
WEAK GRAVITATIONAL FIELDS IN

GENERALIZED METRIC SPACES

Vladimir Balan and Panayiotis C. Stavrinos

Abstract

In the first section we consider a weak pseudo-Riemannian metric on a 4-
dimensional manifold M and its associated Berwald-type nonlinear connection
N on TM , and settle the basic facts related to the study of (h, v)−metrics.
In the second section we apply a Finslerian perturbation to the weak metric,
which yields a pseudo-Riemann - Finslerian (h, v)−metric structure on TM ; we
determine the explicit Einstein equations for this model. In the third section it
is shown that the Sasaki N -lift of the conformal deformation of the weak metric
provides also a canonic (h, v)− almost Hermitian metric structure on TM , for
which the h− and v−Einstein equations are also infered. In the last section are
determined the equations of the stationary curves and of their deviations for
these models, with emphasis on the special cases of h− and v−paths.
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1 Introduction

The concept of gravitational waves in a Finsler space was introduced in a recent
work of P.C.Stavrinos [18]. On the other hand, in last years was developed the
theory of vector bundles endowed with (h, v)−metrics, providing relevant models for
General Relativity [12], [13]. In this paper we study the geometrical structure of
two (h, v)−metrics produced by deformations of a weak pseudo-Riemannian metric
γij defined on a real 4-dimensional differentiable manifold M . The weakness of the
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gravitational field is expressed by the decomposition of the metric γij into the flat
Minkowski metric and a small perturbation [18]

γij(x) = nij + ε
(1)
ij (x), (1)

where nij = diag(−1, 1, 1, 1), and ε
(1)
ij represents a symmetric tensor field with

|ε(1)
ij (x)| << 1. The indices are raised in a linearized approach via nij , e.g., εrs =

nrinsjεij , where we denoted briefly εij = ε
(1)
ij . This point of view permits us to develop

the linearized version of a given generalized model of General Relativity, in which the
symmetric tensor field propagates in a weak pseudo-Riemannian gravitational field.

The pseudo-Riemannian metric γij implicitly endowes the tangent bundle (TM ,
π, M) with the non-linear connection

Na
i (x, y) = γa

jby
b, (2)

where γi
jk are the Christoffel symbols of the metric, and where we denoted by (xi, ya)

the local coordinates in a chart Ũ ⊂ TM . Throughout the paper, the Latin indices
i, j, k, . . . , a, b, c, . . . will run in the range 1, 4, while the Greek ones α, β, γ, . . ., in the
range 1, 8. The nonlinear connection N produces on X (Ũ) the local adapted basis

{δi = ∂i − N b
i ∂b, ∂̇a}i,a=1,4 ≡ {∂yβ}β=1,8, (3)

with ∂i = ∂
∂xi and ∂̇a = ∂

∂ya , as well as the dual local basis

{di = dxi, δa = δya = dya + Na
j dxj}i,a=1,4 ≡ {dyβ}β=1,8. (4)

We shall consider hereafter the linear approach, in which the Christoffel symbols
of the weak metric γij will take the linearized form [18]

εi
jk =

1
2
nis(∂{jεsk} − ∂sεjk) ≈ γi

jk, (5)

where we denoted τ{ij} = τij + τji. Then the nonlinear connection will be also
approximated by the weak nonlinear connection

εa
iby

b ≈ Na
i . (6)

In this framework, the Finslerian and the conformal generalized Lagrange defor-
mations of the weak metric γij provide specific (h, v)−metrics on TM .

Generally, if the tangent bundle (TM, π,M) is endowed with a (h, v)−metric [12],

G = gij(x, y)dxi ⊗ dxj + hab(x, y)δya ⊗ δyb, (7)

then one can consider the canonic N−connection D, of coefficients

{Li
jk, L̃a

bk, C̃i
ja, Ca

bc} ≡ {Γα
βγ}
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which preserves the h−v splitting produced by N , is metrical, h− and v− symmetrical,
and depends on N and G only. Its coefficients are [12]

Li
jk =

1
2
gis(δ{jgsk} − δsgjk)

L̃a
bk = ∂̇bN

a
k +

1
2
hac(δkhbc − hc{d∂̇b}N

d
k )

C̃i
ja =

1
2
gih∂̇agjh

Ca
bc =

1
2
had(∂̇{bhdc} − ∂̇dhbc)

Then the torsion tensor field T ∈ T 1
2 (TM) of the linear N−connection D has the

coefficients given by the relation

T (δα, δβ) = T κ
β αδκ, T κ

β α = Γα
[βκ] + Bα

[βκ], (8)

where we denoted τ[αβ] = ταβ − τβα and the non-holonomy coefficients B γ
α β are

provided by the relations [δα, δβ ] = B γ
α βδγ .

The h, v−splitting of T provides the torsion N−tensor fields [12]

T i
jk = diT (δk, δj) = Li

[jk], Sa
bc = δaT (∂̇c, ∂̇b) = Ca

[bc],

Ra
kl = δaT (δl, δk) = δ[lN

a
k], P i

ja = diT (∂̇a, δj) = C̃i
ja,

P a
bk = δaT (δk, ∂̇b) = ∂̇bN

a
k − L̃a

bk.

Also, the curvature tensor field R ∈ T 1
3 (TM) of the N−connection D has the

coefficients given by

R(δα, δβ)δγ = R λ
γ βαδλ, R α

β γθ = δ[θΓα
βγ] + Γφ

β[γΓα
φθ] + Γα

βφBφ
γθ, (9)

and the h, v−splitting of R provides the curvature N−tensor fields

R i
j kl = diR(δl, δk)δj = δ[lL

i
jk] + Lh

j[kLi
hl] + C̃i

jaRa
kl

R̃ a
b kl = δaR(δl, δk)∂̇b = δ[lL̃

a
bk] + L̃c

b[kL̃a
cl] + Ca

bcR
c
kl

P i
j kc = diR(∂̇c, δk)δj = ∂̇cL

i
jk − (δkC̃i

jc + Li
hkC̃h

jc − Lh
jkC̃i

hc − L̃b
ckC̃i

jb) + C̃i
jbP

b
kc

P̃ a
b kc = δaR(∂̇c, δk)∂̇b = ∂̇cL̃

a
bk − (δkCa

bc + L̃a
dkCd

bc − L̃d
bkCa

dc − L̃d
ckCa

db) + Ca
bdP

d
kc

S̃ i
j bc = diR(∂̇c, ∂̇b)δj = ∂̇[cC̃

i
jb] + C̃h

j[bC̃
i
hc]

S a
b cd = δaR(∂̇d, ∂̇c)∂̇b = ∂̇[dC

a
bc] + Ce

b[cC
a
ed].

These are the basic geometrical objects which will allow us to infer the Einstein
equations of the linearized deformed models defined in the following sections.

2 The Finslerian deformed weak model

We shall present two deformations of the weak metric γij and study the associated
(h, v)−metric structures provided on the tangent space.
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The first deformation is produced by a weak Finslerian perturbation of the pseudo-
Riemannian gravitational field γij , which leads to the generalized Finslerian metric
[18]

fij(x, y) = γij(x) + ε(2)
ij(x, y), (10)

where ε(2)
ij(x, y) is the Finslerian perturbation, |ε(2)

ij(x, y)| << 1. We remark that,
in view of (1), the tensor

ε∗ij(x, y) = ε
(1)
ij (x) + ε(2)

ij(x, y) (11)

provides a weak Finslerian perturbation of the Minkowski metric nij , and that ε∗ij

identically vanishes iff γij is flat. This point of view permits us to consider the
(h, v)−metric v−Finslerian or v−Lagrangian approaches.

From a physical point of view, a weak Finslerian gravitational field appears as a
Finslerian perturbation of a pseudo-Riemannian gravitational field (or external field)
of the conventional General Relativity. The perturbation can be considered in the
geometrical framework developed by R.G.Beil on the Kaluza-Klein theory or in the
ansatz of the Randers-type Yang-Mills theory [7], [8]. Namely, the Finslerian per-
turbation of the pseudo-Riemannian metric can be provided by the electromagnetic
field, or by a gauge or spinor extension of the pseudo-Riemannian gravitational field.
In each of this models, the original pseudo-Riemannian model appears as a limit case.
Therefore, the correspondence principle between Finslerian and pseudo-Riemannian
structure depends basically on the type of the generalized Finsler or Lagrange space
associated to the deformed metric.

We should note that the metric fij(x, y) is a Finsler metric itself, and provides on
TM a particular case of generalized Lagrange structure GLn = (M,fij) in the sense
of R.Miron [12]. The almost Hermitian model of GLn, given by the N−lift of fij to
TM and by the canonic adapted complex structure on TM defined locally by

J(δi) = −∂̇i, J(∂̇i) = δi, i = 1, 4,

yields an almost Kahler structure. In case that ε
(1)
ij = const. and ε(2)

ij(x, y) =
ε(2)

ij(y), then this is a Kahler space.
On the other side, the two components n + ε(1) and ε(2) of the weak Finslerian

metric (10) provide on TM the (h, v)−metric

G = (nij + ε
(1)
ij (x))dxi ⊗ dxj + ε(2)

ab(x, y)δya ⊗ δyb. (12)

We shall call the structure (TM,G) the Finslerian deformed weak model (FDWM).
We note, that in the case when ε(2) depends on y only, we obtain a pseudo-Riemann
- locally Minkowski (h, v)−metric, and the gravitational field of this space is called
weak Riemannian-locally Minkowski gravitational field. For obtaining the Einstein
equations of the deformed model, we set first the following

Lemma 1. a) The coefficients of the canonic linear N−connection of FDWM
in linearized approach are

Li
jk = L̃i

jk = εi
jk ≈ γi

jk
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C̃i
ja = 0; Ca

bc =
1
2
ε(2)adCdbc,

where Cabc = ∂̇aε(2)
bc is the Cartan tensor field associated to ε(2).

b) The N−fields of torsion of the FDWM are

T i
jk = 0, C̃i

ja = 0, P a
kb = 0, Ra

jk = r a
c jkyc, Sa

bc = 0. (13)

c) The N−fields of curvature of the FDWM are

R i
j kl = r i

j kl, R̃ a
b kl = r a

b kl, P i
j kc = 0,

P̃ a
b kc = −(δkCa

bc + εa
dkCd

bc − εd
{bkCa

dc})

S i
j bc = 0, S̃ a

b cd = Cs
b[dC

a
c]s,

where r i
j kl is the linearized weak curvature,

r i
j kl = ∂[lε

i
jk] =

1
2
nis(∂2

[ljεsk] + ∂2
[ksεjl]). (14)

By straightforward computation, one gets

Theorem 1. a) The Ricci N−tensor fields of the linearized FDWM are

Rij ≡ R k
i jk = r k

i jk =
1
2
(2εij + ∂2

ijε − ∂2
{jsε

s
i})

Pjb ≡ P k
j kb = 0

P̃bk ≡ P̃ d
b kd = −(δkCa

ba − εd
bkCa

da)
Sab ≡ S d

a bd = Ce
a[dC

d
b]e

where ε = nijεij, and ”2” denotes the d’Alambertian

2 = −∂2
00 + ∂2

11 + ∂2
22 + ∂2

33 ≡ −∂2
tt + ∂2

xx + ∂2
yy + ∂2

zz.

b) The Ricci scalars of curvature of the linearized FDWM are

R = r = 2ε − ∂2
ijε

ij , S = Ce
b[dC

d
c]eε

(2)bc.

Corrolary 1. The Einstein equations of the linearized FDWM are

Rij −
1
2
(R + S)nij ≡ 1

2
(2εij + ∂2

ijε − ∂2
{jsε

s
i}) − nij(R + S) = κTij

Sab −
1
2
(R + S)nab ≡ Ce

a[dC
d
b]e −

1
2
ε(2)

ab(R + S) = κTab

P̃jb ≡ 0 = κTjb,

Pbk ≡ −(δkCa
ba − εd

bkCa
da) = κTbk,

where Tij , Tab, Tjb, Tbk are the energy-momentum N−tensor fields, and κ is a con-
stant.
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3 The conformally deformed weak model

We consider a conformal-type deformation of the weak pseudo-Riemannian metric
γij , given by

fij(x, y) = e2σ(x,y)γij(x), (15)

where σ : R → TM is a function of class C∞ on TM except the null section, and γij

is the weak metric (1). Then fij provides a generalized Lagrange metric TM , and its
Sasaki N−lift defines a canonic (h, v)−metric on TM ,

G = fij(x, y)dxi ⊗ dxj + fab(x, y)δya ⊗ δyb.

We shall call the metric structure (TM,G), the conformally deformed weak model
(CDWM). It should be noticed that this model is used as mathematical model in
General Relativity and obeys the Ehlers-Pirani-Shild conditions [1], [14], [15]. For
studying the geometry of the CDWM, we shall use the geometrical concepts of the
linearized theory of gravitation of the of General Relativity [16], and empower the
linear approximations (5) and (6). Then, by straightforward computation, we obtain
the following result

Lemma 2. The canonic connection of the linearized CDWM has the coefficients

Li
jk = εi

jk + Λi
jk

L̃a
bk = εa

bk +
1
2
ε(2)ac(δkε(2)

bc − ε(2)
c{dε

d
b}k)

C̃i
ja =

1
2
δi
j σ̇a

Ca
bc = δa

{bσ̇c} − γbcn
adσ̇d

where we denoted σk = δkσ, σ̇a = ∂̇aσ and Λi
jk = δi

jσk + δi
kσj − γjknisσs.

Theorem 2. a) The N−fields of torsion of the linearized CDWM are

T i
jk = 0, C̃i

ja =
1
2
δi
j σ̇a, Sa

bc = 0,

P a
kb = ∂̇bN

a
k − L̃a

bk = −1
2
nac(δkγbc − γc{dε

d
b}k)

Ra
jk = r a

c jkyc. (16)

b) The h − hhh and v − vvv N−fields of curvature of the linearized CDWM are

R i
j kl = r i

j kl + δi
[kσjl] − nisγj[kσsl] + δi

j σ̇ar a
c kly

c

S a
b cd = δa

[cσ̇bd] − nasγb[cσ̇sd],

where r i
j kl are given in (14), and

σsl = δlσs − Lt
slσt + σsσl −

1
2
γsln

ijσiσj

σ̇ab = ∂̇bσ̇a − Cd
abσ̇d + σ̇aσ̇b −

1
2
γabn

cdσ̇cσ̇d.
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c) The hh− and the vv−Ricci N−tensor fields, and the scalar field curvatures of
the linearized CDWM are

Rij = r k
i jk − γijn

klσkl − 2σij + σ̇ar a
c jiy

c

Sab = −2σ̇ab − γabn
cdσ̇cd

and respectively,

R = e−2σ(nijr k
i jk − 6nijσij), S = −6e−2σncdσ̇cd.

Corrolary 2. The h− and v−Einstein equations of the linearized CDWM are

2Rij − (R + S)γij ≡ 2(r k
i jk − 2σij + σ̇ar a

c jiy
c) −

−(nlmr k
l mk − 6nlmσlm − 8ncdσ̇cd)γij

= 2κTij

2Sab − (R + S)γab ≡ −4σ̇ab −−(nijr k
i jk − 6nijσij − 8ncdσ̇cd)γab

= 2κTab,

where Tij and Tab are the hh− and vv− energy-momentum N−tensor fields, and κ
is a constant.

4 The paths of the deformed weak models

Let c : I = [a, b] ⊂ R → TM be a smooth curve, such that its image lies in a chart
Ũ ⊂ TM ,

c(t) = (xi(t), ya(t)) ≡ (yα(t)),∀t ∈ I,

and let D be a linear N−connection on TM .
Definitions. a) The fields defined on c by

V = Vαδα, Vα =
δyα

dt

F =
DV
dt

= Fαδα, Fα =
δVα

dt
+ Γα

βκVβVκ, α = 1, 8,

(17)

will be called covariant velocity field of the curve c, and respectively the covariant
force on c, the last providing the motion of the test-body along c.

b) We shall say that c is a stationary curve with respect to D iff F = 0 along the
curve.

c) The curve c is called
• h−curve, if πv(V) = 0;
• v−curve, if πh(V) = 0,

where by πh and πv we denoted respectively the h− and v−projectors of the canonic
splitting induced by N . If a h − /v−curve satisfies also the extra condition F = 0,
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then it is called h − /v−path, respectively.

Remarks. a) Since in the linearized approach, the non-linear connection N is
provided by the pseudo-Riemannian metric γij on M by means of relation (6), any
stationary h-curve (i.e., any h−path) of the two models projects onto a geodesic of
M .

b) The v−paths of the FDWM coincide with the v−paths of the Finsler space
(M,F (x, y)), with F 2 = ε(2)

ab(x, y)yayb.
c) The paths of CDWM coincide with the paths of the Generalized Lagrange space

(M, e2σ(x,y)γij(x)).
d) Any h−path c : I ⊂ R → TM, c(t) = (xi(t), ya(t)) is a solution of the

Volterra-Hamilton-type second-order differential system
dya

dt
+ Na

j (x(t), y(t))
dxj

dt
= 0

d2xi

dt2
+ Li

jk(x(t), y(t))
dxj

dt

dxk

dt
= 0.

(18)

It should be noticed, that in the FDWM, the system (18) rewrites
dyi

dt
= −εi

jk(x(t)) · yj(t)zk(t),
dxi

dt
= zi(t)

dzi

dt
= −εi

jk(x(t)) · zj(t)zk(t),

e) Any v−path c : I ⊂ R → TM, c(t) = (xi
0, y

a(t)) is a solution of the second-
order differential system

d2ya

dt2
+ Ca

bc(x0, y(t))
dyb

dt

dyc

dt
= 0. (19)

f) The system (18) has the unknowns xi = xi(t), yi = yi(t), zi = zi(t), i = 1, 4.
If we impose initial conditions xi(0) = xi

0, yi(0) = yi
0, zi(0) = zi

0, we obtain a
Cauchy problem which is perfectly tractable numerically, e.g., using the Runge-Kutta
algorithm [3]. A similar approach can be applied to the system (19).

Let now c : I1 × I2 ⊂ R
2
→ Ũ ⊂ TM be a family of stationary curves, having t as

arc-length parameter, and u the deviation parameter [17], [9],

c(t, u) = (xi(t, u), ya(t, u)) = (yα(t, u)) ∈ Ũ , ∀(t, u) ∈ I1 × I2,

where Ũ ⊂ TM is an open chart-domain. Then let Z = Zαδα be the deviation vector
field, given by

Zi = ∂uxi, Za = ∂uya + Na
i ∂uxi,

and let V = Vαδα be the velocity vector field, where

Vi = ∂tx
i, Va = ∂ty

a + Na
i ∂tx

i.
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For any vector field W = Wαδα, defined on the family Im(c), we can consider the
partial covariant derivatives

δtWα = ∂tWα + Γα
βγWβVγ , δuWα = ∂uWα + Γα

βγWβZγ .

The equations of deviations of the family with respect to the connection D characterize
the tidal force Z, and have the form [2], [4], [6]

δ2
t Zα + δtT α = ρα + δuFα,

where we denoted T α = T α
β γVβZγ and ρ α = R α

β γλVβZγVλ. Actually, these equa-
tions split 

δ2
t Zi + δtT i = ρi + δuF i

δ2
t Za + δtT a = ρa + δuFa,

and it should be noticed that the equations of deviations of stationary curves are
considerably simplified for paths, e.g., if c is an h-path, then these become:

δ2
t Zi + δtT i = ρi, i = 1, 4

δ2
t Za + δtT a = 0, a = 1, 4.

The equations of deviations of paths for the two models presented above are particular
cases of the ones considered in [5], [2], [4], [6], which are extensions of the Finslerian
case settled in [17]. In particular, the study of deviation of geodesics for the Finslerian
case, which includes the Finsler metric n + ε(1) + ε(2) of the linearized FDWM, was
performed in [18], [19].

Conclusions. The weak pseudo-Riemannian gravitational model was extended
by considering two deformations of the weak pseudo-Riemannian metric γij of the
4-dimensional base space M . These gave rise to (h, v)−metrics on TM . Thus the
two considered deformed models fit in the general theory of (h, v)−metric structures
on vector bundles developed in [12], [13], [14], [4], [5]. In this framework, the explicit
Einstein equations and the equations of stationary curves and of their deviations were
determined for the canonic linear N−connection, with the Berwald-type nonlinear
connection N considered in linearized approach.
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