ 0, (1)

with zA the phase-space co-ordinates. We suppose that

[Ga0 , Gb0 ] = Cc0
a0b0

Gc0 , (2)

where [, ] denotes the Poisson bracket and Cc0
a0b0

are some functions on P . By defining
the vector fields

Xa0• = [•, Ga0 ] , (3)
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it follows that they are tangent to Σ and, moreover, close on Σ, i.e.,

[Xa0 , Xb0 ]L ≈ Cc0
a0b0

Xc0 , (4)

where the notation [, ]L stands for the Lie bracket, while the weak equality “≈” means
an equality modulo equations (1). The integral submanifolds corresponding to the
vector fields (3) are named gauge orbits. Whenever these two ingredients are present,
namely, a surface Σ embedded in a manifold P and a set of vector fields tangent to
Σ that close on Σ (and, hence, define gauge orbits), one can construct a nilpotent
odd derivation s, usually known like the BRST differential (or, equivalently, BRST
symmetry) [1]–[3]. The nilpotency of s is expressed by the equation

s2 = 0. (5)

The BRST differential acts on a graded algebra containing C∞ (P ) and is such that
its zeroth order cohomological class H0 (s) satisfies

H0 (s) ' {functions of C∞ (Σ) constant along the gauge orbits} . (6)

In theoretical physics language, relations (1–2) define a set of so-called first-class
constraints, while the right hand-side of (6) represents the class of physical observables.
We recall that any physical observable F satisfies [F,Ga0 ] ≈ 0.

An interesting situation is where the functions Ga0 from (1) are not all indepen-
dent, i.e., there exist some non-vanishing functions Za0

a1
such that

Za0
a1

Ga0 = 0. (7)

One then says that the constraints are reducible and that one is in the reducible case.
In the opposite situation, where Ga0 are independent, one is in the irreducible case.
In the reducible case we can assume that the functions Za0

a1
are not all independent,

so there can in principle exist a tower of reducibility relations, of the type

Za1
a2

Za0
a1

= 0, Za2
a3

Za1
a2

= 0, · · · , ZaL−2
aL−1

ZaL−1
aL

= 0, (8)

where ak = 1, · · · ,Mk for any k = 0, · · · , L. If (7–8) are present, one says that the
constraint set (1) is L-stage reducible. The reducible situation is frequently met in
theoretical physics in connection with many models, like, for instance, p-form gauge
theories or superstring theory.

2 Derivation of an irreducible BRST symmetry as-
sociated with a reducible one

2.1 Setting the problem

It is well-known [1]–[3] that the BRST differential sR associated with a reducible
theory contains two crucial operators

sR = δR + DR + · · · , (9)
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where δR is a true differential (Koszul-Tate differential), while DR is an odd derivation
that anticommutes with δR and is nilpotent up to δR-exact terms (DR is a differential
modulo δR, named longitudinal derivative along the gauge orbits). The remaining
pieces in sR play no role in the cohomology of sR, being required in order to ensure the
nilpotency of sR. The Koszul-Tate differential acts on polynomials in some generators
(antighosts) to be introduced below with coefficients from C∞ (P ), and realizes an
homological resolution of C∞ (Σ), i.e., its homological classes are restricted to be

H0 (δR) = C∞ (Σ) , Hk (δR) = 0, k 6= 0. (10)

The degree of δR is called the antighost number (antigh), and is given by antigh (δR) =
−1. The longitudinal derivative is initially defined on Σ like acting on polynomials
in other generators (ghosts) with coefficients from C∞ (Σ). It can be shown that DR

is a true differential on Σ and, moreover, that its zeroth order cohomological class is
isomorphic to the class of physical observables. The degree of DR is named pure ghost
number (pgh), and pgh (DR) = 1. Further, DR can be “lifted” to P and also extended
to the antighosts in such a way that on the one hand it anticommutes with δR, and,
on the other hand, its square vanishes up to δR-exact terms (α is said to be δR-exact
if α = δRβ, for some β). The degree of sR is called ghost number (gh). The ghost
number of an object A is defined by gh (A) = pgh (A) − antigh (A), while the ghost
number of sR is taken to be gh (sR) = 1. Under these considerations, the homological
perturbation theory [2]–[3] ensures the existence of the BRST differential sR, whose
zeroth order cohomological class satisfies (6) with s replaced by sR. Actually, relations
(5–6) represent the main equations underlying the BRST formalism.

For a first-stage reducible theory (L = 1), the construction of the Koszul-Tate
differential is based on the definitions

δRzA = 0, δRPa0 = −Ga0 , (11)

δRPa1 = −Za0
a1
Pa0 , (12)

where the antighosts Pa0 and Pa1 have the antighost number one, respectively, two.
The antighosts Pa1 are required in order to “kill” the non-trivial co-cycles

µa1 = Za0
a1
Pa0 , (13)

in the first order homological class of δR. (An object m is said to be non-trivial
co-cycle of δR if δRm = 0 and m 6= δRn, for any n.) In the irreducible case, the
definitions (11) are sufficient for obtaining (10). On the contrary, in a reducible case
with L > 1 there are necessary more antighosts in order to recover (10). Consequently,
the definitions (11–12) must be supplemented with some new appropriate ones. The
additional antighosts and corresponding definitions of δR acting on them are due to
the extra reducibility relations (8).

In the sequel we investigate the problem of obtaining an irreducible BRST differ-
ential sI associated with a starting reducible one, sR. In this light, our main idea is
to redefine the antighosts Pa0 in such a manner that the non-trivial co-cycles of the
type (13) vanish identically. If we succeed in accomplishing this purpose, then the
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antighosts Pa1 are no longer necessary, therefore the definitions (12) together with
the supplementary ones due to the higher-order reducibility, will be all discarded. In
consequence, there will be present only some definitions of the type (11), that will
describe an irreducible theory based on some new irreducible first-class constraints.
In turn, with the help of these irreducible first-class constraints we can construct an
irreducible longitudinal derivative along the gauge orbits DI , and thus an irreducible
BRST symmetry. The link between the reducible and irreducible BRST differentials
is expressed by the isomorphism between their zeroth order cohomological classes (the
classes of physical observables corresponding to the reducible and irreducible theories
can be shown to coincide).

2.2 Main results

Acting along the line discussed in the above we enlarge the initial phase-space and
infer the irreducible first-class constraints associated with (1) of the form [4]

γa0 ≡ Ga0 + A a1
a0

πa1 ≈ 0, (14)

γa2k
≡ Za2k−1

a2k
πa2k−1 + A a2k+1

a2k
πa2k+1 ≈ 0, k = 1, · · · , a, (15)

with
(
ya2k+1 , πa2k+1

)
k=0,···,b denoting the new canonical pairs extending the phase-

space and a, b defined by a = L/2 for L even, a = (L − 1)/2 for L odd, respectively,
b = L/2 − 1 for L even, b = (L − 1)/2 for L odd. The functions A ak

ak−1
involved with

(14–15) depend only on zA’s and are taken to fulfill

rank
(
Zak−1

ak
A bk

ak−1

)
=

L∑
i=k

(−)k+i
Mi. (16)

Moreover, we can show [4] that

Ga0 = m b2k
a0

γb2k
, πa2k+1 = m b2i

a2k+1
γb2i , k = 0, · · · , b. (17)

On account of (17), it is easy to prove [4] that the class of physical observables
associated with the constraints (1) coincides with that corresponding to (14–15).

At this point, we are in the following situation. We can construct an irreducible
BRST differential sI starting with the constraints (14–15). The above mentioned
equality between the classes of physical observables means that

H0 (sR) ' H0 (sI) . (18)

Relation (18) together with the nilpotency of sR and sI ,

s2
R = 0 = s2

I , (19)

enable us to substitute (from the point of view of the basic equations (5–6)
underlying the BRST formalism) the reducible BRST symmetry sR with
the corresponding irreducible one, sI . This is the main result of this talk.
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This result can be important in theoretical physics at the BRST quantization of
p-form gauge theories and superstring theory. In fact, this treatment has already been
applied to some theories with p-forms [5]–[6], but yet not to superstring theory. This
is mainly because superstrings possess, besides first-class constraints, also reducible
second-class ones, which are difficult to deal with in a “covariant manner”. Thus, if it
were possible to develop a general treatment that associates some irreducible second-
class constraints with some original reducible ones (without afflicting the theory), then
our method would be an effective tool at the covariant quantization of superstrings.
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